×
09.06.2019
219.017.76be

Результат интеллектуальной деятельности: СПОСОБ ХРАНЕНИЯ И ПОЛУЧЕНИЯ ВОДОРОДА ГИДРОЛИЗОМ АЛЮМИНИЯ ДЛЯ АВТОНОМНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК С ЭЛЕКТРОХИМИЧЕСКИМИ ГЕНЕРАТОРАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области автономной энергетики, преимущественно к энергоустановкам с электрохимическими генераторами. Согласно изобретению способ хранения и получения водорода в автономных энергетических установках с циклом функционирования от нескольких часов до нескольких тысяч часов, преимущественно для подводных лодок, подводных аппаратов, судов, железнодорожного и автомобильного транспорта, бытовых источников энергии периодического действия, а также периодически действующих стационарных ЭУ, используемых на особо ответственных объектах, не допускающих перерыва электропитания, включает получение водорода путем гидролиза алюминия. В качестве исходных компонентов используются алюминий в виде фольги, листа, проволоки, гранул правильной или неправильной формы, с таким условием, чтобы один из линейных размеров используемой формы не превышал 1-2 мм, и водяной пар. В энергоустановках с малой автономностью, до нескольких часов, гидролиз осуществляется при температуре 250-300°С, при этом применяется контейнерный способ хранения и замены целиком отработавшего контейнера. В энергоустановках с большей автономностью процесс осуществляется при 200-250°С, при этом применяются сменяемые или несменяемые контейнеры, а удаление продуктов реакции из несменяемого контейнера осуществляется путем отсоса окиси из контейнера или растворением окиси Al химическими реактивами и сливом продуктов реакции с последующей промывкой и осушением. Регулирование расхода получаемого водорода осуществляется регулированием количества подаваемой в виде пара воды. Технический результат - повышение эффективности способа, снижение стоимости получения водорода и исключение необходимости использования агрессивных сред в ходе прямой эксплуатации и повышение выхода водорода, гидролиз осуществляется водой в паровой фазе. 6 з.п. ф-лы.

Изобретение относится к области автономных энергетических установок, преимущественно с электрохимическими генераторами.

Отличительной особенностью автономных энергетических установок (ЭУ) является периодичность их функционирования в течение сравнительно короткого времени, длительность которого определяется запасами реагентов (топлива и окислителя).

К таким ЭУ можно отнести установки для подводных лодок, подводных аппаратов, судов, железнодорожного и автомобильного транспорта, бытовые источники энергии периодического действия, а также периодически действующие стационарные ЭУ, используемые на особо ответственных объектах, не допускающих перерыва электропитания.

Способ хранения и получения водорода в автономных ЭУ должен обеспечивать длительное и безопасное его хранение, а также безопасное его получение при минимальных стоимости, массе и объеме системы хранения и получения водорода, простоте эксплуатации ЭУ и утилизации продуктов реакции.

Известны следующие способы хранения и получения водорода для автономных энергетических установок (см. Н.С.Лидоренко, Г.Ф.Мучник «Электрохимические генераторы», М., 1982 г.; Н.В.Коровин «Электрохимическая энергетика», М., Энергоатомиздат, 1991):

- хранение в газообразном состоянии, при котором водород хранится в сосудах под высоким давлением (до 50 МПа) и после дросселирования подается в электрохимический генератор (ЭХГ);

- хранение в жидком состоянии (криогенное), при котором водород перед подачей в ЭХГ газифицируется;

- хранение в составе интерметаллических соединений, в которые он предварительно сорбирован, а перед подачей в ЭХГ десорбируется с поглощением тепла;

- хранение водорода в химически связанном состоянии в составе водородсодержащих соединений, когда водород получают путем соответствующего химического процесса.

К последнему способу хранения и получения водорода относятся:

- хранение водорода в составе аммиака и получение его путем диссоциации;

- хранение водорода в составе метанола и других жидких углеводородов и получение его путем паровой или парокислородной их конверсии;

- хранение водорода в составе гидридов металлов и получение его путем их термического разложения;

- хранение водорода в составе гидридов металлов и воды и получение его путем гидролиза гидридов металлов.

Ни один из перечисленных выше способов хранения и получения водорода не удовлетворяет всем требованиям к системам хранения и получения водорода для автономных ЭУ.

Наиболее безопасен и удобен в эксплуатации способ хранения в интерметаллидах, но он дорог в изготовлении и предопределяет большую массу ЭУ, поскольку стоимость 1 кг интерметаллида составляет $ 15-35, а массовая водородоемкость нашедших широкое применение сорбентов составляет всего 1,5-2,0%.

Наименьшую массу и объемы установки при достаточном уровне безопасности можно получить, используя конверсию метанола или углеводородного топлива, но при этом неизбежны газообразные продукты реакции, которые в ряде случаев недопустимы (на подводных лодках и других подобных объектах), т.к. могут привести к потере скрытности.

Известны также способы получения водорода путем взаимодействия воды с алюминием и магнием.

Гидролиз алюминия водой в присутствии щелочи идет по одной из приведенных ниже реакций:

Массовый выход водорода по реакции (1) составляет около 1,5%, а продукт реакции нерастворим в воде, поэтому дальнейшее рассмотрение реакции (1) не представляет интереса.

Массовый выход по реакции (2) теоретически достигает 3,5%, продукт реакции ограниченно растворим в воде, поэтому для возможности последующего удаления продуктов реакции после завершения цикла эксплуатации их обычно хранят в виде раствора, для чего требуется дополнительное количество воды, что может снизить массовый выход водорода до 1,5-2%.

Это обстоятельство, учитывая необратимость процесса, делает реакцию (2) также малоинтересной.

Гидролиз магния водой может идти по реакции:

Массовый выход водорода составляет 3,3%, а продукт реакции нерастворим в воде.

Предлагаемое изобретение направлено на исключение использования агрессивных сред в ходе прямой эксплуатации и значительное увеличение массового процента получаемого водорода по отношению к суммарной массе исходных продуктов реакции, при условии, что пополнение извне исходных продуктов, например воды, и сброс продуктов реакции в период автономности, - отсутствуют, что очень важно для обеспечения скрытности объекта, оснащенного ЭУ с ЭХГ.

Проведенные эксперименты показали, что при определенных условиях процесс может быть реализован по реакции, отличной от (1 и 2), а именно:

В результате реакции алюминия с водой получается чистая окись алюминия и водород. При этом массовый выход водорода составляет 5,5%, а если учесть, что потребное для реакции количество воды невелико и равно генерируемому в ЭХГ в процессе эксплуатации ЭУ, то при ее использовании массовый выход водорода достигает 11,5%.

Обязательным условием реализации (4) является подача воды в паровой фазе, в виде насыщенного или перегретого пара в количестве, близком к стехиометрии. При этом количество выделяющегося водорода регулируется количеством подаваемой воды.

Алюминий может использоваться в любом виде: фольги, листа, проволоки, гранул правильной и неправильной формы и т.п. Важно обеспечить максимальную поверхность реакции и ее полноту.

В обоих случаях это предполагает, чтобы один из линейных размеров используемой формы был достаточно мал и не превышал 1-2 мм.

Уровень температур, при котором целесообразно проводить реакцию, а также способ хранения исходных продуктов и способ замены продуктов реакции на исходные зависят от типа энергоустановки и ее назначения.

В энергоустановках с относительно небольшой автономностью, не превышающей нескольких часов, например в автотранспортных ЭУ, целесообразно использовать контейнерный способ хранения и замены, а реакцию проводить при температуре 250-300°С. При этом способе алюминий в виде фольги, листа, проволоки, гранул правильной или неправильной формы размещается в специальных контейнерах, в которых осуществляется реакция окисления алюминия водяным паром с интенсивным выделением водорода. После того как весь алюминий в контейнере прореагирует с водяным паром и превратится в окись алюминия, контейнер из установки извлекается и отправляется на специализированное предприятие, а на место отработавшего контейнера устанавливается новый контейнер с алюминием.

В энергоустановках с большой автономностью, составляющей десятки, сотни и тысячи часов (например, в энергоустановках подводных лодок) для хранения алюминия наряду с заменяемыми контейнерами можно использовать несменяемые контейнеры (хранилища), а реакцию окисления Al достаточно вести при температуре 200-250°С. При этом удаление продуктов реакции (окиси алюминия) из стационарного хранилища можно проводить в базовых условиях по следующим схемам:

- отсос окиси алюминия из контейнера с последующей промывкой контейнера водой и просушкой;

- растворение окиси алюминия химическими реактивами с последующим сливом продуктов реакции, промывкой и просушкой контейнера.

После очистки от продуктов реакции контейнер заполняется свежей порцией Al, который целесообразно использовать в виде гранул или в любом другом виде, обеспечивающем сыпучесть материала и отсутствие мелкой пыли, способной привести к самовозгоранию.

Для того, чтобы обеспечить начало реакции (4), необходимо получить пар и подогреть алюминий до заданной температуры. Для этой цели может быть использовано, например, любое электрическое устройство (электрогрелка, электроразряд и т.п.), питаемое либо от базового источника либо от источника на борту. Поскольку реакция сильно экзотермична, важно ее сынициировать и далее поддерживать заданный температурный режим путем съема избыточного тепла.

Для сокращения затрат энергии на подготовку к проведению реакции гидролиза алюминия (производство пара и подогрев Al до заданной температуры) целесообразно секционировать хранилище алюминия и иметь одну или несколько «запальных» секций. При этом первоначально разогревается только «запальная» секция, а затем за счет выделяющегося в ней в результате реакции тепла разогреваются остальные.

1.Способхраненияиполученияводородававтономныхэнергетическихустановках,втомчиследляустановоксэлектрохимическимигенераторамисцикломфункционированияотединицдотысяччасов,преимущественнодляэнергоустановокподводныхлодок,подводныхаппаратов,автомобильноготранспортаипериодическидействующихстационарныхустановок,используемыхнаособоответственныхобъектах,недопускающихперерываэлектропитания,предусматривающийполучениеводородапутемгидролизаалюминия,отличающийсятем,чтогидролизалюминияосуществляетсяприподачепаровводыввиденасыщенногоилиперегретогопарапритемпературе200-300°Свколичестве,близкомстехиометрическому,согласнореакциичемобеспечиваетсямаксимальныймассовыйвыходводорода.12.Способпоп.1,отличающийсятем,чтовреакциигидролизаалюминияиспользуетсявода,генерируемаявэлектрохимическомгенераторе.23.Способпоп.1,отличающийсятем,чтодлягенерацииводяногопараинагреваалюминиядозаданнойтемпературыиспользуетсятепло,выделяющеесяпригидролизеалюминия.34.Способпоп.1,отличающийсятем,чторегулированиерасходаполучаемоговодородаобеспечиваетсярегулированиемколичестваподаваемыхнареакциюпаровводы.45.Способпоп.1,отличающийсятем,чтодляуменьшениязатратэнергиинаподготовкукпроведениюреакциихранилищеалюминиясекционируетсяиоднаилинесколькосекцийиспользуютсявкачестве«запальных».56.Способпоп.1,отличающийсятем,чтодляэнергоустановоксотносительнонебольшойавтономностью,непревышающейнесколькихчасов,преимущественноавтомобильных,процессгидролизаведетсяпритемпературе250-300°С,приэтомалюминийввидефольги,листа,прокатаилигранулправильнойилинеправильнойформы,укоторыходинизлинейныхразмеровиспользуемойформынепревышает1-2мм,размещаетсявспециальныхлегкосъемныхконтейнерах,которыепослезавершенияреакцииизвлекаютсяизустановкииотправляютсянапереработкуокисиалюминиянаспециализированноепредприятие,анаихместоустанавливаютсяновыеконтейнерысалюминием.67.Способпоп.1,отличающийсятем,чтодляэнергоустановоксотносительнобольшойавтономностью,составляющейдесятки,сотниитысячичасов,преимущественнодляэнергоустановокдляподводныхлодок,дляхраненияалюминияиспользуютсясменяемыеконтейнеры(хранилища),апроцессгидролизаосуществляетсяпритемпературе200-250°С,приэтомудалениепродуктовреакции(окисиалюминия)изнесменяемыхконтейнеровпроизводитсявбазовыхусловияхспособомотсосаокисиизконтейнераилирастворенияокисихимическимиреактивамисосливомизконтейнераспоследующейегопромывкойипросушкойисзагрузкойновойпорцииалюминияввидегрануллюбойформы,укоторыходинизлинейныхразмеровиспользуемойформынепревышает1-2мм,обеспечивающейсыпучестьматериала.7
Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
20.01.2014
№216.012.986a

Теплообменник

Теплообменник для энергетических установок содержит винтообразные элементы из труб с двумя прямыми и двумя скругленными участками на каждом витке. При этом центры труб у прямых участков в поперечном сечении теплообменника располагаются на контуре многоугольника. Винтообразные элементы...
Тип: Изобретение
Номер охранного документа: 0002504717
Дата охранного документа: 20.01.2014
10.04.2019
№219.017.078d

Маркировочный ярлык

Настоящее изобретение относится к устройству маркировочного ярлыка и может быть использовано для осуществления маркировки электрических проводов, кабелей, шлангов и других удлиненных объектов разного сечения. Целью изобретения является уменьшение материалоемкости, повышение технологичности...
Тип: Изобретение
Номер охранного документа: 0002459301
Дата охранного документа: 20.08.2012
10.04.2019
№219.017.09b5

Энергоустановка на топливных элементах

Изобретение относится к энергоустановкам на топливных элементах, предназначенных для использования как в качестве источника бесперебойного питания, так и полностью автономного источника. Техническим результатом является универсальность установки, возможность ее длительной и надежной работы как...
Тип: Изобретение
Номер охранного документа: 0002462798
Дата охранного документа: 27.09.2012
10.04.2019
№219.017.09b8

Устройство испытаний частотно-управляемого гребного электропривода системы электродвижения в условиях стенда

Предложение относится к судовым системам электродвижения с частотно-управляемым гребным асинхронным электродвигателем и может быть использовано при проведении приемо-сдаточных испытаний гребного электродвигателя (ГЭД) и системы электродвижения (СЭД) в условиях стенда. Целью предложения является...
Тип: Изобретение
Номер охранного документа: 0002462728
Дата охранного документа: 27.09.2012
10.04.2019
№219.017.0a21

Энергоустановка на топливных элементах

Изобретение относится к энергоустановкам на топливных элементах, обеспечивающих резервное электропитание, и может использоваться в самых различных областях науки и техники. Согласно изобретению в энергоустановку введены клеммы для подключения внешней электрической сети, датчик напряжения сети,...
Тип: Изобретение
Номер охранного документа: 0002460179
Дата охранного документа: 27.08.2012
29.06.2019
№219.017.9f9b

Разностно-дальномерное гидроакустическое устройство определения местоположения надводного или подводного судна относительно заданного фарватера

Изобретение относится к гидроакустическим разностно-дальномерным навигационным системам. Согласно изобретению на судне установлен гидроакустический импульсный излучатель, вдоль и поперек заданного фарватера размещены две пары донных гидрофонов, соединенных с двумя парами триггеров. Устройство...
Тип: Изобретение
Номер охранного документа: 0002470317
Дата охранного документа: 20.12.2012
+ добавить свой РИД