×
19.06.2019
219.017.8801

Результат интеллектуальной деятельности: СПОСОБ И АППАРАТ ДЛЯ ГАЗОХРОМАТОГРАФИЧЕСКОГО АНАЛИЗА ВОДОРОДСОДЕРЖАЩИХ ГАЗОВЫХ СМЕСЕЙ

Вид РИД

Изобретение

Аннотация: Способ газохроматографического анализа водородсодержащих газовых смесей включает подачу газовой смеси параллельно в два канала - канал анализа Н и канал анализа остальных газов. При этом в канале анализа Ндополнительно осуществляют разделение и детектирование остальных газов и проводят калибровку с использованием метода внутреннего стандарта по одному из газов. Аппарат для газохроматографического анализа водородсодержащих газовых смесей включает два параллельных канала - канал анализа Н и канал анализа остальных газов, где каждый из каналов содержит, по меньшей мере, две последовательные разделительные колонки, помещенные в термостат, и снабжен детектором. В обоих каналах после первой по ходу газовой смеси разделительной колонки дополнительно установлена система с возможностью отключения второй разделительной колонки и подачи газовой смеси сразу на детектор. Изобретение позволяет производить полное разделение водородсодержащих газовых смесей с высокой точностью. 2 н. и 3 з.п. ф-лы, 2 табл., 6 ил.

Область техники, к которой относится изобретение

Изобретение относится к анализу газовых смесей и касается способа газохроматографического анализа и аппарата для его осуществления, позволяющего производить полное разделение водородсодержащих смесей, в частности, представляющих собой продукты получения синтез-газа.

Уровень техники

Известно, что общим недостатком газохроматографического метода для анализа водородсодержащих газовых смесей, связанным с особенностью детекторов по теплопроводности, является необходимость использования как минимум двух газов-носителей для повышения точности анализа. Для анализа водорода в качестве газа-носителя обычно используют аргон или азот, тогда как для анализа остальных газов наиболее распространенным газом-носителем является гелий. Это приводит к необходимости создания двух хроматографических каналов, в каждом из которых производится отбор пробы, разделение газовой смеси на хроматографических разделительных колонках и детектирование компонентов смеси.

Для количественного определения компонентов смеси необходима калибровка детекторов. Наиболее распространенными методами калибровки являются абсолютная калибровка, нормализация по сумме площадей пиков и калибровка по внутреннему стандарту. Абсолютная калибровка позволяет не использовать инертный газ в реакции, однако, она применима только в случае стандартизованных условий анализа, в частности, при известном давлении газа внутри каждого из каналов, которое может меняться по ходу реакции. Нормализацию по сумме площадей пиков обычно применяют при анализе реакций с известной стехиометрией. Метод внутреннего стандарта позволяет не учитывать изменяющиеся условия анализа и стехиометрию изучаемой реакции, обеспечивая универсальность анализа. Однако для применения калибровки по методу внутреннего стандарта к анализу водородсодержащих газовых смесей необходимо разделять сигналы измеряемого вещества и газа-стандарта в каждом хроматографическом канале.

Для газохроматографического разделения газовых смесей, содержащих, в частности, СО, СО2, Н2О, N2, O2, применяют несколько последовательно соединенных разделительных колонок, при этом в ходе анализа происходит переключение потока между колонками и детекторами. Например, в патенте US 4234315 применяют три последовательно соединенные колонки. На первой колонке, заполненной адсорбентом Porapak Q или Porapak S, происходит отделение паров воды и таких газов, как галогениды водорода, цианистый водород, оксиды серы. Эти газы поступают на детектор, тогда как оставшаяся смесь подается на вторую колонку. На второй колонке, заполненной адсорбентом Porapak Т, отделяют диоксид углерода, галогены, аммиак и сероводород, после чего эти газы также подают на детектор. Оставшаяся смесь подается на третью колонку, заполненную молекулярными ситами, где происходит разделение азота, кислорода, метана, монооксида углерода и оксидов азота, после чего эти газы также детектируются. Недостатком данного метода является невозможность одновременного точного определения содержания водорода и остальных газов в смеси по причине использования одного газа-носителя.

В патенте US 4470832 описан аппарат, содержащий, как минимум, две параллельные колонки и механизм переключения потоков между колонками и детектором. Аппарат предназначен для разделения таких газовых смесей, как, например, Н2, СО, CH4, С2Н2, С2Н4, С2Н6, однако такие газы, как N2, О2, Ar, не смогут быть одновременно проанализированы с достаточной точностью из-за использования газа-носителя, близкого по физическим свойствам к последним.

Наиболее близкие к настоящему изобретению способ и аппарат для газохроматографического анализа водородсодержащих газовых смесей описаны в диссертации D.R.W. Neumann "Dynamic reactor operation and high-temperature catalysis: direct oxidation of methane in a reverse-flow reactor", Университет Питтсбурга, 2003 г. (доступна в Интернет по адресу http://etd.library.pitt.edu/ETD/available/etd-06252003-144932/). Способ предназначен для анализа газов, являющихся продуктами окислительной конверсии метана: СН4, О2, N2, Н2, Н2О, СО и CO2, и включает подачу газовой смеси параллельно в два канала, каждый из которых содержит две последовательные разделительные колонки и в одном из которых осуществляют анализ Н2, а в другом - анализ остальных газов. При этом в канале анализа остальных газов производят переключение потока между второй колонкой и детектором. Аппарат включает два параллельных хроматографических канала, в которых используются разные газы-носители: Ar для анализа водорода в одном канале и Н2 для анализа остальных компонентов газовой смеси в другом канале. Каждый из каналов содержит две последовательные разделительные колонки, помещенные в термостат, и снабжен детектором. Кроме того, канал анализа остальных газов содержит кран для переключения газового потока между второй колонкой и детектором.

Недостатком данного технического решения является невозможность использования метода внутреннего стандарта для калибровки детектора в канале анализа водорода, в связи с чем уменьшается точность и универсальность анализа.

Раскрытие изобретения

Первой задачей, на решение которой направлено предложенное изобретение, является создание способа анализа водородсодержащих газовых смесей, характеризующегося высокой точностью и универсальностью.

Второй задачей, на решение которой направлено предложенное изобретение, является создание аппарата, в котором осуществляется упомянутый анализ водородсодержащих газовых смесей.

Дополнительной задачей, на решение которой направлено предложенное изобретение, является создание способа и соответствующего аппаратного исполнения для разделения аргона и кислорода при анализе водородсодержащих газовых смесей.

В соответствии с поставленными задачами, одним объектом изобретения является способ газохроматографического анализа водородсодержащих газовых смесей, включающий подачу газовой смеси параллельно в два канала - канал анализа Н2 и канал анализа остальных газов, где каждый из каналов содержит по меньшей мере две последовательные разделительные колонки, помещенные в термостат, и снабжен детектором, причем в канале анализа Н2 дополнительно осуществляют разделение и детектирование остальных газов и проводят калибровку с использованием метода внутреннего стандарта по одному из газов.

В частном случае осуществления способа, при анализе водородсодержащих газовых смесей, содержащих Ar и О2, температуру на второй колонке в канале анализа Н2 устанавливают ниже 0°С.

Другим объектом изобретения является аппарат для газохроматографического анализа водородсодержащих газовых смесей, включающий два параллельных канала - канал анализа Н2 и канал анализа остальных газов, где каждый из каналов содержит по меньшей мере две последовательные разделительные колонки, помещенные в термостат, и снабжен детектором, причем в обоих каналах после первой по ходу газовой смеси разделительной колонки дополнительно установлена система с возможностью отключения второй разделительной колонки и подачи газовой смеси сразу на детектор.

В предложенном аппарате каналы выполнены с использованием единого термостата для обоих каналов, или отдельных термостатов для каждого из каналов, или отдельных термостатов для каждой из разделительных колонок.

В частном случае выполнения аппарата термостат второй по ходу газовой смеси разделительной колонки в канале анализа Н2 снабжен криосистемой, позволяющей устанавливать температуру ниже 0°С.

Таким образом, технический результат, выражающийся в повышении точности и универсальности анализа водородсодержащих газовых смесей, достигается посредством дополнительного разделения и детектирования газов в канале анализа Н2, а также калибровки с использованием метода внутреннего стандарта по одному из газов.

Краткое описание чертежей

На Фиг.1 изображена схема аппарата для анализа водородсодержащих газовых смесей.

На Фиг.2 проиллюстрирован вариант воплощения изобретения с обратной продувкой первой колонки.

На Фиг.3 изображена хроматограмма водородсодержащей газовой смеси, зарегистрированная на канале анализа водорода.

На Фиг.4 представлена хроматограмма водородсодержащей газовой смеси, зарегистрированная на канале анализа остальных газов.

На Фиг.5 показана хроматограмма водородсодержащей газовой смеси, включающей аргон, зарегистрированная на канале анализа водорода.

На Фиг.6 изображена хроматограмма водородсодержащей газовой смеси, включающей аргон, зарегистрированная на канале анализа остальных газов.

Осуществление изобретения

В аппарате для газохроматографического анализа водородсодержащих смесей, соответствующем данному изобретению, пробы газовой смеси поступают параллельно в два хроматографических канала: канал анализа водорода и канал анализа остальных газов. В частном случае воплощения изобретения, показанном на Фиг.1, схема аппарата включает в себя многоходовые краны (1), представленные шестиходовыми кранами, источники газов-носителей (2), первые по ходу газовой смеси разделительные колонки (3,4), вторые по ходу газовой смеси разделительные колонки (6,7), систему отключения второй разделительной колонки, включающую многоходовые краны (5), представленные шестиходовыми кранами, и детекторы (8). Термостаты, в которые помещены разделительные колонки (3,4,6,7), могут быть как отдельными, так и едиными, т.е. совмещенными (не показаны).

Газовые пробы, содержащиеся в омываемых анализируемым газом дозирующих петлях, при переключении кранов (1) поступают в первые разделительные колонки (3,4), предназначенные для отделения газов, таких как, например, CO2 и Н2О, от остальных газов, не разделяющихся на первых разделительных колонках (3,4). Остальные газы проходят дальше на вторые разделительные колонки (6,7). После прохождения всех остальных газов на вторые разделительные колонки (6, 7) происходит переключение кранов (5). После этого газы, не прошедшие на вторую колонку (например, CO2 и Н2О), начинают поступать на детекторы (8). После выхода всех газов с колонок (3, 4) краны (5) снова переключаются и газы, разделяющиеся на колонках (6, 7), поступают на детекторы (8). Моменты времени, в которые необходимо провести переключение кранов (5), определяются в независимых экспериментах.

Способ и аппарат, соответствующие настоящему изобретению, позволяют проводить полное разделение газовой смеси на компоненты в обоих хроматографических каналах. Содержание компонентов в смеси рассчитывают, исходя из площадей соответствующих пиков на хроматограмме, по формуле:

где Сi -концентрация i-го компонента в смеси, Si - площадь пика i-го компонента на хроматограмме, SSt - площадь пика стандарта на хроматограмме, VSt - объем стандарта в пробе, V - общий объем пробы, RFi - калибровочный коэффициент для i-го компонента. Калибровочные коэффициенты для всех компонентов вычисляются по формуле:

где Vi - объем i-го компонента в пробе. В качестве внутреннего стандарта, в принципе, может быть использован любой компонент газовой смеси, концентрация или количество которого известны. Чаще всего в качестве внутреннего стандарта используют инертные газы (аргон, азот), не вступающие в реакцию. Калибровка (вычисление калибровочных коэффициентов RFi) проводится отдельно для каждого хроматографического канала.

В предложенном изобретении при необходимости можно осуществлять обратную продувку первых по ходу газовой смеси колонок. Схема аппарата с обратной продувкой представлена на Фиг.2, где для упрощения показан один из двух хроматографических каналов. Принципиальное отличие схемы с обратной продувкой от схемы, представленной на Фиг.1, состоит в использовании в качестве многоходового крана (1) десятиходового крана. К крану (1) подключены источник газа-носителя (2) и первая разделительная колонка (3). Кроме того, в схеме данного аппарата предусмотрен дополнительный источник газа-носителя (9) и регулировочный кран обратной продувки (10). Остальная часть схемы не отличается от схемы аппарата, представленного на Фиг.1. Обратная продувка первой колонки позволяет, в частности, не анализировать часть компонентов газовой смеси, разделяющихся на первой колонке (СО2, Н2О, Н2S и другие газы), что приводит к уменьшению времени анализа. В этом случае для обеспечения обратной продувки необходимо при переключении крана (5) одновременно переключать и кран (1).

В частном варианте воплощения изобретения вторые по ходу газовой смеси колонки (6,7) в одном или обоих хроматографических каналах помещают в термостат, снабженный криосистемой (действующей, например, путем впрыскивания жидкого СО2), позволяющей снижать температуру разделительных колонок ниже 0°С. Снижение температуры позволяет хроматографически разделить аргон и кислород при их совместном присутствии в газовой смеси, что дает возможность рассчитать содержание этих компонентов в смеси и/или использовать один из этих газов в качестве внутреннего стандарта для расчета содержания остальных компонентов.

Осуществление настоящего изобретения иллюстрируют приведенные ниже примеры, которые не предназначены для ограничения объема притязаний, представленного в формуле изобретения, т.к. полученные результаты не исчерпывают полностью объем проведенных исследований.

Пример 1

Анализ газообразных продуктов парциального окисления метана в синтез-газ, содержащих Н2, О2, N2, CH4, CO, CO2, Н2О. В качестве инертного газа-стандарта использован N2. Для детектирования компонентов газовой смеси в каждом из каналов использованы детекторы по теплопроводности. Канал анализа водорода: газ-носитель - аргон, первая по ходу газовой смеси колонка - Haysep Q (80-100 меш, 1/8'', 2 м), вторая по ходу газовой смеси колонка - молекулярные сита 5А (80-100 меш, 1/8'', 4 м), температура обеих колонок - 120°С. Первое переключение потока газов - 4 мин после начала анализа, второе переключение - 14 мин.

Канал анализа остальных газов: газ-носитель - гелий, первая по ходу газовой смеси колонка - Haysep Q (80-100 меш, 1/8'', 2 м), вторая по ходу газовой смеси колонка - молекулярные сита 5А (80-100 меш, 1/8'', 4 м), температура первой колонки - 120°С, температура второй колонки изменяется в соответствии со следующей программой: 40°С - 19 мин, нагрев со скоростью 20°/мин до 120°С. Первое переключение потока газов - 2,4 мин, второе переключение - 11,5 мин.

Общее время анализа - 35 мин.

На Фиг.3 и Фиг.4 представлены хроматограммы, полученные на канале анализа водорода и канале анализа остальных газов, соответственно. На хроматограммах присутствуют пики, соответствующие различным газам, а также моментам переключения крана.

В данном примере анализируют все компоненты газовой смеси, поэтому, приняв сумму всех компонентов за 100%, можно рассчитать процентный состав смеси (в объемных или мольных процентах). Рассчитанное содержание компонентов в газовой смеси приведено в Таблице 1.

Таблица 1.
Содержание компонентов в газовой смеси.
ГазCO2Н2ОН2O2N2СН4СО
Содержание, об.%2,62,230,00,248,21,715,1

Пример 2

Анализ газовой смеси, содержащей Н2, О2, Ar, N2, СН4, CO, СО2, Н2О. Характеристики колонок и детекторов - те же, что и в примере 1. Отбор пробы в обоих каналах производится с помощью десятиходовых кранов (см. Фиг.2), позволяющих осуществлять обратную продувку первых по ходу газовой смеси разделительных колонок.

В канале анализа водорода первое время переключения потока газов - 4 мин, второе переключение - 6 мин. Температура обеих колонок - 120°С.

В канале анализа остальных газов первое переключение потока газов - 2,3 мин, второе переключение - 3,2 мин. Температура первой по ходу газовой смеси разделительной колонки - 120°С. Температура второй колонки изменяется по следующей программе: -10°С - 14 мин, нагрев со скоростью 20°/мин до 120°С. Общее время анализа - 27 мин.

Хроматограммы канала анализа водорода и канала анализа остальных газов приведены на Фиг.5 и Фиг.6, соответственно. На хроматограммах присутствуют пики, соответствующие различным газам, а также моментам переключения крана. На хроматограммах отсутствует пик Н2О, так как переключение потоков происходит до начала выхода соответствующего компонента с первых по ходу газовой смеси колонок. Оставшийся на колонке компонент (Н2О) сдувается обратной продувкой. Кроме того, на хроматограмме канала анализа водорода отсутствует пик Ar (6), так как Ar в данном канале используют в качестве газа-носителя.

Поскольку в данном анализе не определяется полный набор компонентов (отсутствует Н2О), рассчитывают содержание компонентов относительно внутреннего стандарта, в качестве которого в данном случае использован N2. Результаты расчета приведены в Таблице 2.

Таблица 2.
Содержание компонентов в газовой смеси.
ГазCO2Н2O2ArСН4СО
Относительное содержание, 12,462,324,313,373,420,7

Промышленная применимость

Способ газохроматографического анализа и аппарат, соответствующие предложенному изобретению, представляют большой интерес для использования в различных отраслях промышленности, поскольку позволяют производить полное разделение водородсодержащих газовых смесей, в частности, представляющих собой продукты получения синтез-газа. Интерес определяется высокой точностью и универсальностью способа анализа.

1.Способгазохроматографическогоанализаводородсодержащихгазовыхсмесей,включающийподачугазовойсмесипараллельновдваканала-каналанализаНиканаланализаостальныхгазов,гдекаждыйизканаловсодержитпоменьшеймередвепоследовательныеразделительныеколонки,помещенныевтермостат,иснабжендетектором,отличающийсятем,чтовканалеанализаНдополнительноосуществляютразделениеидетектированиеостальныхгазовипроводяткалибровкусиспользованиемметодавнутреннегостандартапоодномуизгазов.12.Способпоп.1,отличающийсятем,чтоприанализеводородсодержащихгазовыхсмесей,содержащихArиО,температурунавторойколонкевканалеанализаНустанавливаютниже0°С.23.Аппаратдлягазохроматографическогоанализаводородсодержащихгазовыхсмесей,включающийдвапараллельныхканала-каналанализаНиканаланализаостальныхгазов,гдекаждыйизканаловсодержитпоменьшеймередвепоследовательныеразделительныеколонки,помещенныевтермостат,иснабжендетектором,отличающийсятем,чтовобоихканалахпослепервойпоходугазовойсмесиразделительнойколонкидополнительноустановленасистемасвозможностьюотключениявторойразделительнойколонкииподачигазовойсмесисразунадетектор.34.Аппаратпоп.3,отличающийсятем,чтоканалывыполненысиспользованиемединоготермостатадляобоихканалов,илиотдельныхтермостатовдлякаждогоизканалов,илиотдельныхтермостатовдлякаждойизразделительныхколонок.45.Аппаратпоп.4,отличающийсятем,чтоотдельныйтермостатвторойпоходугазовойсмесиразделительнойколонкивканалеанализаНснабженкриосистемой.5
Источник поступления информации: Роспатент

Showing 11-20 of 24 items.
29.05.2019
№219.017.66fa

Состав для ингибирования солеотложений при добыче нефти (варианты)

Изобретение относится к области нефтедобычи, в частности к составам, предназначенным для предотвращения осаждения неорганических солей в скважинах и на скважинном оборудовании, системе сбора и транспорта нефти, а также в нефтяных пластах, разрабатываемых с использованием систем заводнения....
Тип: Изобретение
Номер охранного документа: 0002307798
Дата охранного документа: 10.10.2007
19.06.2019
№219.017.8619

Катализатор метатезисной полимеризации дициклопентадиена, способы его получения и способ его полимеризации

Изобретение относится к области катализа и касается производства катализаторов метатезисной полимеризации дициклопентадиена (ДЦПД). Катализатор метатезисной полимеризации имеет формулу: где L - заместитель, выбранный из группы: Разработано несколько способов получения катализатора. Способ...
Тип: Изобретение
Номер охранного документа: 0002393171
Дата охранного документа: 27.06.2010
19.06.2019
№219.017.86c0

Способ получения базовой основы трансформаторного масла

Изобретение относится к области нефтепереработки, а именно к способу получения базовой основы трансформаторного (электроизоляционного) масла. Нефтяную прямогонную фракцию, выкипающую выше 310°С, подвергают каталитическому гидрокрекингу, а затем каталитической изодепарафинизации, совмещенной с...
Тип: Изобретение
Номер охранного документа: 0002382068
Дата охранного документа: 20.02.2010
19.06.2019
№219.017.8705

Способ получения альдегидов c-c

Изобретение относится к способу получения альдегидов С-С, заключающийся в том, что олефины подвергают гидроформилированию в присутствии каталитической системы, содержащей родий, полифосфитный лиганд, имеющий общую формулу: где k+m≥2, причем, возможно, k=0 или m=0; X - углеводородный радикал,...
Тип: Изобретение
Номер охранного документа: 0002354642
Дата охранного документа: 10.05.2009
19.06.2019
№219.017.872b

Катализатор гидроформилирования олефинов c-c, способ его получения (варианты) и способ получения альдегидов c-c

Изобретение относится основному органическому, тонкому органическому и нефтехимическому синтезу и может быть использовано для гидроформилирования α-олефинов в соответствующие альдегиды. Катализатор получения альдегидов С-С гидроформилированием соответствующих олефинов, представляет собой...
Тип: Изобретение
Номер охранного документа: 0002352552
Дата охранного документа: 20.04.2009
19.06.2019
№219.017.8742

Способ получения трициклогексилфосфина

Настоящее изобретение относится к способу получения трициклогексилфосфина, используемого в синтезе металлокомплексных катализаторов для реакций метатезиса, карбонилирования, кросссочетания, полимеризации и др. Предложенный способ заключается в том, что красный фосфор подвергают взаимодействию с...
Тип: Изобретение
Номер охранного документа: 0002375372
Дата охранного документа: 10.12.2009
19.06.2019
№219.017.876a

Способ получения катализатора метатезисной полимеризации дициклопентадиена

Изобретение относится к металлоорганической химии, в частности к способу получения катализатора метатезисной полимеризации дициклопентадиена -[1,3-бис-(2,4,6-триметилфенил)-2-имидазолидинилиден]дихлоро(о-N,N-диметиламинометилфенил метилен)рутения. Способ получения состоит в том, что...
Тип: Изобретение
Номер охранного документа: 0002377257
Дата охранного документа: 27.12.2009
19.06.2019
№219.017.87e2

Катализатор гидрирования аренов и способ его приготовления

Изобретение относится к каталитической химии, в частности к катализаторам деароматизации дизельных фракций. Описан катализатор гидрирования аренов, содержащий платину на носителе, включающем оксид алюминия, содержащий не более 500 ppm примесей в смеси с кристаллическим мезопористым...
Тип: Изобретение
Номер охранного документа: 0002309796
Дата охранного документа: 10.11.2007
19.06.2019
№219.017.886e

Катализатор изодепарафинизации нефтяных фракций и способ его приготовления

Изобретение относится к каталитической химии, более конкретно - к катализаторам изодепарафинизации нефтяных. Описан катализатор изодепарафинизации нефтяных фракций, содержащий платину и модификаторы на носителе, включающем высокодисперсный, порошкообразный оксид алюминия высокой степени чистоты...
Тип: Изобретение
Номер охранного документа: 0002320407
Дата охранного документа: 27.03.2008
19.06.2019
№219.017.8991

Катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда

Изобретение относится способу получения лиганда катализатора тримеризации этилена. Описан способ получения лиганда катализатора тримеризации этилена в 1-гексен общей формулы: где R - алкил, R- водород и/или алкил, включающий проведение реакции синтеза 2-(алкилтио)алкиламина и...
Тип: Изобретение
Номер охранного документа: 0002470707
Дата охранного документа: 27.12.2012
Showing 11-20 of 25 items.
29.12.2017
№217.015.f0ce

Способ разделения газовых смесей, содержащих водород и диоксид углерода

Изобретение может быть использовано в энергетической, нефтехимической, химической и металлургической отраслях промышленности. Способ разделения газовых смесей, содержащих водород и диоксид углерода, включает абсорбционное удаление диоксида углерода из газовых смесей абсорбентом на основе водных...
Тип: Изобретение
Номер охранного документа: 0002638852
Дата охранного документа: 18.12.2017
29.12.2017
№217.015.fc1b

Моторное масло арктического назначения

Изобретение относится к нефтепереработке, в частности к составу моторного масла арктического назначения, предназначенного для использования в строительно-дорожных машинах, экскаваторах, бульдозерах, снегоходах, буровых установках и другой технике, которая должна сохранять работоспособность при...
Тип: Изобретение
Номер охранного документа: 0002638528
Дата охранного документа: 14.12.2017
19.01.2018
№218.016.08a3

Гидравлическое масло арктического назначения

Гидравлическое масло арктического назначения с улучшенными низкотемпературными свойствами, предназначено для использования в гидравлических системах строительно-дорожных машин, экскаваторах, бульдозерах, снегоходах, буровых установках и другой технике, которая должна сохранять работоспособность...
Тип: Изобретение
Номер охранного документа: 0002631659
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.08ec

Способ получения водорода для щелочных топливных элементов

Изобретение может быть использовано в энергетической, нефтехимической, химической, металлургической отраслях промышленности. Способ получения водорода из газовых смесей, содержащих диоксид углерода, осуществляют путем его абсорбционного удаления абсорбентом на основе водных растворов аминов,...
Тип: Изобретение
Номер охранного документа: 0002631799
Дата охранного документа: 26.09.2017
05.07.2018
№218.016.6af7

Способ абсорбционного выделения диоксида углерода из газовых смесей абсорбентами, содержащими водные растворы аминов

Предложен способ абсорбционного выделения диоксида углерода из газовых смесей абсорбентом, содержащим водный раствор аминов по циркуляционной схеме. Способ включает абсорбцию диоксида углерода из газовой смеси в абсорбере, дросселирование насыщенного абсорбента, нагрев насыщенного абсорбента в...
Тип: Изобретение
Номер охранного документа: 0002659991
Дата охранного документа: 04.07.2018
08.07.2018
№218.016.6e4d

Способ изготовления полупроводниковых резистивных сенсоров для измерений содержания озона в воздухе

Изобретение может быть использовано в аналитической химии для контроля концентрации озона в технологических процессах, экологического мониторинга, контроля воздушной среды рабочих зон, атмосферного мониторинга, в научных исследованиях, в том числе в области атмосферной химии. Способ...
Тип: Изобретение
Номер охранного документа: 0002660338
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6e79

Способ изготовления полупроводниковых резистивных сенсоров для измерений содержания озона в воздухе

Изобретение может быть использовано в аналитической химии, в экологическом мониторинге, для контроля воздушной среды населенных мест, в атмосферном мониторинге, для контроля концентрации озона в технологических процессах, научных исследованиях, в том числе в области атмосферной химии. Способ...
Тип: Изобретение
Номер охранного документа: 0002660333
Дата охранного документа: 05.07.2018
30.08.2018
№218.016.8180

Способы изготовления полупроводниковых резистивных сенсоров для измерений содержания озона в воздухе

Изобретение относится к области создания высокочувствительных датчиков и приборов на их основе для измерения токсичных газов и может быть использовано в аналитической химии, экологическом мониторинге, в атмосферном мониторинге, для измерения концентрации озона в технологических процессах и в...
Тип: Изобретение
Номер охранного документа: 0002665348
Дата охранного документа: 29.08.2018
29.03.2019
№219.016.f2cf

Катализатор и способ получения пропилена

Изобретение относится к области нефтехимии, а именно к производству катализаторов димеризации и метатезиса олефинов и способа получения пропилена из этилена. Описаны катализатор получения пропилена из этилена, содержащий оксид рения, оксид вольфрама и палладий на оксидном носителе, в качестве...
Тип: Изобретение
Номер охранного документа: 0002370314
Дата охранного документа: 20.10.2009
19.06.2019
№219.017.84ff

Рений-оксидный катализатор метатезиса олефиновых углеводородов, способ его получения и способ синтеза пропилена с его использованием

Изобретение относится к катализаторам метатезиса олефиновых углеводородов и касается рений-оксидного катализатора на анионсодержащем носителе, способа его получения и применения. Описан рений-оксидный катализатор метатезиса олефиновых углеводородов на анионсодержащем носителе на основе...
Тип: Изобретение
Номер охранного документа: 0002292951
Дата охранного документа: 10.02.2007
+ добавить свой РИД