×
09.06.2019
219.017.7e42

Результат интеллектуальной деятельности: СПОСОБ СТЕНДОВЫХ ИСПЫТАНИЙ ЭНЕРГЕТИЧЕСКИХ УЗЛОВ, СОДЕРЖАЩИХ ПИРОТЕХНИЧЕСКИЕ И/ИЛИ ПОРОХОВЫЕ СОСТАВЫ, И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002403430
Дата охранного документа
10.11.2010
Аннотация: Изобретение относится к области испытаний вооружения, а конкретно к способам и устройствам стендовых испытаний энергетических узлов, содержащих пиротехнические и/или пороховые составы, твердые ракетные топлива. Способ стендовых испытаний энергетических узлов, содержащих пиротехнические и/или пороховые составы, включает установку датчика давления на камеру сгорания энергетического узла, запуск и прожиг энергетического узла, а также регистрацию в процессе прожига внутрибаллистического давления через газодинамическую связь между камерой сгорания и датчиком давления. Установку датчика давления осуществляют на герметичную камеру сгорания, а газодинамическую связь камеры сгорания с датчиком давления осуществляют после установки датчика давления до или в процессе запуска энергетического узла. Устройство для реализации указанного способа включает испытуемый энергетический узел с камерой сгорания, в которой выполнено гнездо с газодинамическим каналом для сообщения с датчиком давления, связанным с измерительно-регистрирующей аппаратурой. В газодинамическом канале установлена принудительно открываемая или разрушаемая герметичная перегородка. Изобретения позволяют повысить качество и достоверность результатов испытаний за счет приближения условий испытаний к натурным. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области испытаний вооружения, а конкретно к способам и устройствам стендовых испытаний энергетических узлов, содержащих пиротехнические и/или пороховые составы, твердые ракетные топлива, преимущественно ракетных двигателей твердого топлива (РДТТ), пороховых аккумуляторов давления (ПАД), метательных зарядов (МЗ), вышибных зарядов (ВЗ), пиротехнических и пороховых механизмов разделения (МР) и т.д.

Известна стендовая установка для огневых испытаний РДТТ (В.Д.Куров, Ю.М.Должанский. Основы проектирования пороховых ракетных снарядов, Оборонгиз, 1961 г., с.277…278, Фиг.7.1). Данная установка включает испытуемый двигатель, трубопровод, подводящий газ от камеры сгорания двигателя к датчику давления, который электрическими кабелями через согласующую приставку соединен с регистрирующим осциллографом. В данном устройстве реализован способ испытаний РДТТ, включающий прожиг двигателя и регистрацию внутрибаллистического давления в камере сгорания двигателя через газодинамическую связь камеры сгорания с датчиком давления. Наличие в данной установке достаточно длинного трубопровода, подводящего газ из камеры сгорания к датчику давления, искажает истинное внутрибаллистическое давление, особенно при нестационарном процессе выхода двигателя на режим. Т.е. регистрация давления в вышерассмотренной установке осуществляется с искажением и не позволяет достоверно судить о результатах проведенного эксперимента.

Известны также способ испытаний РДТТ и стенд, реализующий его (Патент РФ №2133457 от 20.07.1999 г., МКИ G01M 15/00, F02K 9/96). Способ испытаний включает закрепление ракетного двигателя на стенде, его включение, измерение параметров двигателя и последующую оценку его работоспособности. Стенд, реализующий способ, включает элементы крепления двигателя, нагрузочное устройство в виде мерного груза, который связан с двигателем и удерживается разгрузочным устройством принудительно разрушаемой после включения двигателя связью и систему измерения внутрибаллистического давления и поперечного прогиба корпуса двигателя. В отличие от ранее рассмотренной стендовой установки в данном стенде датчик давления установлен непосредственно на камере сгорания двигателя, что исключает влияние трубопровода при регистрации внутрибаллистического давления.

Однако известные способы испытаний и стенды, их реализующие, которые рассмотрены выше, не обеспечивают приемлемого приближения условий испытаний к натурным, что может искажать внутрикамерные процессы в испытуемых изделиях и снижает достоверность полученных в ходе испытаний результатов.

Поясним это следующим. Известно, что образцы вооружения эксплуатируются в широком температурном диапазоне как при значительных значениях положительных, так и отрицательных температур. Поэтому все узлы и элементы образца вооружения проходят стендовые испытания при крайних значениях температурного диапазона эксплуатации. Для этого испытуемый энергетический узел перед прожитом помещается в камеру тепла или холода и после соответствующей в ней выдержки извлекается из камеры и переносится в бокс для огневых испытаний. Далее с камеры сгорания энергетического узла снимается технологическая, герметично установленная заглушка и открывается гнездо для установки датчика давления и газодинамической связи с ним. При этом в процессе снятия технологической заглушки и установки датчика давления разгерметизированная полость камеры сгорания сообщается с окружающей средой бокса для огневых испытаний, температура воздуха в котором существенно отличается от температуры испытуемого узла. Если испытуемый узел термостатируется при крайней положительной температуре диапазона эксплуатации, то в герметичной камере сгорания в процессе прогрева испытуемого узла давление воздуха будет повышаться и при снятии технологической заглушки стравливаться из камеры сгорания, что отсутствует в натурных условиях. Если же испытуемый узел термостатировался при крайнем значении отрицательной температуры диапазона эксплуатации, то в герметичной камере сгорания испытуемого узла в процессе охлаждения давление воздуха будет понижаться и при снятии с камеры сгорания технологической заглушки более теплый воздух бокса для огневых испытаний будет всасываться в камеру сгорания. При соприкосновении воздуха с более холодными стенками камеры, поверхностью топливного (порохового) заряда, воспламенителя и инициатора (электровоспламенителя, капсюля) будет образовываться на них конденсат. Наличие конденсата будет искажать внутрибаллистические характеристики (давление, температуру) в камере сгорания в процессе срабатывания инициатора с воспламенителем и воспламенения топливного (порохового) заряда. Это может привести к затяжному выходу двигателя на режим или даже к незапуску энергетического узла. Таким образом, при снятии с камеры сгорания технологической герметичной заглушки для установки вместо нее датчика давления во внутренней полости камеры сгорания перед запуском энергетического узла в стендовых условиях происходит изменение начальных условий по сравнению с натурными, что искажает результат эксперимента. Т.е. в ходе стендовых испытаний, по сравнению с натурными испытаниями, будут получены искаженные, недостоверные результаты, которые приведут к неправильному выводу о работоспособности энергетического узла и тем самым снизят качество и усложнят стендовую отработку.

Установка датчика давления на камеру сгорания испытуемого узла заранее, перед закладкой в камеру тепла (холода), не всегда возможна, т.к. температурный диапазон применения датчика давления может быть существенно ýже температурного диапазона эксплуатации образца вооружения. Кроме того, на холодных электрических контактах разъема датчика давления, извлеченного совместно с испытуемым узлом из камеры холода из-за перепада температур при взаимодействии с более теплым воздухом бокса для огневых испытаний (или стрельбовой трассы), будет также образовываться конденсат, который может привести к закоротке электрических контактов, что исказит электрический сигнал с датчика и приведет к потере информации. И кроме того, при проведении испытаний нескольких энергетических узлов для уменьшения погрешности измерения давления желательно измерения давления проводить с использованием одного датчика, а следовательно, необходима будет его переустановка на каждый испытуемый узел непосредственно перед прожигом.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение качества и достоверности стендовых испытаний энергетических узлов за счет приближения условий испытаний к натурным.

Решение поставленной задачи достигается тем, что в известном способе стендовых испытаний энергетических узлов, содержащих пиротехнические и/или пороховые составы, включающем установку датчика давления на камеру сгорания энергетического узла, запуск и прожиг энергетического узла и регистрацию в процессе прожига внутрибаллистического давления через газодинамическую связь между камерой сгорания и датчиком давления, установку датчика давления осуществляют на герметичную камеру сгорания, а газодинамическую связь камеры сгорания с датчиком давления осуществляют после установки датчика давления до или в процессе запуска энергетического узла. Реализация способа стендовых испытаний осуществляется в устройстве, включающем испытуемый энергетический узел с камерой сгорания, в которой выполнено гнездо с газодинамическим каналом для сообщения с датчиком давления, связанным с измерительно регистрирующей аппаратурой, в котором в газодинамическом канале установлена принудительно открываемая или разрушаемая герметичная перегородка.

Предлагаемое изобретение поясняется графическими материалами. На Фиг.1 схематично показано устройство, реализующее способ стендовых испытаний энергетического узла - ракетного двигателя твердого топлива (РДТТ). На Фиг.2, Фиг.3, Фиг.4, Фиг.5 схематично показаны в увеличенном масштабе различные варианты конструктивного исполнения установки (закрепления) датчика давления на камере сгорания энергетического узла.

Устройство, показанное на Фиг.1, включает испытуемый энергетический узел (РДТТ) с камерой сгорания 1, в которой выполнено гнездо 2 с газодинамическим каналом 3 для сообщения с датчиком давления 4. Датчик давления 4 электрически связан через согласующее усилительное устройство 5 (например тензостанцию), аналого-цифровой преобразователь 6 с регистратором 7 (например персональным компьютером). В газодинамическом канале 3 установлена принудительно открываемая герметичная перегородка, которая может быть выполнена в виде винта 8 (Фиг.2) с конической игольчатой поверхностью 9, контактирующей с конической притертой поверхностью 10 переходника 11 и при этом перекрывающей канал 3 при заворачивании винта 8 (на Фиг.2 показано открытое положение винта 8, при котором обеспечивается газодинамическая связь камеры сгорания 1 с датчиком 4). Резиновые кольца 12 обеспечивают уплотнение от прорыва газа из канала 3 в направлении резьбы винта 8. Кольца 13 и 14 обеспечивают уплотнение и герметизацию датчика 4 на переходнике 11 и переходника 11 на камере сгорания 1 соответственно. Принудительно открываемая герметичная перегородка может быть выполнена также в виде клапана 15 (Фиг.3), поджатого пружиной 16 к седлу 17. При этом усилие пружины 16 рассчитывается таким образом, чтобы обеспечить удержание клапана 15 на седле 17 при повышении давления в камере сгорания в процессе термостатирования на крайней положительной температуре и открытие клапана 15 при дальнейшем незначительном повышении давления в камере сгорания от срабатывания инициатора с воспламенителем в процессе запуска энергетического узла. Вместо пружины 16 клапан 15 на седле 17 может удерживаться разрушаемым элементом, например клеем-герметиком, нанесенным на сопрягаемые поверхности клапана 15 и седла 17. Требования к прочности клеевого соединения при этом аналогичны требованиям к пружине 16. Герметичная перегородка, перекрывающая канал 3, может быть выполнена разрушаемой, например, в виде приклеенного кружка 18 (Фиг.4, Фиг.5) из нитропленки (пленка на основе нитроцеллюлозы), фольги, липкой ленты (скотч) и т.д, разрушаемого термогазодинамическим воздействием от срабатывания инициатора с воспламенителем при запуске энергетического узла. При этом конструктивно датчик давления 4 может быть закреплен на камере сгорания 1 через переходник 11 (Фиг.4), либо непосредственно на корпусе камеры сгорания 1 (Фиг.5). Стапель, на котором закреплен испытуемый энергетический узел, обозначен позицией 19.

Реализацию способа испытаний поясним описанием работы устройства. После извлечения испытуемого энергетического узла из камеры тепла (холода) его доставляют в бокс для огневых испытаний и устанавливают на стапеле 19. При этом на камере сгорания 1 заведомо (до закладки энергетического узла в термокамеру) установлен переходник 11, винт 8 в котором завернут и коническая игольчатая поверхность 9 прижата к поверхности 10, перекрывая канал 3 и тем самым обеспечивая герметичность камеры сгорания 1. Далее на переходник 11 устанавливают датчик 4 (до этого вместо датчика 4 может стоять технологическая заглушка). В процессе установки датчика 4 камера сгорания 1 остается герметичной относительно гнезда под датчик 4, а следовательно, отсутствует сообщение с воздухом бокса. Датчик 4 электрически соединяют с измерительно-регистрирующей аппаратурой (поз.5, 6, 7). Затем винт 8 приоткрывают (отворачивают не до конца), что приводит к образованию зазора между коническими поверхностями 9 и 10, и тем самым обеспечивают через канал 3 и образовавшийся зазор газодинамическую связь камеры сгорания 1 с датчиком 4. Т.е. установку датчика 4 производят на герметичную камеру сгорания 1 без сообщения внутренней полости камеры сгорания воздушным пространством бокса для огневых испытаний, а газодинамическую связь камеры сгорания 1 с датчиком 4 осуществляют после его установки. После этого осуществляют запуск и прожиг (срабатывание) энергетического узла и обеспечивают регистрацию внутрибаллистического давления в камере сгорания в условиях, максимально приближенных к натурным.

В случае выполнения принудительно открываемой герметичной перегородки в соответствии с Фиг.3 работа устройства происходит аналогичным образом и отличается только тем, что газодинамическую связь камеры сгорания 1 с датчиком 4 осуществляют в процессе запуска энергетического узла (незначительное повышение давления в камере сгорания 1 от срабатывания инициатора с воспламенителем приводит к преодолению усилия пружины 16 и отжатию клапана 15 от седла 17).

При выполнении перегородки, принудительно разрушаемой в соответствии с Фиг.4 и Фиг.5, газодинамическую связь камеры сгорания 1 с датчиком 4 осуществляют в процессе запуска энергетического узла путем разрушения кружка 18 при термогазодинамическом воздействии на него продуктов сгорания инициатора с воспламенителем.

Т.о. предложенные способ стендовых испытаний энергетических узлов и устройство, его реализующее, позволяют повысить качество и достоверность получаемых результатов испытаний за счет приближения условий испытаний к натурным.

Источники информации

1. В.Д.Куров, Ю.М.Должанский. Основы проектирования пороховых снарядов, Оборонгиз, 1961 г., с.277…278, Фиг.7.1.

2. Патент РФ №2133457 от 20.07.1999 г., МКИ G01M 15/00, F02K 9/96 (прототип).

Источник поступления информации: Роспатент

Showing 91-100 of 438 items.
29.04.2019
№219.017.4135

Подствольный гранатомет

Изобретение относится к оружейной технике и может быть применено в подствольных гранатометах. Подствольный гранатомет содержит корпус с закрепленным на нем стволом, курок, спусковую тягу, фиксатор и выталкиватель гранаты. Передний конец спусковой тяги выполнен в виде стержня, входящего через...
Тип: Изобретение
Номер охранного документа: 0002317509
Дата охранного документа: 20.02.2008
29.04.2019
№219.017.4136

Зенитная ракета-мишень

Изобретение относится к области ракетной техники и может быть использовано на полигонах в качестве объекта мишени. Сущность изобретения заключается в том, что в головном отсеке зенитной ракеты-мишени перед уголковым отражателем установлен блок инфракрасного излучения в виде толстостенной...
Тип: Изобретение
Номер охранного документа: 0002317511
Дата охранного документа: 20.02.2008
29.04.2019
№219.017.413b

Способ модуляции релейных сигналов управления вращающейся по углу крена ракетой и устройство для его осуществления

Изобретение относится к области разработки систем наведения ракет. Способ, в котором формируют трехпозиционные опорные периодические по углу крена ракеты модулирующие сигналы, которые сдвинуты относительно друг друга на угол π/2. Умножают релейные сигналы управления на соответствующие им...
Тип: Изобретение
Номер охранного документа: 0002315938
Дата охранного документа: 27.01.2008
29.04.2019
№219.017.4142

Способ наведения на цель ракет, управляемых по лучу

Изобретение относится к области вооружения и может быть использовано в комплексах танкового и противотанкового управляемого вооружения с лучевой системой телеориентирования ракеты в луче лазера. Технический результат - повышение эффективности наведения ракет при перекрестной стрельбе двумя...
Тип: Изобретение
Номер охранного документа: 0002315939
Дата охранного документа: 27.01.2008
29.04.2019
№219.017.41b5

Тара для многократного транспортирования сыпучих взрывоопасных составов

Изобретение относится к области транспортировки сыпучих взрывоопасных составов. Тара для многократного транспортирования сыпучих взрывоопасных составов содержит корпус с дном, крышку с замками, цилиндрические гнезда с установленными на дне амортизаторами, гнезда образованы ложементами,...
Тип: Изобретение
Номер охранного документа: 0002350894
Дата охранного документа: 27.03.2009
29.04.2019
№219.017.41b6

Устройство для стопорения

Изобретение относится к военной технике и используется в ракетных комплексах для стопорения одновременно двух контейнеров с ракетами, расположенных на пусковой установке. Устройство для стопорения содержит привод, кинематически связанный через рычаг и тягу с подпружиненным стопорящим стержнем,...
Тип: Изобретение
Номер охранного документа: 0002350881
Дата охранного документа: 27.03.2009
29.04.2019
№219.017.420d

Управляемый снаряд

Изобретение относится к ракетному вооружению, в частности к малогабаритным управляемым снарядам. Управляемый снаряд, вращающийся по крену, содержит складывающиеся на боковую поверхность хвостовой части корпуса гибкие консоли стабилизатора, а в хвостовой части за консолями установлено кольцо,...
Тип: Изобретение
Номер охранного документа: 0002371666
Дата охранного документа: 27.10.2009
29.04.2019
№219.017.4216

Укладка снарядов

Изобретение относится к области военной техники и предназначено для удерживания снарядов, ракет и мин в укладках на объектах самоходной артиллерии, бронетанковой техники и корабельных артиллерийских установках. Укладка снарядов содержит опоры под снаряд, закрепленные на основании, упор и узел...
Тип: Изобретение
Номер охранного документа: 0002373488
Дата охранного документа: 20.11.2009
29.04.2019
№219.017.421b

Способ формирования команд управления вращающейся вокруг продольной оси двухканальной ракетой и устройство для его осуществления

Изобретение относится к области наведения ракет и может быть использовано в комплексах танкового и противотанкового вооружения, а также в малогабаритных зенитных комплексах. Технический результат - повышение точности наведения ракеты. Способ включает формирование сигналов управления первого и...
Тип: Изобретение
Номер охранного документа: 0002373479
Дата охранного документа: 20.11.2009
29.04.2019
№219.017.423e

Способ совмещения оптических осей перекрестий сетки диоптрийной трубки и прицельной марки прицела

Изобретение относится к средствам контроля прицелов для измерений параллакса в телескопических приборах. Способ контроля оптических приборов осуществляется путем установки перед корпусом окуляра визирного канала прицела диоптрийной трубки и совмещения оптических осей перекрестий сетки...
Тип: Изобретение
Номер охранного документа: 0002379612
Дата охранного документа: 20.01.2010
Showing 11-18 of 18 items.
29.05.2019
№219.017.6495

Ракетный двигатель твердого топлива

Изобретение относится к ракетной технике, в частности к ракетным двигателям твердого топлива с теплозащитным покрытием внутренней поверхности. Ракетный двигатель твердого топлива содержит камеру сгорания с сопловым блоком и теплозащитным покрытием цилиндрической поверхности, а также пороховой...
Тип: Изобретение
Номер охранного документа: 0002290524
Дата охранного документа: 27.12.2006
09.06.2019
№219.017.7a82

Способ испытаний боеприпасов и их узлов

Изобретение относится к испытаниям боеприпасов и их узлов. Способ включает механическое и/или климатическое воздействие на испытуемое изделие и последующую оценку его состояния. Часть огневзрывоопасных узлов испытуемого изделия заменяют их имитаторами. Изделие испытывают в частично боевом...
Тип: Изобретение
Номер охранного документа: 0002388992
Дата охранного документа: 10.05.2010
09.06.2019
№219.017.7e51

Устройство дистанционного механического спуска оружия

Изобретение относится к устройствам для дистанционного механического спуска оружия. Устройство содержит нажимной элемент, закрепленный на спусковом крючке. Нажимной элемент выполнен в виде вкладыша с камерой сгорания и поршнем. Под поршнем в камере сгорания установлена пороховая навеска с...
Тип: Изобретение
Номер охранного документа: 0002406054
Дата охранного документа: 10.12.2010
09.06.2019
№219.017.7f4c

Способ механических испытаний узлов изделий и устройство для его реализации

Изобретение относится к области динамических (ударных) испытаний узлов изделий, преимущественно узлов ракетных и артиллерийских снарядов. Сущность: динамически воздействуют на испытуемый узел и осуществляют последующую оценку состояния испытуемого узла. В процессе динамического воздействия...
Тип: Изобретение
Номер охранного документа: 0002442122
Дата охранного документа: 10.02.2012
29.06.2019
№219.017.9ac1

Способ стендовой отработки управляемых по лазерному лучу ракет, микрополигон и стенд для его реализации

Группа изобретений относится к области испытаний. В способе ракету устанавливают на стенде, запускают циклограмму пуска, мощность управляющего сигнала изменяют пропорционально расстоянию ракеты до цели и моделируют внешние воздействия, действующие на ракету в реальном полете. Контролируют...
Тип: Изобретение
Номер охранного документа: 0002299475
Дата охранного документа: 20.05.2007
02.07.2019
№219.017.a376

Ракетный двигатель твердого топлива

Изобретение относится к ракетной технике, в частности к ракетным двигателям твердого топлива, преимущественно с вкладным пороховым зарядом. Ракетный двигатель твердого топлива содержит камеру сгорания с передним дном и многосопловым блоком, вкладной небронированный по наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002297547
Дата охранного документа: 20.04.2007
01.09.2019
№219.017.c50b

Способ переработки нефтесодержащего шлама и технологический комплекс для его осуществления

Группа изобретений относится к нефтяной промышленности и может быть использована для переработки нефтесодержащих шламов, а также углеводородсодержащих сырьевых смесей. Предварительно нефтесодержащий шлам подвергают гомогенизации горячей водой с температурой 60-65 °С до получения однородной...
Тип: Изобретение
Номер охранного документа: 0002698667
Дата охранного документа: 28.08.2019
10.04.2020
№220.018.13d8

Артиллерийский патрон

Изобретение относится к области вооружения и может использоваться в артиллерийских патронах и выстрелах унитарного заряжания. Технический результат заключается в увеличении максимальной дальности полета снаряда. Артиллерийский патрон содержит гильзу, установленный в гильзе снаряд с донной...
Тип: Изобретение
Номер охранного документа: 0002718578
Дата охранного документа: 08.04.2020
+ добавить свой РИД