×
01.06.2019
219.017.725d

Результат интеллектуальной деятельности: Листовой прокат и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к конструкционной низколегированной стали, используемой для производства листового проката для сварных конструкций, в частности листового проката толщиной до 40 мм для магистральных газопроводных труб с высокой деформационной способностью, а также для использования в конструкциях зданий и сооружений для повышения их сейсмической приспособленности. Листовой прокат выполнен из стали, содержащей, мас.%: углерод 0,03-0,07, кремний 0,10-0,25, марганец 1,60-1,80, титан 0,010-0,025, ниобий 0,025-0,055, азот не более 0,006, алюминий 0,020-0,050, серу не более 0,002, фосфор не более 0,015, остальное - железо и примеси. Прокат имеет гарантированное временное сопротивление не менее 590 МПа, отношение предела текучести к временному сопротивлению не более 88%, относительное равномерное удлинение не менее 10%, а сталь имеет феррито-мартенситную структуру с полосчатостью не выше 2-го балла. Повышается деформационная способность проката и стальных конструкций, выполненных из него, позволяющая улучшить показатели сейсмостойкости трубопроводов и сейсмической приспособленности зданий и сооружений за счет повышения деформируемости конструкций в целом. 2 н.п. ф-лы, 2 табл.

Изобретение относится к металлургии, в частности, к конструкционной низколегированной стали для сварных конструкций и может найти применение в области производства листового проката толщиной до 40 мм для магистральных газопроводных труб с высокой деформационной способностью, а также для использования в конструкциях зданий и сооружений для повышения их сейсмической приспособленности.

Для устойчивости в условиях подвижности грунтов стальные конструкции, например, трубопроводы должны быть выполнены из стали, обладающей не только высокой прочностью и вязкостью, но и низким отношением предела текучести к временному сопротивлению, а также высоким равномерным относительным удлинением.

Известен способ производства толстолистового проката, включающий выплавку стали, разливку, нагрев и термодеформационную прокатку заготовки, ускоренное охлаждение готового проката, отличающийся тем, что выплавляют сталь следующего химического состава, мас. %:

углерод 0,03-0,20
марганец 0,50-2,10
кремний 0,10-0,50
ниобий 0,01-0,15
алюминий 0,01-0,10
титан 0,005-0,05
азот 0,002-0,012
сера 0,0005-0,010
фосфор 0,003-0,050
железо остальное

термодеформационную прокатку заканчивают в интервале температур от Аrз+30°С до Аrз-30°С, ускоренное охлаждение осуществляют в два этапа, на первом этапе со скоростью 10-30 град/с до температуры 650-550°С, затем после паузы 3-10 с на втором этапе со скоростью 5-20 град/с до температуры 550-450 °С, а последующее охлаждение до 100°С осуществляют замедленно со скоростью 0,10-0,01 град/с (Патент РФ №2393236, МПК C21D 8/02, С22С 38/44, опубл. 27.06.2010 г.).

Недостатком аналога является получение не оптимальной микроструктуры для гарантированного достижения высокой деформационной способности стали, определяемой уровнем значений равномерного удлинения и отношения предела текучести к временному сопротивлению.

Известен наиболее близкий к предложенному способ производства штрипса для труб магистральных трубопроводов толщиной от 24 до 40 мм, принятый за прототип, включающий получение заготовки из стали, нагрев заготовки выше , дробную деформацию и ступенчатое охлаждение готового штрипса в установке контролируемого ускоренного охлаждения до температуры 550-400°С с последующим охлаждением в кессоне до 150°С и далее на воздухе, при котором заготовку получают из стали со следующим соотношением элементов, мас. %:

углерод 0,03-0,10
марганец 1,20-1,85
кремний 0,15-0,35
никель 0,10-0,30
алюминий 0,02-0,06
молибден 0,01-0,3
ниобий 0,03-0,06
ванадий 0,01-0,03
титан 0,001-0,020
сера 0,001-0,003
фосфор 0,002-0,010
железо остальное

при этом углеродный эквивалент Сэкв ≤ 0,40 мас. %, коэффициент трещиностойкости Рсm ≤ 0,21 мас. %, перед деформацией заготовку нагревают до температуры 1150-1200°С в течение 7-8 ч, затем проводят предварительную деформацию с суммарной степенью обжатия 58-65% с регламентированными обжатиями 14-20% при температуре 940-990°С, далее осуществляют охлаждение полученной заготовки на 70-100°С со скоростью 4-12°С/с и последующую выдержку 3-5 с на 1 мм сечения заготовки на воздухе, окончательную деформацию проводят при температуре 830-750°С с суммарной степенью обжатий не менее 43% и не менее 12% за проход (Патент РФ №2426800, МПК C21D8/02, С22С38/44, С22С38/48, C21D9/46, опубл. 20.08.2011 г.).

Недостатком способа также является получение не оптимальной микроструктуры, которая не обеспечивает высокую деформационную способность стали для сохранения целостности конструкций в целом при протекании реологических процессов в грунтах.

Техническим результатом изобретения является обеспечение повышенной деформационной способности проката и стальных конструкций, выполненных из него, позволяющей улучшить показатели сейсмостойкости трубопроводов и сейсмической приспособленности зданий и сооружений за счет повышения деформируемости конструкций в целом.

Технический результат достигается тем, что листовой прокат выполнен из конструкционной низколегированной стали для сварных конструкций с содержанием элементов, мас. %: углерод 0,03 - 0,07; кремний 0,10 - 0,25; марганец 1,60 - 1,80; титан 0,010 - 0,025; ниобий 0,025 - 0,055; азот не более 0,006; алюминий 0,020 - 0,050; сера не более 0,002; фосфор не более 0,015; железо и примеси остальное, при этом листовой прокат имеет гарантированное временное сопротивление не менее 590 МПа, отношение предела текучести к временному сопротивлению не более 88%, относительное равномерное удлинение не менее 10%, причем сталь имеет феррито-мартенситную структуру с полосчатостью не выше 2-го балла. Технический результат достигается также тем, что в способе получения листового проката, включающем разливку слябов на МНЛЗ с технологическими переливами, прокатку на стане с одноступенчатым ускоренным охлаждением, перед разливкой в стали обеспечивают содержание водорода не более 2,0 ррm, в ходе технологических переливов разливку осуществляют с защитой струи, а одноступенчатое ускоренное охлаждение проката в потоке стана прерывают при температуре не выше 100°С.

Сущность изобретения заключается в изготовлении слябов из стали заданного состава, что при реализации предлагаемых технологических режимов и мероприятий обеспечивает требуемый уровень механических свойств листового проката.

Для получения требуемой прочности содержание углерода должно быть не менее 0,03%, но при содержании углерода более 0,07% наряду с ухудшением свариваемости снижается низкотемпературная вязкость стали. Низкое содержание углерода так же благоприятно для снижения сегрегации в непрерывнолитых заготовках и структурной полосчатости в прокате.

Кремний и алюминий являются технологическими примесями и вводятся в сталь для раскисления. Химические элементы в заявленных пределах обеспечивают необходимую степень раскисленности стали и высокую степень чистоты по эндогенным неметаллическим включениям.

Добавка марганца в заявленных пределах способствует лучшей прокаливаемости стали при ускоренном охлаждении. При содержании марганца более 1,80% ухудшаются пластические свойства стали, при содержании менее 1,60% снижаются прочностные свойства.

Титан, являясь нитридообразующим элементом, способствует измельчению зерна в стали при содержании более 0,010%. Верхний предел содержания титана ограничен 0,025% из-за активации процесса образования крупных неметаллических включений кубической формы, снижающих ее ударную вязкость.

Ниобий, обеспечивая выделение дисперсных частиц при термомеханической обработке, позволяет контролировать рост зерна аустенита, измельчать зерно и, как следствие, получать требуемое сочетание прочностных и пластических свойств. Ниобий в концентрации менее 0,025% не эффективен, его содержание в стали более 0,055% экономически не целесообразно.

Азот необходим для выделения дисперсных карбидов титана, сдерживающих миграцию границ зерен при высоких температурах нагрева и уменьшающих размер действительного зерна аустенита. При его содержании свыше 0,006% значительно ухудшается низкотемпературная ударная вязкость.

Сера и фосфор являются вредными примесями, их концентрация должна быть минимальной, однако при концентрации серы не более 0,002% и фосфора не более 0,015% их отрицательное влияние на свойства стали незначительно. При этом дальнейшее снижение примесей возможно только за счет более глубокой десульфурации и дефосфорация стали, что существенно удорожает ее производство и нецелесообразно.

Легирование никелем, медью, молибденом и микролегирование ванадием в текущей химической композиции стали не предусмотрено.

Концентрация химических элементов в стали, а также величина значений технологических параметров производства в заявленных в формуле изобретения пределах выбраны таким образом, чтобы обеспечить отношение предела текучести к временному сопротивлению не более 88%, а относительное равномерное удлинение не менее 10%.

Получение феррито-мартенситной структуры позволяет повысить прочность стали, увеличить пластичность и ударную вязкость, а также получить более низкое отношение предела текучести к временному сопротивлению. При этом получение в изделии структурной полосчатости свыше 2-го балла приводит к резкому снижению ее вязкостных свойств.

Обеспечение чистоты расплава перед разливкой по содержанию водорода не более 2,0 ррm предотвращает образование внутренних разрывов (флокенов) в листах из стали предлагаемого состава. Кроме того, проведение разливки на МНЛЗ с защитой струи трубами и погружными огнеупорными стаканами защищает расплав от вторичного окисления в ходе технологических переливов, предотвращая образование в стали эндогенных неметаллических включений, оказывающих общее негативно влияние на уровень механических свойств проката и стальных конструкций.

Заявленный интервал окончания одноступенчатого ускоренного последеформационного охлаждения не выше 100°С обусловлен задачей получения в прокате двухфазной феррито-мартенситной структуры, что позволяет повысить прочность стали, увеличить пластичность и ударную вязкость, а также получить более низкое отношение предела текучести к временному сопротивлению и, как следствие, обеспечить высокий уровень деформационной способности проката из предлагаемой стали. Кроме того, окончание ускоренного охлаждения при температуре не выше 100°С значительно повышает стабильность свойств по всей площади раската, выравнивая условия распада переохлажденного аустенита в объеме.

Реализация предложенного технического решения обеспечивает повышенную деформационную способность проката и труб, позволяющую улучшить показатели сейсмостойкости магистральных трубопроводов, а также сейсмическую приспособленность зданий и сооружений за счет повышения деформируемости конструкций, выполненных из предложенного проката, в целом, что достигается выбором рациональных технологических режимов и мероприятий для получения листового проката из стали предлагаемого химического состава. При выходе варьируемых параметров за указанные границы возможно неполучение стабильно высоких результатов механических испытаний. Имеющиеся данные подтверждают правильность выбранных мероприятий, а также значений технологических параметров в рамках предложенного листового проката из стали указанного химического состава и способа его получения.

Применение способа поясняется примером его реализации при производстве листов 25,8 мм на толстолистовом стане 5000 ПАО «Северсталь».

Выплавку стали осуществляли в кислородном конвертере с предварительным проведением процесса десульфурации чугуна магнием в заливочном ковше. На выпуске проводили первичное легирование, раскисление и обработку металла твердошлаковыми смесями с продувкой аргоном в сталеразливочном ковше. Окончательное легирование, микролегирование, десульфурацию стали и перегрев металла для проведения вакуумирования проводили на установке ковш-печь. Дегазацию металла осуществляли путем его вакуумирования с обеспечением содержания водорода 1,86 ррm. Модифицирование кальцием проводили на установке вакуумирования стали непосредственно перед разливкой путем использования проволоки с чистым кальцием. Разливку производили на МНЛЗ с защитой струи металла от вторичного окисления с использованием труб и погружных огнеупорных стаканов.

Химический состав экспериментальных плавок приведен в таблице 1.

Сталь получена со следующим составом химических элементов, масс. %: С=0,052; Si=0,18; Mn=1,63; Ti=0,014; Nb=0,042; N=0,006; Al=0,04; S=0,001; Р=0,010 железо и примеси - остальное, при этом листовой прокат, выполненный из нее, после проведения одноступенчатого ускоренного охлаждения до температуры 64°С имеет временное сопротивление 610 МПа, отношение предела текучести к временному сопротивлению 86%, относительное равномерное удлинение 12%, причем структура представлена блочным ферритом и низкоуглеродистым мартенситом с полосчатостью 1-го балла.

Механические испытания проводили на образцах, изготовленных из проб, отобранных в поперечном направлении относительно направления прокатки. Испытания на статическое растяжение проводили на плоских пятикратных образцах по ГОСТ 1497, ударный изгиб - на образцах с V-образным надрезом по ГОСТ 9454 при температуре минус 20°С, падающим грузом - на полнотолщинных образцах по требованиям ГОСТ 30456 при температуре минус 20°С.

Варианты реализации предложенного способа и результаты испытаний приведены в таблице 2.

Результаты испытаний показали, что предлагаемый способ производства стали выбранного химического состава (варианты №1, 2, и 3) обеспечивает удовлетворительный уровень механических свойств, определяемых при статических испытаниях образцов на растяжение, а также при динамических испытаниях на маятниковом копре и копре с падающим грузом. При запредельных значениях предложенных режимов (варианты №4 - 8) и способе-прототипе не удается достигнуть целевой феррито-мартенситной структуры с полосчатостью не выше 2-го балла и требуемого уровня механических свойств по равномерному относительному удлинению, а также отношению предела текучести к временному сопротивлению.

Таким образом, применение описанного способа получения листового проката и листового проката из стали приведенного состава обеспечивает достижение требуемых результатов, а именно, обеспечение повышенной деформационной способности проката и труб большого диаметра, позволяющей улучшить показатели сейсмостойкости трубопроводов и сейсмической приспособленности зданий и сооружений за счет повышения деформируемости конструкций в целом.

Источник поступления информации: Роспатент

Showing 11-20 of 34 items.
19.01.2018
№218.016.08bd

Бетонная смесь

Изобретение относится к промышленности строительных материалов, а именно к строительным бетонам при производстве фундаментов, подпорных стен, изготовлении лестниц, плит перекрытий. Технический результат- повышение прочности при сжатии и изгибе, снижение водопотребности. В бетонной смеси,...
Тип: Изобретение
Номер охранного документа: 0002631741
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.156e

Способ производства крупногабаритных толстых металлических листов или плит

Изобретение относится к области прокатного производства. Способ включает изготовление литых слябов, порезку слябов по длине, их нагрев в печи и последующую прокатку на реверсивном толстолистовом стане горячей прокатки, при этом перед нагревом в печи слябы, одинаковые по толщине и химическому...
Тип: Изобретение
Номер охранного документа: 0002634863
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1585

Способ смазки подшипников жидкостного трения прокатной клети

Изобретение относится к области прокатного производства. Способ включает подачу жидкой смазки из напорного маслопровода гидросистемы в центральную часть подшипника через отверстия в теле подушки, распределение смазки между трущимися поверхностями подшипника и слив отработанной смазки в...
Тип: Изобретение
Номер охранного документа: 0002634865
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.19dc

Способ производства круглого сортового проката из борсодержащей стали с повышенной пластичностью

Изобретение относится к области металлургии, в частности к производству круглого сортового проката диаметром от 6 до 13 мм. Для повышения пластических свойств проката, позволяющих гарантировать степень деформируемости проката на уровне 66% при изготовлении крепежных изделий холодной высадкой...
Тип: Изобретение
Номер охранного документа: 0002636542
Дата охранного документа: 23.11.2017
04.04.2018
№218.016.3540

Способ очистки коксового газа от аммиака круговым фосфатным способом

Изобретение относится к области химической технологии переработки твердого топлива и может быть использовано в коксохимической промышленности для очистки коксового газа от аммиака (NH). Задачей изобретения является разработка способа очистки коксового газа от аммиака, позволяющего увеличить...
Тип: Изобретение
Номер охранного документа: 0002645999
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.4186

Толстый лист из дисперсионно-твердеющей стали для горячей штамповки и способ его получения

Изобретение относится к области металлургии, в частности к производству толстого листа из низколегированной дисперсионно-твердеющей стали. Для обеспечения комплекса свойств, соответствующих классам прочности К60-К65, получают лист толщиной до 52 мм с уровнем прочности не менее 590 МПа,...
Тип: Изобретение
Номер охранного документа: 0002649110
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4bcd

Способ ремонта железобетонной дымовой трубы и устройство для его осуществления

Изобретение относится к области строительства, а точнее к способам ремонта дымовых железобетонных или кирпичных труб. Цель изобретения – создать устройство и способ ремонта железобетонной или кирпичной дымовой трубы, который позволяет устранять прямое воздействие агрессивных газов на несущий...
Тип: Изобретение
Номер охранного документа: 0002651871
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4d11

Способ производства горячекатаных листов из высокопрочной стали

Изобретение относится к области металлургии, а именно к производству толстых стальных листов, используемых для элементов конструкций, эксплуатируемых в арктических условиях, например для производства корпусов ледоколов и крупнотоннажных судов. Для получения листа толщиной до 70 мм с пределом...
Тип: Изобретение
Номер охранного документа: 0002652281
Дата охранного документа: 25.04.2018
29.05.2018
№218.016.53d7

Хладостойкая свариваемая сталь и изделие, выполненное из нее (варианты)

Изобретение относится к области металлургии, а именно к производству толстолистового проката толщиной до 100 мм из хладостойкой свариваемой стали для изготовления строительных конструкций, судостроения и других отраслей, в том числе для изготовления стационарных морских сооружений,...
Тип: Изобретение
Номер охранного документа: 0002653748
Дата охранного документа: 14.05.2018
28.07.2018
№218.016.7651

Шлакообразующая смесь для разливки сортовой заготовки из высокоуглеродистых марок стали

Изобретение относится к непрерывной разливке стали. Гранулированная шлакообразующая смесь содержит фторсодержащий (12-16 мас.%) и углеродсодержащий (22-28 мас.%) материалы, глыбу силикатную (27-31 мас.%), цемент (13-18 мас.%), связующие и стабилизирующие добавки для гранулирования (2-5 мас.%),...
Тип: Изобретение
Номер охранного документа: 0002662511
Дата охранного документа: 26.07.2018
Showing 11-20 of 31 items.
25.08.2017
№217.015.a094

Способ производства горячекатаных толстых листов из низколегированной стали для атомного и энергетического машиностроения

Изобретение относится к области металлургии и может быть использовано для изготовления крупногабаритных изделий атомного и энергетического машиностроения. Для получения проката толщиной от 80 до 150 мм с гарантией стандартных свойств после нормализации с отпуском из непрерывнолитых заготовок...
Тип: Изобретение
Номер охранного документа: 0002606357
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b17e

Способ производства горячекатаных листов из конструкционной низколегированной стали с гарантией сохранения эксплуатационных свойств конструкции при низких температурах (варианты)

Изобретение относится к области металлургии и может быть использовано при горячей прокатке конструкционных низколегированных марок стали на реверсивных станах. Для сохранения эксплуатационных свойств при низких температурах, при производстве толстых листов осуществляют аустенизацию...
Тип: Изобретение
Номер охранного документа: 0002613269
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b20e

Способ производства горячекатаных листов из низколегированной стали класса прочности к60 для электросварных прямошовных труб

Изобретение относится к области прокатного производства и может быть использовано при производстве горячекатаных листов толщиной до 33 мм. Для обеспечения заданных механических свойств готового проката получают непрерывнолитые заготовки из стали, содержащей, мас.%: 0,07-0,10 углерода, 0,20-0,35...
Тип: Изобретение
Номер охранного документа: 0002613265
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.bab4

Способ производства горячекатаных листов из низколегированной стали класса прочности к65 для электросварных прямошовных труб

Изобретение относится к области металлургии, в частности к производству на реверсивном стане толстых листов из низколегированной стали класса прочности К-65 для изготовления труб магистральных газопроводов высокого давления. Для обеспечения удовлетворительной трещиностойкости стали при...
Тип: Изобретение
Номер охранного документа: 0002615667
Дата охранного документа: 06.04.2017
26.08.2017
№217.015.dabd

Способ производства толстолистового проката

Изобретение относится к области металлургии, в частности к производству проката (листов) ответственного назначения, предназначенного для судостроения. Для обеспечения в прокате толщиной более 60 мм предела текучести не менее 900 МПа, предела прочности не менее 970 МПа, относительного удлинения...
Тип: Изобретение
Номер охранного документа: 0002623945
Дата охранного документа: 29.06.2017
29.12.2017
№217.015.f340

Способ производства толстолистового штрипса из низколегированной стали

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при производстве толстолистового штрипса из низколегированной стали толщиной от 10 до 15 мм. Для получения штрипса класса прочности 365 МПа и выше с гарантией ударной вязкости при...
Тип: Изобретение
Номер охранного документа: 0002637544
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.fc6a

Горячекатаный лист из низколегированной стали толщиной от 15 до 165 мм и способ его получения

Изобретение относится к области металлургии, а именно к производству горячекатаных листов из низколегированной стали толщиной от 15 до 165 мм для изготовления, например, запорной арматуры нефтегазопроводов, а также конструкций, работающих при низких температурах до -60°С. Сталь имеет следующий...
Тип: Изобретение
Номер охранного документа: 0002638479
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.04cc

Толстый лист из конструкционной стали для изготовления деталей сварных конструкций и способ его получения в нормализованном состоянии

Изобретение относится к области металлургии. Для обеспечения свариваемости и повышенной работы удара при низких температурах стальной лист толщиной до 50 мм содержит, мас. %: C 0,10-0,14, Si 0,16-0,30, Mn 1,35-1,60, Al 0,02-0,05, S не более 0,005, P не более 0,018, Ti 0,010-0,025, Nb...
Тип: Изобретение
Номер охранного документа: 0002630721
Дата охранного документа: 12.09.2017
20.01.2018
№218.016.1020

Способ производства горячекатаных листов из низколегированной стали

Изобретение относится к области металлургии и может быть использовано при производстве горячекатаного листа толщиной 48-100 мм из низколегированной стали для изготовления конструкций ответственного назначения, работающих под давлением при температуре до -70°C. Для обеспечения механических...
Тип: Изобретение
Номер охранного документа: 0002633684
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.1852

Способ производства низкоуглеродистой стали

Изобретение относится к области черной металлургии, в частности к производству низкоуглеродистых демпфирующих сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали. Способ включает выплавку металла в сталеплавильном агрегате, выпуск металла в сталь-ковш, внепечную...
Тип: Изобретение
Номер охранного документа: 0002635493
Дата охранного документа: 13.11.2017
+ добавить свой РИД