×
09.06.2019
219.017.7c27

Результат интеллектуальной деятельности: ТЕПЛОВАЯ БАТАРЕЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к резервным химическим источникам тока на твердом теле. Техническим результатом изобретения является повышение ресурса работы, энергоемкости, надежности работы батареи, срока годности, механической прочности сборки, сохранности. Согласно изобретенияю тепловая батарея (ТБ) содержит блок электрохимических элементов (ЭХЭ), каждый из которых состоит из расчетного количества твердых слоев анода, катода, электролита, нагревательных элементов, ограниченных с внешней стороны общим корпусом с тепло- и электроизоляцией. Блок электрохимических элементов (БЭХЭ) размещен вдоль вертикальной оси корпуса, поджат в осевом направлении с заданным усилием расчетного количества упругих элементов с возможностью регулирования величины этого усилия посредством резьбового элемента, дополнительно по торцам БЭХЭ установлены по одному пассивному ЭХЭ, корпус ТБ выполнен цилиндрическим из нержавеющей стали с толщиной стенок от 0,5 до 1 мм, анод каждого ЭХЭ выполнен из одного сплава LiB, катод - из смеси NiCl и электропроводной добавки, электролит - из смеси загустителя и эвтектики, состоящей из солей щелочных металлов, с внутренней и торцевых сторон цилиндрического корпуса выполнены слои тепло- и электроизоляции, между слоями активных масс введены твердые слои нагревательных элементов, в цилиндрическом корпусе выполнены сквозные вертикальные прорези в виде окон, суммарная площадь которых не превышает 80% от его общей боковой поверхности. 2 ил., 1 табл.

Предлагаемое изобретение относится к электротехнике, к области резервных химических источников тока на твердом теле, и может быть использовано для изготовления тепловой батареи с ионной проводимостью.

Известно устройство тепловой батареи, содержащей блок электрохимических элементов, каждый из которых снабжен твердыми слоями анода, катода, электролита, ограниченными с внешней стороны общим корпусом (патент РФ №1833080, МПК Н01М 6/20, опубл. 05.10.1995 г., БИ №28/95).

Недостатками данного устройства являются недостаточно высокие показатели энергоемкости и то, что отсутствуют рекомендации по обеспечению требований по массово-габаритным ограничениям и не регулируется плотность сборки при работе.

Известно в качестве наиболее близкого по технической сущности к заявляемому устройство тепловой батареи (ТБ) (патент РФ №2091918, МПК Н01М 6/36, опубл. 27.09.1997 г., БИ №27/97), содержащей блок электрохимических элементов, каждый из которых снабжен твердыми слоями анода, катода, электролита, нагревательных элементов, ограниченными с внешней стороны общим корпусом с теплоизоляцией.

К недостаткам прототипа относятся относительно низкие показатели энергоемкости, достигнутые плотность сборки и уровень электрохимических характеристик тепловой батареи.

Задачей авторов предлагаемого изобретения является разработка тепловой батареи, обеспечивающей требования по массово-габаритным ограничениям, повышение ресурса работы, энергоемкости, надежности работы батареи, повышение срока годности, повышение механической прочности сборки, сохранности, увеличение плотности сборки, улучшение электрохимических характеристик.

Новый технический результат, получаемый при использовании предлагаемого изобретения, заключается в обеспечении требований по массово-габаритным ограничениям, повышении ресурса работы за счет стабилизации теплового режима, энергоемкости, надежности работы батареи, срока годности, повышении механической прочности сборки, сохранности, увеличении плотности сборки и улучшении электрохимических характеристик.

Указанные задача и новый технический результат достигаются тем, что в отличие от известной конструкции тепловой батареи, содержащей блок электрохимических элементов, каждый из которых снабжен твердыми слоями анода, катода, электролита, ограниченными с внешней стороны общим корпусом с теплоизоляцией, в предлагаемой конструкции блок электрохимических элементов размещен вдоль вертикальной оси корпуса, поджат с заданным усилием в осевом направлении упругим элементом с возможностью регулирования величины этого усилия, корпус тепловой батареи выполнен цилиндрическим из нержавеющей стали с толщиной стенок не менее 0,5-1,0 мм, анод каждого электрохимического элемента выполнен из литий-борного сплава (LiB), катод - из смеси NiCl2 и электропроводной добавки, электролит - из смеси загустителя и эвтектики, состоящей из солей щелочных металлов, с внутренней и торцевых сторон цилиндрического корпуса выполнены слои тепло- и электроизоляции, между слоями активных масс введены твердые слои теплонагревательных элементов, в цилиндрическом корпусе выполнены сквозные вертикальные прорези в виде окон, суммарная площадь которых не превышает 80% от его общей боковой поверхности.

Предлагаемая тепловая батарея поясняется следующим образом.

Предлагаемая тепловая батарея представляет собой цилиндрическое устройство, представленное на фиг.1, состоящее из корпуса 1, набора электрохимических элементов (ЭХЭ) 2 и нагревательных элементов 3, упругого элемента 4, металлических прокладок 5, слоев тепло- и электроизоляции 8, 9, резьбового элемента 6 и двух токовыводов 7, один из которых соединен с анодом, другой - с катодом. Внутри корпуса находится блок ЭХЭ, расположенный вдоль вертикальной оси корпуса и поджатый в осевом направлении с заданным усилием расчетного количества упругих элементов с возможностью регулирования величины этого усилия посредством резьбового элемента. В корпусе блока ЭХЭ выполнены прорези 10.

Такое выполнение ограничивает сборку по наружной поверхности, что значительно увеличивает время работы ТБ. В отличие от традиционной фиксации комплекта ЭХЭ по оси дополнительным осевым элементом, который требовал дополнительного тепла для его разогрева, в предлагаемой ТБ достигнута значительная экономия энергии разогрева.

Основной рабочей единицей блока элементов является электрохимический элемент, представляющий собой трехслойную твердую таблетку (фиг.2), где анод 11 выполнен из литий-борного сплава (LiB), обладающего высокими энергетическими характеристиками. Катод 12, представляющий собой смесь NiCl2 и электропроводной добавки, обладает достаточной термической устойчивостью в рабочем состоянии в интервале температур 500-700°С при использовании в качестве ионопроводящей среды солей хлоридов, а также низкой растворимостью в электролите. Электролит 13, представляющий собой смесь загустителя и эвтектики, состоящий из солей щелочных металлов, приобретает ионную проводимость при рабочих температурах ТБ, т.е. при расплавлении. С повышением температуры электропроводность ионных расплавов возрастает, что улучшает электрохимические показатели ТБ по сравнению с прототипом.

Необходимое рабочее напряжение ТБ обеспечивается путем последовательного соединения (набора в «столб») ЭХЭ в виде минимизированных по толщине слоев активных масс в расчетном количестве. Утонение твердых слоев активных масс эффективно уменьшает затраты тепловой энергии, необходимой для разогрева ТБ, и экономно по габаритным показателям. Для обеспечения требуемого времени работы дополнительно по торцам блока электрохимических элементов установлены по одному пассивному ЭХЭ (электрически не соединенных с другими ЭХЭ) для выравнивания температуры работающих ЭХЭ по оси блока элементов и для равномерного распределения теплового поля внутри ТБ. Столб ЭХЭ изолирован от корпуса внутреннего стакана слоями тепло- и электроизоляции 8, 9 (фиг.1), а между слоями активных масс введены твердые слои нагревательных элементов.

Эти нагревательные элементы 3 (фиг.1), запрессованные в металлическую оболочку и устанавливаемые между ЭХЭ, служат для нагрева комплекта ЭХЭ до рабочей температуры и обеспечения электрической связи между ними. Пакет ЭХЭ и нагревателей поджимается и фиксируется в корпусе при помощи упругого элемента 4 и резьбового элемента 6 (фиг.1), что позволяет упростить сборку ТБ и сделать фиксацию ЭХЭ в корпусе более жесткой и плотной, чем в прототипе, что в свою очередь улучшает электрические характеристики ЭХЭ.

ТБ имеет в своем составе устройство активации с электровоспламенителем (ЭВ), приводящее ее в рабочее состояние.

Принцип работы ТБ следующий. При подаче импульса тока на мостик ЭВ от постороннего источника тока ЭВ срабатывает и дает форс пламени на передающее тепловой импульс средство, при горении которого воспламеняются нагревательные элементы, расположенные между ЭХЭ. При достижении рабочей температуры электролит становится ионопроводящим. При разогреве ионопроводящая среда приобретает чисто ионную проводимость электрического тока и на ЭХЭ возникает разность потенциалов. Примененная электрохимическая система (ЭХС) в ТБ Li(B)/(LiCl-KCl)/NiCl2, которая синтезируется предварительно, работает по следующим электрохимическим реакциям:

- анод: 2Li0-2е → 2Li+

- катод: Ni2++2е → Ni0

Суммарная реакция:

2Li+NiCl2 → 2LiCl+Ni

После нарастания разности потенциалов до требуемой величины ТБ готова к работе.

Высокие температуры ионных расплавов, использование энергоемких электрохимических пар (LiB-NiCl2) с минимальным содержанием примесей обеспечивает ТБ высокие удельные показатели предлагаемой ТБ - рабочие напряжения (2,1-2,6 В на один элемент) и значительные плотности тока разряда (до 0,5 А/см2 в импульсном режиме), что значительно превышает достижения прототипа.

Для стабилизации теплового режима ТБ за счет повышения показателей тепло- и электроизоляции в цилиндрическом корпусе выполнены сквозные вертикальные прорези в виде окон 10 (фиг.1), суммарная площадь которых не превышает 80% от его общей боковой поверхности. Экспериментально было показано, что их наличие повышает энергоемкость ТБ и уровень электрохимических и временных показателей предлагаемой ТБ за счет уменьшения потерь тепла.

Таким образом, при использовании предлагаемой тепловой батареи обеспечиваются требования по массово-габаритным ограничениям, повышение ресурса работы, показателей энергоемкости, надежности работы батареи, срока годности, механической прочности сборки, сохранности, увеличена плотность сборки и улучшены электрохимические характеристики.

Возможность промышленной реализации предлагаемой тепловой батареи подтверждается следующим примером.

Пример. Предлагаемая тепловая батарея реализована в лабораторных условиях в виде опытного образца конкретного типа и представляет собой цилиндрическое устройство (фиг.1), состоящее из корпуса 1 и тепло- и электроизоляции 8, 9. Корпус изготовлен из нержавеющей стали 12Х18Н10Т ГОСТ 5632-72 с толщиной стенок 0,7 мм. Внутри корпуса находится блок электрохимических элементов. Анод 1 (фиг.2) выполнен из литий-борного сплава (LiB), обладающего высокими энергетическими характеристиками. Катод 2 (фиг.2) представляет собой смесь NiCl2 и электропроводной добавки, в качестве ионопроводящей среды используют соли хлоридов. Электролит 3 (фиг.2) - смесь загустителя и эвтектики, состоящей из смеси солей щелочных металлов, приобретает ионную проводимость при рабочих температурах ТБ, т.е. при расплавлении.

Необходимое рабочее напряжение ТБ обеспечивается путем последовательного соединения (набора в «столб») ЭХЭ 2 (фиг.1) в количестве 11 штук. Для обеспечения требуемого времени работы дополнительно по торцам блока элементов установлены по одному пассивному ЭХЭ (электрически не соединенных с другими ЭХЭ), что способствует стабилизации теплового режима по оси блока элементов. Столб ЭХЭ изолирован от корпуса электроизоляционной прокладкой 8 (фиг.1) из слюдинита, ГСКВ ТУ 3492-070-05758799-2002, по боковой поверхности и прокладками 9 (фиг.1) из теплоизоляционного материала «Картон-Н», 4682601.013-89ТУ, по торцам.

Для нагрева ЭХЭ до рабочей температуры и обеспечения электрической связи между ними служат запрессованные в металлическую оболочку пиротехнические нагреватели 3 (фиг.1), устанавливаемые между ЭХЭ. Пакет ЭХЭ и нагревателей поджимается и фиксируется в корпусе при помощи упругого элемента 4 (фиг.1) и гайки 6 (фиг.1), что позволяет упростить сборку ТБ и сделать фиксацию ЭХЭ в корпусе более жесткой, что в свою очередь увеличивает стойкость ТБ к различным механическим воздействиям и уменьшает электрические потери в рабочем состоянии ТБ. Снятие электрической емкости производится с помощью токовыводов 7 (фиг.1).

Все данные при работе предлагаемой ТБ сведены в таблицу.

Как показали эксперименты, использование предлагаемой ТБ обеспечивает требования по массово-габаритным ограничениям, повышение ресурса работы за счет стабилизации теплового режима, энергоемкости, надежности работы батареи, срока годности, повышение механической прочности сборки, сохранности, увеличение плотности сборки и улучшение электрохимических характеристик.

Примеры реализации Наименование показателей Значение показателей предлагаемой ТБ Значение показателей ТБ-прототипа Срок годности ТБ Примечание
1 2 3 4 5 6
Электрохимический элемент в составе ТБ-прототипа (показатели по ЭХЭ) Разрядные характеристики: Недостаточно высокие показатели энергоемкости, времени работы, плотности сборки, надежности
Ток разряда До 3,5 А
Напряжение 1,75-2,1 В
Удельная мощность 9,3 кВт/кг 17 лет
Время работы 350 с
Объем рабочий ЭХЭ 3,6·10-6 м3
Масса ЭХЭ 7,41·10-3 кг
Электрохимический элемент в составе предлагаемой ТБ (показатели по ЭХЭ) Разрядные характеристики: Улучшение по характеристикам: время работы, снимаемая емкость, надежность, плотность сборки, стабилизация теплового режима
Ток разряда До 7А
Напряжение 2,6 В
Удельная мощность 30 кВт/кг 17 лет
Время работы до 600 с
Объем рабочий ЭХЭ 3,0·10-6 м3
Масса ЭХЭ 6,27·10-3 кг

Тепловая батарея, содержащая блок электрохимических элементов, каждый из которых состоит из расчетного количества твердых слоев анода, катода, электролита, нагревательных элементов, ограниченных с внешней стороны общим корпусом с тепло- и электроизоляцией, отличающаяся тем, что блок электрохимических элементов размещен вдоль вертикальной оси корпуса, поджат в осевом направлении с заданным усилием расчетного количества упругих элементов с возможностью регулирования величины этого усилия посредством резьбового элемента, дополнительно по торцам блока электрохимических элементов установлены по одному пассивному электрохимическому элементу, корпус тепловой батареи выполнен цилиндрическим из нержавеющей стали с толщиной стенок от 0,5 до 1 мм, анод каждого электрохимического элемента выполнен из одного сплава LiB, катод - из смеси NiCl и электропроводной добавки, электролит из смеси загустителя и эвтектики, состоящей из солей щелочных металлов, с внутренней и торцевых сторон цилиндрического корпуса выполнены слои тепло- и электроизоляции, между слоями активных масс введены твердые слои нагревательных элементов, в цилиндрическом корпусе выполнены сквозные вертикальные прорези в виде окон, суммарная площадь которых не превышает 80% от его общей боковой поверхности.
Источник поступления информации: Роспатент

Showing 71-80 of 91 items.
09.06.2019
№219.017.7aa3

Способ устранения ложных срабатываний при включении защищенных волоконно-оптических систем

Изобретение относится к способам снижения вероятности ложных срабатываний в защищенных волоконно-оптических системах передачи (ВОСП) информации ограниченного доступа, оснащенных системами постоянного контроля волоконно-оптической линии передачи (ВОЛП). Техническим результатом является задержка...
Тип: Изобретение
Номер охранного документа: 0002350019
Дата охранного документа: 20.03.2009
09.06.2019
№219.017.7adc

Устройство проводки пучка заряженных частиц

Заявленное изобретение относится к ускорительной технике и сильноточной электронике. Устройство проводки может быть использовано при конструировании систем ввода пучка заряженных частиц в различные ускорители, работающие в режиме однократных импульсов. В заявленном устройстве фокусирующая...
Тип: Изобретение
Номер охранного документа: 0002356193
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7bee

Устройство для инициирования

Устройство предназначено для использования в пиротехнике, в конструкциях воспламенителей для инициирования горения различных веществ в герметичном объеме. Сущность изобретения заключается в соосном расположении разогревающего и воспламенительного зарядов из пиротехнических составов, разделенных...
Тип: Изобретение
Номер охранного документа: 0002367887
Дата охранного документа: 20.09.2009
09.06.2019
№219.017.7c55

Способ получения полуфабриката для изготовления изделий из пенометалла

Изобретение относится к порошковой металлургии, в частности к получению пеноматериалов. Может использоваться в машиностроении, строительстве. В расплав металлического сплава вводят порофор - порошок гидрида редкоземельного металла, имеющего дисперсность от 20 до 300 мкм и степень насыщения,...
Тип: Изобретение
Номер охранного документа: 0002360020
Дата охранного документа: 27.06.2009
19.06.2019
№219.017.8494

Устройство для определения температуры разложения вещества

Изобретение относится к технике оптических измерений. Устройство содержит термостатирующий блок, датчики контроля начала нагрева и начала разложения исследуемого вещества, емкость для размещения навески исследуемого вещества в виде гильзы, установленной с возможностью погружения в...
Тип: Изобретение
Номер охранного документа: 0002280858
Дата охранного документа: 27.07.2006
19.06.2019
№219.017.8497

Теплоизоляционный состав

Изобретение относится к технологии производства строительных материалов из минеральных веществ и может быть использовано для изготовления теплоизоляционных материалов для ненесущих конструкционных изделий. Технический результат: повышение технологичности при механической обработке за счет...
Тип: Изобретение
Номер охранного документа: 0002285680
Дата охранного документа: 20.10.2006
19.06.2019
№219.017.849b

Защитная конструкция

Изобретение может использоваться в качестве защиты транспортных и стационарных устройств от аварийных воздействий, включая воздействие пуль стрелкового оружия, падения и пожары. Защитная конструкция содержит корпус и крышку, состоящие из наружного кожуха, внутренней облицовки с наполнителем из...
Тип: Изобретение
Номер охранного документа: 0002281366
Дата охранного документа: 10.08.2006
19.06.2019
№219.017.849c

Датчик резонаторный

Изобретение относится к области измерений механических параметров. Датчик содержит основание из материала с малыми акустическими затуханиями, в котором выполнены сквозные прорези с образованием чувствительного элемента с маятниковым подвесом в виде стержня и стержневого резонатора, концы...
Тип: Изобретение
Номер охранного документа: 0002281515
Дата охранного документа: 10.08.2006
19.06.2019
№219.017.849d

Способ сохранения числа электронов в процессе ускорения в бетатроне

Изобретение относится к ускорительной технике и может быть использовано при разработке и усовершенствовании индукционных циклических ускорителей. Техническим результатом предлагаемого изобретения является устранение поперечной неустойчивости электронного пучка и сохранение числа захваченных в...
Тип: Изобретение
Номер охранного документа: 0002281622
Дата охранного документа: 10.08.2006
19.06.2019
№219.017.84af

Способ ограничения действия пожара на взрывоопасные изделия

Изобретение относится к способам защиты взрывоопасных изделий от пожара. Способ включает воздействие на взрывоопасное изделие конденсированным веществом. Взрывоопасное изделие размещают внутри теплозащитного слоя, а конденсированное вещество - в герметичном объеме, с возможностью его...
Тип: Изобретение
Номер охранного документа: 0002287774
Дата охранного документа: 20.11.2006
Showing 11-11 of 11 items.
09.06.2019
№219.017.7e0b

Тепловой химический источник тока

Изобретение относится к области электротехники, к области резервных химических источников тока на твердом теле и может быть использовано для изготовления теплового источника тока с ионной проводимостью. Согласно изобретению тепловой источник тока содержит блок электрохимических элементов (ЭХЭ)...
Тип: Изобретение
Номер охранного документа: 0002408113
Дата охранного документа: 27.12.2010
+ добавить свой РИД