×
09.06.2019
219.017.78db

Результат интеллектуальной деятельности: КОСМИЧЕСКИЙ АППАРАТ ДЛЯ СПУСКА В АТМОСФЕРЕ ПЛАНЕТЫ И СПОСОБ ЕГО СПУСКА В АТМОСФЕРЕ ПЛАНЕТЫ (ВАРИАНТЫ)

Вид РИД

Изобретение

№ охранного документа
02213682
Дата охранного документа
10.10.2003
Аннотация: Изобретение относится к ракетно-космической технике и может быть использовано при проектировании спускаемых аппаратов с аэродинамическим качеством. Предлагаемый аппарат содержит теплоизолированный корпус с затупленной носовой частью, верхней и нижней частями и донной защитой, а также посадочные средства. Корпус снабжен кормовым, разрезным по оси симметрии щитком для управления по каналам крена и тангажа. Нижняя часть корпуса и донная защита выполнены сферической формы. Аппарат дополнительно снабжен по крайней мере двумя боковыми щитками - в качестве средств управления дальностью полета, балансировкой и стабилизацией по каналу рысканья. Оси поворота щитков лежат на боковой поверхности кормовой части корпуса аппарата. При спуске, в интервале от гиперзвуковых до сверхзвуковых скоростей полета одновременно с кормовым разрезным щитком отклоняют боковые щитки на одинаковые или разные углы, осуществляя, соответственно, устойчивую стабилизацию, либо также и балансировку по каналу рысканья. Изобретение позволяет исключить (зарезервировать) газореактивную систему для управления по каналам крена и рысканья, сократить время полета в атмосфере, уменьшив тем самым расход рабочего тела и нагрев корпуса, а также улучшить маневренные и эксплуатационные характеристики аппарата. 3 с.п. ф-лы, 8 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в отраслях промышленности, занимающихся проектированием и созданием космических аппаратов (КА), предназначенных для спуска с орбиты в атмосфере планеты.

Известны КА "Восток", "Восход", "Меркурий" для спуска с орбиты искусственного спутника Земли (ОИСЗ) [1].

Известен способ спуска КА в атмосфере Земли, включающий ориентацию и торможение аппарата перед входом в атмосферу, ввод средств обеспечения посадки КА (см. там же).

Недостатками известных технических решений являются:
- отсутствие возможности произвести боковой маневр по отношению к плоскости траектории спуска из-за практически нулевого аэродинамического качества КА:
- большие перегрузки (nmax=8-10), а также отклонение фактической точки посадки от заданной, обусловленные неуправляемым аэродинамическим торможением.

Известны КА типа "несущий корпус" M2-F1, HL-10, X-24A [2], [3]. КА этого класса содержат несущий корпус с размещенным в нем блоком полезной нагрузки, аэродинамические средства управления по каналам тангажа, рыскания и крена.

Известен также способ спуска этих КА в атмосфере Земли, включающий ориентацию и торможение КА перед входом в атмосферу Земли, стабилизацию его по каналам тангажа, рыскания и крена аэродинамическими средствами управления при спуске в атмосфере Земли (см. там же).

КА этого класса имеют аэродинамическое качество при полете на дозвуковых - трансзвуковых скоростях (К=3) и сверхзвуковых - гиперзвуковых скоростях (К= 1.2), необходимое для обеспечения планирующего спуска в атмосфере с маневром по боковой дальности и в продольном направлении.

Недостатками этих технических решений являются:
- неудовлетворительные аэродинамические характеристики по углам крена, рыскания;
- низкая плотность заполнения внутреннего объема полезным грузом, приходящаяся на единицу поверхности КА;
- отсутствие возможности компоновки аппаратов этого типа в пределах внешних обводов РН;
- неудовлетворительные компоновочные характеристики в составе КА в случае появления орбитальных отсеков (ОС) или необходимости совершить переход на борт космического корабля.

Известны также и широко применяются:
- КА "Союз" для спуска в атмосфере Земли, содержащий теплоизолированный корпус с затупленной лобовой частью, донный экран, реактивную систему управления (РСУ) полетом на атмосферном участке, блок полезной нагрузки, комплекс средств обеспечения посадки (КСП). КА имеет сегментально-коническую форму с обратным конусом, лобовой сферический сегмент служит элементом поверхности. КСП состоит из двигателей мягкой посадки и автоматики управления;
- способ спуска космического аппарата в атмосфере Земли, включающий ориентацию и торможение аппарата перед входом в атмосферу Земли, стабилизацию его в атмосфере по каналам тангажа, рыскания и крена, ввод средств обеспечения посадки КА [4].

Аппараты этого класса осуществляют спуск на балансировочном угле атаки и используют аэродинамическую подъемную силу, обеспечивающую аэродинамическое качество на гиперзвуковых скоростях К=0,2-0,5. Они позволяют также уменьшить перегрузку и интенсивность аэродинамического нагрева, а также произвести незначительный маневр с посадкой в заданном районе.

Недостатками указанных технических решений являются:
- ограниченные маневренные возможности КА по боковой дальности, поскольку КА этого типа имеют небольшое аэродинамическое качество и осуществляют спуск только в заданном "коридоре входа" в атмосфере Земли;
- существенные перегрузки (nmах=4-5).

Наиболее близкими техническими решениями и принятыми авторами за прототипы являются:
- КА для спуска в атмосфере планеты, содержащий несущий теплоизолированный корпус с затупленной носовой частью, донный экран, газодинамические средства управления полетом на атмосферном участке траектории, блок полезной нагрузки, комплекс средств обеспечения посадки. В нем корпус аппарата выполнен в виде соединенных верхней и нижней, обращенной к потоку, частей корпуса с донным экраном и снабжен кормовым щитком, при этом нижняя часть корпуса и кормовой щиток выполнены в виде элементов сферического сегмента, сопряженного с затупленной носовой частью аппарата и образованного радиусом с центром в точке, расположенной на линии пересечения продольной плоскости симметрии аппарата и поперечной плоскости, проведенной за центром масс аппарата по направлению к донному экрану, а донный экран выполнен сферической формы, образованной радиусом с центром в точке, расположенной в поперечной плоскости, проведенной через центр масс аппарата, при этом кормовой щиток выполнен разрезным и установлен шарнирно с возможностью управления аппаратом по каналам тангажа и крена [5];
- способ спуска КА в атмосфере планеты, включающий ориентацию и торможение аппарата перед входом в атмосферу планеты, стабилизацию его в атмосфере по каналам тангажа, рыскания и крена, ввод средств обеспечения посадки аппарата. В интервале от гиперзвуковых до сверхзвуковых скоростей полета кормовой щиток отклоняют на программные углы в плоскостях тангажа и крена и одновременно стабилизируют аппарат на балансировочном угле атаки при отклоненных щитках газодинамическими средствами управления. При этом производят определение текущих координат и скоростей аппарата, сравнивают их с программными и в случае их расхождения вводят корректирующие поправки на программные углы отклонения кормового щитка по углам крена и тангажа, после чего вводят средства обеспечения посадки аппарата (см. там же).

Приведенные технические решения позволяют:
- обеспечить боковую дальность полета КА до 1000 км и минимальное отклонение координат точки посадки от заданных за счет обеспечения аэродинамического качества КА (К=1.2) на гиперзвуковых скоростях полета;
- снизить нагрузки на систему управления за счет минимальной разбежки центра давления КА при полете на гиперзвуковых скоростях;
- расширить эксплуатационный диапазон допустимых центровок КА за счет щитков, сдвигающих центр давления КА в зону потребной балансировки аппарата при заданном угле атаки (в отличие от КА типа "Союз");
- обеспечить максимальную плотность заполнения внутреннего объема и возможность расположения КА внутри обводов РН за счет исключения аэродинамических органов управления КА "самолетного" класса;
- упростить технологию изготовления отдельных элементов корпуса КА, поскольку они являются элементами сферической или конической поверхностей.

Недостатками указанных технических решений являются:
- изменение продольной и боковой дальностей полета осуществляют только посредством отклонения кормового разрезного балансировочного щитка с обеспечением необходимых углов атаки и аэродинамического качества, что приводит к увеличению времени полета, расхода топлива РСУ и ухудшению теплового режима при полете аппарата в атмосфере на участке спуска с орбиты. Это приводит к ограничению маневренных возможностей КА по продольной и боковой дальностям полета;
- статическая аэродинамическая неустойчивость аппарата по каналу рыскания не может быть улучшена только при отклонении кормового разрезного балансировочного щитка, что также приводит к увеличению расхода рабочего тела РСУ на режимах управления и стабилизации аппарата относительно центра масс при полете в атмосфере на участке спуска с орбиты.

Задачей изобретения является расширение маневренных возможностей и улучшение эксплуатационных характеристик КА при обеспечении статической устойчивости по каналу рыскания, уменьшении расхода топлива РСУ и улучшении теплового режима при полете аппарата в атмосфере на участке спуска с орбиты.

Техническими результатами использования изобретения являются:
- изменение продольной и боковой дальностей полета в заданных пределах при одновременном раскрытии боковых щитков;
- улучшение аэродинамических характеристик устойчивости по каналу рыскания m

β
y
, возможность управления аппаратом по каналу рыскания при одновременном и дифференциальном раскрытии боковых щитков;
- исключение работы РСУ или уменьшение расхода топлива РСУ на стабилизацию КА при работе боковых щитков;
- уменьшение теплового нагрева и повышение ресурса работы тепловой защиты и конструкции КА.

Технические результаты достигаются тем, что в известном КА для спуска в атмосфере планеты, содержащем несущий теплоизолированный корпус с затупленной носовой частью, донную защиту, газодинамические средства управления и стабилизации КА на атмосферном участке траектории полета, блок полезной нагрузки, комплекс средств обеспечения посадки, в котором корпус аппарата выполнен в виде соединенных верхней и нижней частей с донной защитой и снабжен кормовым разрезным по оси симметрии щитком, а нижняя часть корпуса выполнена в виде сферического сегмента, сопряженного с затупленной носовой частью и образованного радиусом с центром в точке, расположенной на линии пересечения продольной плоскости симметрии аппарата и поперечной плоскости, проведенной за центром масс аппарата по направлению к донной защите, донная защита выполнена сферической формы, образованной радиусом с центром в точке, расположенной в поперечной плоскости, проведенной через центр масс аппарата, при этом кормовой разрезной щиток установлен шарнирно с возможностью управления аппаратом по каналам тангажа и крена, согласно изобретению аппарат дополнительно снабжен аэродинамическими средствами управления дальностью полета, управления и стабилизации по каналу рыскания, выполненными в виде, по крайней мере, двух боковых щитков, шарнирно установленных на боковой поверхности кормовой части аппарата и расположенных заподлицо с боковой поверхностью аппарата в исходном положении с возможностью поворота щитков в рабочее положение соответственно на одинаковые или различные углы относительно боковой поверхности, при этом оси поворота щитков лежат на боковой поверхности аппарата.

Технические результаты достигаются также тем (вариант 1), что в известном способе, включающем ориентацию и торможение аппарата перед входом в атмосферу, стабилизацию его в атмосфере по каналам тангажа, рыскания и крена, ввод средств обеспечения посадки аппарата, в котором в интервале от гиперзвуковых до сверхзвуковых скоростей полета отклоняют кормовой щиток на программные углы по тангажу и крену и одновременно стабилизируют аппарат на балансировочном угле атаки при отклоненном кормовом щитке, при котором производят определение текущих координат и скоростей аппарата, сравнивают их с программными и в случае их расхождения вводят корректирующие поправки на программные углы отклонения кормового щитка по углам крена и тангажа, после чего вводят средства обеспечения посадки аппарата, согласно изобретению отклонение кормового разрезного щитка на программные углы по тангажу и крену осуществляют одновременно с отклонением боковых щитков на одинаковые углы относительно боковой поверхности аппарата, при этом обеспечивают стабилизацию и устойчивость по каналу рыскания отклонением только боковых щитков на одинаковые углы.

Технические результаты достигаются также тем (вариант 2), что в отличие от варианта 1, согласно изобретению отклонение кормового разрезного щитка на программные углы по тангажу и крену осуществляют одновременно с отклонением боковых щитков на различные углы относительно боковой поверхности аппарата, при этом обеспечивают стабилизацию, устойчивость и балансировку по каналу рыскания отклонением боковых щитков на различные углы и разрезного кормового щитка одновременно.

Сущность изобретения поясняется графически на примере КА, предназначенного для спуска с ОИСЗ на поверхность Земли.

На фиг.1 приведен общий вид компоновки КА, на фиг.2 показана схема построения аэродинамических обводов КА, на фиг.3 показаны основные его элементы КА, где:
1 - несущий теплоизолированный корпус;
2 - затупленная носовая часть;
3 - донная защита;
4 - газодинамические средства управления и стабилизации КА;
5 - блок полезной нагрузки;
6 - комплекс средств обеспечения посадки;
7 - верхняя часть корпуса;
8 - нижняя часть корпуса;
9 - разрезной кормовой щиток;
10, 11 - боковые щитки.

На фиг.4 приведены зависимости коэффициента продольного момента mz1, mz2 от угла атаки α для КА с закрытыми и раскрытыми под углом к набегающему потоку δ= 45o боковыми щитками, соответственно. Здесь и далее принята скоростная система координат, а данные соответствуют гиперзвуковым и сверхзвуковым скоростям полета (М=22-10).

На фиг.5 приведены зависимости аэродинамического качества K1, К2 от угла атаки α для КА с закрытыми и раскрытыми под углом к набегающему потоку δ=45o боковыми щитками, соответственно, (здесь К=Суaxa).

На фиг.6 приведены зависимости коэффициентов момента рыскания mу1, mу2 и момента крена mx1, mx2 по углу скольжения β при угле атаки α=45o для КА с закрытыми и раскрытыми под углом к набегающему потоку δ=45o и 30o боковыми щитками, соответственно.

На фиг. 7 приведен пример одновременного использования боковых щитков и кормового разрезного щитка при угле атаки α=45o. Данные для mх(β) и mу(β) соответствуют отклонениям бокового правого (по направлению полета) щитка на угол δ= 45o, левого - на угол δ=35o, левого кормового щитка на угол δ=-5o и правого - на угол δ=5o.

На фиг.8 приведена схема полета КА с маневрами соответственно по продольной и боковой дальностям полета, где:
12 - ОИСЗ;
13 - условная граница атмосферы;
14 - траектория торможения КА;
15 - точка входа в атмосферу;
16, 17 - схема полета при управлении кормовым щитком и отклонении боковых щитков на одинаковые углы (вариант 1);
18, 19 - схема полета при управлении кормовым щитком и отклонении боковых щитков на различные углы (вариант 2);
20, 21 - схема полета при управлении только разрезным кормовым щитком.

КА (фиг. 1-3) для спуска в атмосфере планеты содержит несущий теплоизолированный корпус 1 с затупленной носовой частью 2, донную защиту 3, газодинамические средства управления и стабилизации КА 4 на атмосферном участке траектории, блок полезной нагрузки 5, комплекс средств обеспечения посадки 6. Корпус аппарата выполнен в виде соединенных верхней 7 и нижней 8 частей с донной защитой 3 и снабжен разрезным по оси симметрии кормовым щитком 9.

Нижняя часть корпуса 8 выполнена в виде сферического сегмента, сопряженного с затупленной носовой частью 2 и образованного радиусом R1 с центром в точке, расположенной на линии пересечения продольной плоскости симметрии аппарата и поперечной плоскости, проведенной за центром масс аппарата по направлению к донной защите 3. Донная защита 3 выполнена сферической формы, образованной радиусом R2 с центром в точке, расположенной в поперечной плоскости, проведенной через центр масс аппарата. Разрезной кормовой щиток 9 установлен шарнирно с возможностью управления аппаратом по каналам тангажа и крена. Выполнение образующей нижней части корпуса 8 с заданным таким образом радиусом обеспечивает минимальную разбежку центра давления относительно центра масс КА по числам Маха полета, поскольку главный вектор аэродинамических сил, действующих на несущую поверхность КА, проходит через центр окружности, выполненный этим радиусом. При этом вектор аэродинамических сил, действующих на донную защиту 3 КА, проходит через его центр масс.

КА дополнительно снабжен аэродинамическими средствами управления дальностью полета, управления и стабилизации по каналу рыскания, выполненными в виде, по крайней мере, двух боковых щитков 10 и 11, шарнирно установленных на боковой поверхности кормовой части аппарата и расположенных заподлицо с боковой поверхностью аппарата в исходном положении с возможностью поворота щитков в рабочее положение соответственно на одинаковые или различные углы относительно боковой поверхности, при этом оси поворота щитков лежат на боковой поверхности аппарата.

В отличие от известного технического решения [6], для КА, совершающего полет с гиперзвуковыми и сверхзвуковыми скоростями на балансировочном угле атаки, в котором боковые щитки установлены в зоне затенения фюзеляжем, и поэтому на больших углах атаки (α=15-45o) аэродинамически не эффективны, в представленном техническом решении боковые щитки 10 и 11 установлены вне зоны затенения при полете на балансировочном угле атаки.

На фиг.4 и 5 приведен диапазон углов атаки α=15-45o при углах отклонения боковых щитков 10 и 11 δ=0 и 45o, в котором может быть выбран балансировочный угол атаки, обеспечивающий устойчивый полет КА на гиперзвуковых скоростях полета. При этом минимальное значение балансировочного угла атаки (α=15o) определяется максимальным аэродинамическим качеством К, а его максимальное значение (α=45o) - допустимыми тепловыми потоками к поверхности КА.

Из фиг.5 следует, что предложенная аэродинамическая компоновка КА в выбранном диапазоне балансировочных углов атаки при изменении угла поворота боковых щитков 10 и 11 в диапазоне δ=0-45o дает возможность изменять аэродинамическое качество в широких пределах при полете на гиперзвуковых и сверхзвуковых скоростях и, следовательно, управлять продольной и боковой дальностями полета, что расширяет маневренные возможности КА.

Изменение угла раскрытия боковых щитков 10, 11 одновременно с изменением аэродинамического качества КА приводит к улучшению аэродинамических характеристик устойчивости по каналу рыскания m

β
y
(фиг.6). Из фиг.6 следует, что при изменении угла раскрытия боковых щитков 10, 11 в широком диапазоне углов δ обеспечивается отрицательное значение производной m
β
y
по углу скольжения β и, следовательно, статическая устойчивость по каналу рыскания на гиперзвуковых и сверхзвуковых скоростях полета.

Из фиг. 6 также следует, что отклонение боковых щитков 10, 11 на углы δ приводит к незначительному изменению аэродинамических моментных характеристик по каналу крена m

β
x
, что в целом приводит к улучшению поперечно-путевой устойчивости КА
σβ = m
β
y
cosα+Iyy/Ixxm
β
x
sinα
(здесь σβ - характеристика поперечно-путевой устойчивости КА; Iуу, Ixx - главные моменты инерции КА относительно осей OY и ОХ, соответственно).

На фиг.7 приведен пример одновременного использования боковых щитков 10, 11 и разрезного кормового щитка 9 при полете на угле атаки α=45o. Для того чтобы повернуть аппарат на угол скольжения β=-3o достаточно, например, отклонить боковые щитки 10, 11 - левый на 35o, правый на 45o и одновременно разрезной кормовой щиток 9, создающий крен, левый на -5o, правый на 5o. При этом аппарат при β=-3o будет устойчив по всем каналам mz(α), mx(β) и mу(β). Таким образом, можно обеспечить разворот аппарата по углам крена и рыскания, используя боковые щитки 10 и 11 и разрезной кормовой щиток 9 так, что он будет устойчив. В этом случае работа РСУ и соответственно расход топлива исключаются.

Именно размещение боковых щитков 10 и 11 на поверхности кормовой части КА вне зоны затенения корпусом при полете на балансировочных углах атаки α= 15-45o, а также раскрытие их под заданным углом δ=0-45o к плоскости симметрии аппарата, наряду с отклонением разрезного кормового щитка 9, создает возможность управления КА по каналам крена и рыскания без использования РСУ как средства управления и стабилизации аппарата. Это приводит к исключению работы РСУ либо использованию ее как резервной.

За счет сокращения времени полета на атмосферном участке спуска уменьшается тепловой нагрев и повышается ресурс работы тепловой защиты и конструкции КА. Расчеты также показали, что тепловые потоки к несущей поверхности КА уменьшаются до 8%. Тем самым улучшаются эксплуатационные характеристики КА.

Таким образом, отклонение боковых щитков 10 и 11, по сравнению с отклонением только разрезного кормового щитка 9, позволяет улучшить маневренные и эксплуатационные характеристики КА при изменении продольной и боковой дальностей полета.

Спуск КА с ОИСЗ осуществляется следующим образом (фиг.8).

Сначала ориентируют КА на ОИСЗ 12 газодинамическими средствами управления и стабилизации КА4, обеспечивая угол наклона траектории на условной границе атмосферы 13, после чего производят торможение КА двигательной установкой. Аппарат совершает полет по траектории торможения КА 14 и входит в плотные слои атмосферы.

Затем обеспечивают планирующий полет КА. Программная траектория полета (бортовая или обеспечиваемая наземными средствами наведения) соответствует планирующему полету КА на балансировочном угле атаки и заданным углам раскрытия δ боковых щитков 10, 11. При этом аэродинамическая подъемная сила уравновешивает эффективно вес КА. Программная траектория определяется относительной скоростью КА как функция расстояния до заданной точки полета. Эта функция определяет запас кинетической энергии, необходимой для достижения точки ввода средств обеспечения посадкой КА.

Управление продольной и боковой дальностями осуществляют посредством отклонения балансировочного разрезного кормового щитка 9 по каналам тангажа или крена на одинаковые или различные углы, а боковых щитков 10 и 11 на одинаковые (вариант 1) или различные углы (вариант 2) в пределах балансировочного угла атаки аппарата α=15-45o, определяемого функцией разницы между программной скоростью и фактической (измеренной). Управление по рысканию производят путем отклонения боковых щитков 10 и 11 в диапазоне δ=0-45o при углах скольжения β, изменяющихся в диапазоне от -6o до 6o. Вектор скорости КА поворачивается в горизонтальной плоскости до тех пор, пока не будет лежать вдоль большого круга, проходящего через точку с координатами ввода комплекса средств обеспечения посадки 6.

На фиг.8 приведена схема полета КА с маневрами соответственно по продольной и боковой дальностям полета при управлении разрезным кормовым щитком 9 и отклонении боковых щитков 10 и 11 на одинаковые углы (вариант 1, поз. 16, 17), и при управлении разрезным кормовым щитком 9 и отклонении боковых щитков 10 и 11 на разные углы (вариант 2, поз. 18, 19) по сравнению с маневрами при управлении только разрезным кормовым щитком 9 (поз. 20, 21).

Таким образом, в интервале от гиперзвуковых до дозвуковых скоростей полета обеспечивают дополнительный, по сравнению с прототипом, маневр по продольной и боковой дальностям полета. При этом производят измерение текущих координат и скоростей аппарата, сравнивают их с программными, и в случае расхождения, вводят корректирующие поправки на программные углы отклонения боковых щитков 10 и 11 и разрезного кормового щитка 9 в плоскостях крена и тангажа.

Это позволяет значительно расширить диапазон возможных районов посадки, уменьшить отклонение от расчетной точки приземления и уменьшить время ожидания на орбите с целью обеспечения попадания в заданный район.

Когда требуется обеспечить спуск КА по траектории без бокового маневра, используются боковые щитки 10 и 11 для изменения аэродинамического качества КА и разрезной кормовой щиток 9 для изменения угла атаки.

После вывода КА в заданный район и уменьшения скорости до заданной и снижения до высоты Н~ 10 км вводят средства обеспечения посадки, при этом двигатели мягкой посадки и автоматика управления позволяют значительно снизить перегрузки в момент приземления.

Спускаемый аппарат данного класса входит в состав орбитальных космических летательных аппаратов (КЛА), используемых для исследовательских целей, как транспортное средство для доставки экипажей и грузов на орбитальные станции и как средство возвращения их на Землю.

Как показывает анализ располагаемых материалов, целесообразно использовать для спуска с ОИСЗ предлагаемый КА массой до 15 т, при этом реализуются компоновки КА в составе КЛА в случае появления орбитальных отсеков или необходимости совершить переход на борт космической станции.

Существенным преимуществом предлагаемого КА по сравнению с известными КА типа "несущий корпус", осуществляющими спуск по планирующим траекториям, является отсутствие развитых аэродинамических средств управления, и как следствие этого, возможность компоновки этого класса КА в пределах теоретических обводов существующих РН.

Анализ материалов систематических исследований по аэродинамическим характеристикам КА подтверждает правильность выбора аэродинамических характеристик для формирования траектории и обеспечения устойчивости и управляемости КА. Относительная простота формы КА, имеющаяся технологическая оснастка и опыт изготовления крупнопанельных конструкций сферической формы с нанесением теплозащитных материалов, возможность использования штатных систем позволяют реализовать предлагаемый КА в сравнительно короткие сроки.

Источники информации
1. Космонавтика, энциклопедия / Под ред. В.П. Глушко. - М.: Сов. энциклопедия, 1985, с.378.

2. Пилотируемые ЛА с несущим корпусом и их системы управления (обзор) // Вопросы ракетной техники, 12, 1972, с.19.

3. Патент США 3276722 от 4.10.1966.

4. Космонавтика, энциклопедия / Под ред. В.П. Глушко. - М.: Сов. энциклопедия, 1985, с.378, 415.

5. Патент РФ 2083448 С1, М. кл. 6 B 4 G 1/62.

6. Космический комплекс. Многоразовый орбитальный корабль "Буран"/ Под ред. члена-корреспондента Ю.П. Семенова и др. - М.: Машиностроение, 1995, с. 148.

1.Космическийаппаратдляспускаватмосферепланеты,содержащийнесущийтеплоизолированныйкорпуссзатупленнойносовойчастью,доннуюзащиту,газодинамическиесредствауправленияистабилизациикосмическогоаппаратанаатмосферномучасткетраекторииполета,блокполезнойнагрузки,комплекссредствобеспеченияпосадки,причемкорпусаппаратавыполненввидеверхнейинижнейчастей,соединенныхсдоннойзащитой,иснабженкормовымразрезнымпоосисимметриищитком,анижняячастькорпусавыполненаввидесферическогосегмента,сопряженногосзатупленнойносовойчастьюиобразованногорадиусомсцентромвточке,расположеннойналиниипересеченияпродольнойплоскостисимметрииаппаратаипоперечнойплоскости,проведеннойзацентроммассаппаратапонаправлениюкдоннойзащите,доннаязащитавыполненасферическойформы,образованнойрадиусомсцентромвточке,расположеннойвпоперечнойплоскости,проведеннойчерезцентрмассаппарата,причемкормовойразрезнойщитокустановленшарнирносвозможностьюуправленияаппаратомпоканаламтангажаикрена,отличающийсятем,чтоаппаратдополнительноснабженаэродинамическимисредствамиуправлениядальностьюполета,управленияистабилизациипоканалурысканья,выполненнымиввидепокрайнеймередвухбоковыхщитков,шарнирноустановленныхнабоковойповерхностикормовойчастиаппарата,расположенныхзаподлицосбоковойповерхностьюаппаратависходномположенииивыполненныхсвозможностьюповоротаврабочееположениенаодинаковыеилиразличныеуглыотносительнобоковойповерхностиаппарата,приэтомосиповоротащитковлежатнаэтойбоковойповерхности.12.Способспускакосмическогоаппаратаватмосферепланеты,включающийориентациюиторможениеаппаратапередвходомватмосферу,егостабилизациюватмосферепланетыпоканаламтангажа,рысканияикрена,вводсредствобеспеченияпосадкиаппарата,причемвинтервалеотгиперзвуковыхдосверхзвуковыхскоростейполетаотклоняюткормовойразрезнойщитокнапрограммныеуглыпотангажуикренуиодновременностабилизируютаппаратнабалансировочномуглеатакиприотклоненномкормовомщитке,производятопределениетекущихкоординатискоростейаппарата,сравниваютихспрограммнымиивслучаеихрасхождениявводяткорректирующиепоправкинапрограммныеуглыотклонениякормовогощиткапоугламкренаитангажа,послечеговводятсредстваобеспеченияпосадкиаппарата,отличающийсятем,чтоотклонениекормовогоразрезногощитканапрограммныеуглыпотангажуикренуосуществляютодновременносотклонениембоковыхщитковнаодинаковыеуглыотносительнобоковойповерхностиаппарата,обеспечиваятакимотклонениембоковыхщитковустойчивуюстабилизациюпоканалурысканья.23.Способспускакосмическогоаппаратаватмосферепланеты,включающийориентациюиторможениеаппаратапередвходомватмосферу,егостабилизациюватмосферепланетыпоканаламтангажа,рысканияикрена,вводсредствобеспеченияпосадкиаппарата,причемвинтервалеотгиперзвуковыхдосверхзвуковыхскоростейполетаотклоняюткормовойразрезнойщитокнапрограммныеуглыпотангажуикренуиодновременностабилизируютаппаратнабалансировочномуглеатакиприотклоненномкормовомщитке,производятопределениетекущихкоординатискоростейаппарата,сравниваютихспрограммнымиивслучаеихрасхождениявводяткорректирующиепоправкинапрограммныеуглыотклонениякормовогощиткапоугламкренаитангажа,послечеговводятсредстваобеспеченияпосадкиаппарата,отличающийсятем,чтоотклонениекормовогоразрезногощитканапрограммныеуглыпотангажуикренуосуществляютодновременносотклонениембоковыхщитковнаразличныеуглыотносительнобоковойповерхностиаппарата,обеспечиваятакимотклонениемкормовогоибоковыхщитковустойчивуюстабилизациюибалансировкупоканалурысканья.3
Источник поступления информации: Роспатент

Showing 1-10 of 41 items.
20.02.2019
№219.016.bde9

Инструмент с ограничением крутящего момента

Изобретение относится к приспособлениям для создания оператором крутящего момента при работе в особых условиях, в частности в условиях открытого космоса. Инструмент с ограничением крутящего момента содержит корпус с размещенными в нем ведомым валом и механизмом ограничения крутящего момента и...
Тип: Изобретение
Номер охранного документа: 02223897
Дата охранного документа: 20.02.2004
20.02.2019
№219.016.be1f

Быстроразъемный агрегат

Изобретение относится к ракетной технике, а конкретно к устройствам расстыковки заправочно-дренажных магистралей. Быстроразъемный агрегат включает в себя бортовую и наземную колодки, соединенные замком с пневмоприводом в виде запирающей втулки с подпружиненным поршнем. Наземная колодка снабжена...
Тип: Изобретение
Номер охранного документа: 02217649
Дата охранного документа: 27.11.2003
20.02.2019
№219.016.c4d2

Топливный отсек грузового космического корабля

Изобретение относится к космической технике, конкретно к транспортным космическим кораблям для дозаправки орбитальных станций типа "Мир". Предлагаемый отсек содержит корпус с внешней теплоизоляцией и установленный внутри него каркас. На каркасе закреплены баки горючего и окислителя с...
Тип: Изобретение
Номер охранного документа: 02196082
Дата охранного документа: 10.01.2003
23.02.2019
№219.016.c7d1

Способ управления космическим аппаратом с помощью силовых гироскопов и реактивных двигателей, расположенных под углом к осям связанного базиса

Изобретение относится к области объединенного управления ориентацией и движением центра масс космических аппаратов (КА). В предлагаемом способе по вектору кинетического момента в системе силовых гироскопов и вектору угловой скорости КА определяют текущий суммарный кинетический момент КА...
Тип: Изобретение
Номер охранного документа: 02197412
Дата охранного документа: 27.01.2003
01.03.2019
№219.016.cacd

Многоканальный преобразователь сопротивлений в напряжения

Изобретение относится к техническим средствам измерения неэлектрических величин электротехническими методами и может быть использовано при измерении физических параметров. Технический результат заключается в снижении погрешности устройства за счет увеличения его помехоустойчивости, а также в...
Тип: Изобретение
Номер охранного документа: 02219555
Дата охранного документа: 20.12.2003
01.03.2019
№219.016.caec

Отсек компонентов дозаправки

Изобретение относится к космической технике, а именно к проектированию и эксплуатации транспортных космических кораблей, обеспечивающих дозаправку космических орбитальных станций типа "Мир" в условиях космического пространства. Отсек компонентов дозаправки содержит корпус с закрепленными на нем...
Тип: Изобретение
Номер охранного документа: 02217359
Дата охранного документа: 27.11.2003
11.03.2019
№219.016.d731

Разгонный ракетный блок

Изобретение относится к ракетно-космической технике и может быть использовано для стабилизации и увода разгонного блока (РБ) от выводимого им космического аппарата. Предлагаемый РБ содержит двигательную установку, топливные баки, баллоны высокого давления с пневмосистемой для наддува баков, а...
Тип: Изобретение
Номер охранного документа: 02208558
Дата охранного документа: 20.07.2003
11.03.2019
№219.016.d7d6

Способ обезгаживания изделий

Изобретение относится к области испытательной техники, в частности к испытаниям изделий на обезгаживание в условиях, приближенных к эксплуатации изделий, например космических объектов. Способ обезгаживания изделий заключается в том, что помещают изделие в вакуумную камеру, вакуумируют ее,...
Тип: Изобретение
Номер охранного документа: 02213635
Дата охранного документа: 10.10.2003
11.03.2019
№219.016.d7e4

Многоканальный коммутатор напряжения

Изобретение относится к электронной технике и может быть использовано в многоканальных коммутируемых источниках питания, где требуется информация о протекающем токе в нагрузке. Многоканальный коммутатор напряжения содержит в каждом канале датчик тока, ключ и блок нагрузки. Выходной сигнал...
Тип: Изобретение
Номер охранного документа: 02210182
Дата охранного документа: 10.08.2003
11.03.2019
№219.016.de41

Наземный мобильный измерительный комплекс

Изобретение относится к области космической техники, а именно к наземным измерительным комплексам в мобильном исполнении, и может быть использовано для оперативного приема, обработки, анализа и передачи телеметрической информации с борта космического объекта центру управления полетом. Наземный...
Тип: Изобретение
Номер охранного документа: 02188508
Дата охранного документа: 27.08.2002
Showing 1-9 of 9 items.
01.03.2019
№219.016.cab7

Отделяемый от гиперзвукового летательного аппарата элемент, обладающий аэродинамическим качеством

Изобретение относится к области аэродинамики, а именно, к разработке отделяемого от гиперзвукового летательного аппарата (ЛА) элемента, обладающего аэродинамическим качеством, и способа спуска его в атмосфере. Может быть использовано при создании гиперзвуковых ЛА различного назначения:...
Тип: Изобретение
Номер охранного документа: 02223896
Дата охранного документа: 20.02.2004
29.03.2019
№219.016.f85a

Отсек летательного аппарата

Изобретение относится к аэрокосмической технике и может быть использовано при определении аэродинамических нагрузок, действующих на отсеки летательных аппаратов и размещаемые там изделия. Предлагаемый отсек содержит оболочку, на боковой поверхности которой выполнено дренажное отверстие, и...
Тип: Изобретение
Номер охранного документа: 0002164883
Дата охранного документа: 10.04.2001
17.04.2019
№219.017.165e

Устройство для определения пульсаций давления, действующих на изделие, при воздействии струей реактивного двигателя (варианты)

Изобретение относится к экспериментальной газодинамике, а именно к устройствам определения пульсаций давления, действующих на элементы конструкции, подвергающиеся воздействию высокотемпературной струи с быстроменяющимися в процессе этого воздействия газодинамическими и температурными...
Тип: Изобретение
Номер охранного документа: 02169353
Дата охранного документа: 20.06.2001
09.05.2019
№219.017.50e3

Способ регулирования аэродинамических нагрузок, действующих на корпус летательного аппарата, и устройство для его реализации (варианты)

Изобретение относится к ракетостроению и авиации. Способ основан на изменении давления газовой среды внутри замкнутого объема корпуса аппарата по отношению к давлению на его поверхности. Дополнительно замкнутый объем корпуса разделен, по крайней мере, на два объема путем экранирования одного от...
Тип: Изобретение
Номер охранного документа: 02145564
Дата охранного документа: 20.02.2000
09.05.2019
№219.017.50e4

Способ регулирования аэродинамических нагрузок, действующих на отсек летательного аппарата, и устройство для его осуществления (варианты)

Изобретение относится к ракетостроению. Способ основан на изменении давления газовой среды в отсеке по отношению к давлению на его поверхности путем истечения газовой среды из отсека при воздействии аэродинамического потока. Предварительно по траектории полета аппарата определяют изменение...
Тип: Изобретение
Номер охранного документа: 02145563
Дата охранного документа: 20.02.2000
18.05.2019
№219.017.54a2

Ракетный разгонный блок (варианты)

Изобретение относится к ракетно-космической технике, а именно к конструкции ракетных разгонных блоков, входящих в состав ракет космического назначения, предназначенных для выведения с опорной орбиты на рабочие энергетические орбиты различных космических объектов-полезных грузов. В первом...
Тип: Изобретение
Номер охранного документа: 02240264
Дата охранного документа: 20.11.2004
09.06.2019
№219.017.78b0

Пилотируемый космический корабль

Изобретение относится к ракетно-космической технике и более конкретно - к космическим кораблям, имеющим в своем составе спускаемый аппарат с несущим корпусом для доставки экипажа в космос и его возвращения на Землю. Предлагаемый космический корабль содержит помимо спускаемого аппарата...
Тип: Изобретение
Номер охранного документа: 02220077
Дата охранного документа: 27.12.2003
09.06.2019
№219.017.78c9

Спускаемый аппарат с несущим корпусом и способ его посадки

Изобретение относится к ракетно-космической технике и может быть использовано в отраслях промышленности, занимающихся проектированием и созданием космических кораблей. Задачей изобретения является уменьшение нагружения корпуса спускаемого аппарат (СА) при посадке, расширение функциональных...
Тип: Изобретение
Номер охранного документа: 02214351
Дата охранного документа: 20.10.2003
29.06.2019
№219.017.9b68

Средство выведения аппаратов космического назначения

Изобретение относится к ракетно-космической технике, а именно к средствам выведения аппаратов космического назначения на заданные орбиты. Средство выведения аппаратов космического назначения состоит из ракеты-носителя с отсеком ступени, стыкуемой с разгонным блоком, и разгонного блока. В...
Тип: Изобретение
Номер охранного документа: 02239585
Дата охранного документа: 10.11.2004
+ добавить свой РИД