×
29.05.2019
219.017.689a

Результат интеллектуальной деятельности: КОНЦЕНТРАТОРНЫЙ СОЛНЕЧНЫЙ ЭЛЕМЕНТ

Вид РИД

Изобретение

Аннотация: Концентраторный солнечный элемент (8) выполнен в форме в форме прямоугольника с соотношением длин сторон, находящимся в интервале от 1 до 1,5. Он содержит подложку (3), многослойную структуру (4), сформированную на подложке (3), с центральной фоточувствительной областью (12), контактный слой (9), сплошной нижний электрод (2) и верхний электрод в виде контактной сетки, содержащей по меньшей мере одну токосъемную шину (10), расположенную по периметру фоточувствительной области (12), и токосъемные полоски (11). Токосъемные полоски (11) эквидистантно выходят из по меньшей мере одной токосъемной шины (10) под углом 35-55° к боковой грани (13) солнечного элемента (8). Токосъемные полоски (11) параллельны друг другу в пределах каждого из четырех сегментов (а, б, в и г), лежащих между взаимно перпендикулярными плоскостями, проведенными через середины противолежащих сторон прямоугольника солнечного элемента (8). Изобретение обеспечивает создание концентраторного солнечного элемента, имеющего повышенный КПД за счет уменьшения сопротивления верхнего контакта и, следовательно, уменьшения омических потерь. 11 з.п. ф-лы, 7 ил.

Изобретение относится к полупроводниковым приборам, в частности к устройствам преобразования световой энергии в электрическую, и может быть использовано в концентраторных фотоэлектрических модульных установках.

При разработке солнечных элементов, работающих при высоких значениях концентрации солнечного излучения, одним из ключевых моментов является конструкция верхнего металлического электрода. С одной стороны, для уменьшения электрических потерь на контакте он должен обеспечить минимальное омическое сопротивление, с другой стороны, контактная сетка должна обеспечить минимальное затенение фоточувствительной области солнечного элемента. Учитывая, что в концентраторных солнечных элементах распределение солнечного излучения по поверхности фоточувствительной области происходит неравномерно, задача оптимизации топологии контактной сетки становится еще более сложной.

Известен концентраторный солнечный элемент (см. патент US № 4320250, МПК H01L 31/04, опубликован 16.03.1982), включающий подложку из полупроводниковой пластины, первый токосборный электрод, сформированный на тыльной поверхности подложки, легированный полупроводниковый слой, сформированный на верхней поверхности подложки, контактную сетку, сформированную на легированном полупроводниковым слое, и второй металлический электрод, сформированный методом электрогальваники на контактной сетке. Второй металлический электрод имеет ширину порядка менее 25 мкм, толщину по крайней мере больше ширины и, следовательно, резкие вертикальные контуры. Упомянутая контактная сетка имеет форму круга и выполнена в виде радиально расходящихся лучей из центра круга к краям. При этом каждый луч разделяется на два на расстоянии от центра к краю.

Известный элемент позволяет обеспечить равномерное собирание генерированных носителей заряда по всей площади солнечного элемента. К недостаткам известного решения относится сильное затенение, создаваемое такой контактной системой.

Известен концентраторный солнечный элемент для использования в концентраторах (см. патент US № 4227940, МПК H01L 31/06, опубликован 14.10.1980), включающий, как правило, круглую пластину, выполненную из кремния, имеющую проводимость от 0,5 до 1,5 Ом·см и имеющую тыльную и верхнюю поверхности. Пластина имеет диаметр около 2 дюймов, слой алюминия, сформированный на тыльной поверхности и воженный в кремниевую пластину с целью формирования р+ слоя, n+ слой, сформированный на верхней поверхности пластины, многослойную структуру металлического контакта выполненную на тыльной поверхности и обеспечивающую контакт к р+ слою, многослойную структуру металлического контакта сформированную на верхней поверхности и обеспечивающую контакт к n+ слою. Многослойная структура металлического контакта, сформированная на верхней поверхности, выполнена в виде двух осесимметричных шин, имеющих форму окружности, и примерно 300 радиально расходящихся клиновидных полосок. Примерно 150 клиновидных полосок проходят из области центра к краям контактной сетки, пересекая обе контактные шины, еще примерно 150 лучей выходят из первой контактной шины и соединяются со второй контактной шиной, находящейся на периферии контактной сетки. Еще одна окружность, имеющая очень малый диаметр, находится в центре фоточувствительной области, при этом не соприкасается с лучами.

Недостатками данной конструкции являются большая область затенения, а также неэффективное собирание генерированных носителей заряда в центре фоточувствительной области, где полоски контактной сетки, выполненные в виде радиальных лучей, не соприкасаются с центральной окружностью.

Известен концентраторный трехпреходный солнечный элемент (см. К.Nishioka, Т.Takamoto, Т.Agui, М.Kaneiwa, Y.Uraoka, Т.Fuyuki. - Solar Energy Materials and Solar Cells. - 90, 2006, 1308-1321), включающий нижний электрод, германиевую подложку с сформированным в ней переходом, переход на основе соединения GalnAs, переход на основе соединения GalnP, широкозонное окно, контактный слой GaAs, верхний серебряный электрод толщиной 5 мкм. Верхний электрод и расположенный под ним контактный слой GaAs сформированы в виде прямоугольной сетки, с двух сторон которой располагаются токосъемные шины, шириной 0,85 мм и длинной 7 мм. Расстояние между двумя упомянутыми шинами составляет 7 мм. Две упомянутые шины соединяются 55 токосъемными дорожками с шириной 7 мкм и расстоянием между дорожками 120 мкм.

Недостатком данной конструкции является то обстоятельство, что она оптимизирована под солнечное излучение, распределенное равномерно по площади солнечного элемента, в то время как в концентраторной солнечной энергоустановке солнечное излучение, падающее на солнечный элемент, распределено неравномерно, с максимальной концентрацией в центре солнечного элемента.

Наиболее близким к заявляемому решению по технической сущности и совокупности существенных признаков является конструкция концентраторного солнечного элемента, принятого за прототип (см. В. Galiniana, С.Algora, I. Rey-Stolle. - Comparison of 1D and 2D analysis of the front contact influence on GaAs concentrator solar cell performance. - Solar Energy Materials and Solar Cells. - 90, 2006, 2589-2604), включающая подложку со сформированной на ней гетероструктурой, контактный слой, нижний сплошной электрод и верхний электрод, выполненный в виде контактной сетки. Упомянутая контактная сетка формирует фоточувствительную область солнечного элемента в виде квадрата со сторонами размером 1 мм. Контактная сетка включает токосъемные шины шириной 100 мкм, расположенные по периметру фоточувствительной области, и угловые токосъемные полоски шириной 5 мкм, выходящие из токосъемных шин перпендикулярно сторонам квадрата и попарно соединяющиеся своими концами. Упомянутые токосъемные полоски, выходящие из середины каждого края фоточувствительной области, соединены в виде креста. Токосъемные дорожки и шины имеют удельное поверхностное сопротивление 0,35 Ом/□.

Известная конструкция концентраторного солнечного элемента-прототипа позволяет достичь меньших потерь, связанных с затенением фоточувствительной области солнечного элемента, по сравнению с предыдущими вариантами исполнения контактной сетки. К недостаткам данного технического решения относится недостаточно высокий коэффициент полезного действия (КПД) концентраторного солнечного элемента, работающего при высоких степенях концентрации солнечной энергии (500-1000 солнц). Причиной указанного недостатка является неоптимальная конструкция контактной сетки. При концентрации солнечного излучения основная часть падающего света приходится на центральную область солнечного элемента, а токосъем осуществляется с его углов. Для данной геометрии контактной системы носителям заряда, собранным в центре фоточувствительной площадки, необходимо проделать максимальный путь от центра к краям и далее по токосъемным шинам к углам солнечного элемента, что, учитывая электрическое сопротивление контактных дорожек, приводит к дополнительному падению напряжения и, следовательно, уменьшению КПД солнечного элемента.

Задачей заявляемого технического решения является создание концентраторного солнечного элемента, имеющего повышенный КПД за счет уменьшения сопротивления верхнего контакта и, следовательно, уменьшения омических потерь.

Поставленная задача решается тем, что концентраторный солнечный элемент, выполнен в форме прямоугольника с соотношением длин сторон, находящимся в интервале от 1 до 1,5, и включает подложку, многослойную структуру, сформированную на подложке, с центральной фоточувствительной областью, контактный слой, сплошной нижний электрод и верхний электрод в виде контактной сетки. Контактная сетка содержит, по меньшей мере, одну токосъемную шину, расположенную по периметру фоточувствительной области, и токосъемные полоски. Токосъемные полоски эквидистантно выходят из по меньшей мере одной токосъемной шины под углом 35-55° к сторонам упомянутого прямоугольника и параллельные друг другу в пределах каждого из четырех сегментов, лежащих между взаимно перпендикулярными плоскостями, проведенными через середины противолежащих сторон упомянутого прямоугольника. По меньшей мере в одном углу прямоугольника к токосъемной шине прикреплен токоотвод, например, ультразвуковой (термозвуковой) сваркой или пайкой.

В концентраторном солнечном элементе токосъемные полоски одного сегмента могут быть смещены относительно токосъемных полосок соседнего сегмента вдоль линии раздела этих сегментов на расстояние d=1/2D, где D -расстояние между проксимальными концами соседних полосок.

Токосъемные полоски двух соседних сегментов могут быть расположены симметрично относительно плоскости, проходящей по линии раздела этих сегментов, при этом каждая токосъемная полоска одного сегмента может быть соединена с симметричной ей токосъемной полоской соседнего сегмента. В частности, соединение симметричных полосок соседних сегментов может быть выполнено сопряжением.

Проксимальный конец каждой токосъемной полоски одного сегмента может быть отделен зазором от проксимального конца симметричной ей токосъемной полоски соседнего сегмента.

Фоточувствительная область в концентраторном солнечном элементе может быть выполнена в форме круга; в форме круга, сплющенного с четырех сторон упомянутого прямоугольника; в форме квадрата со срезанными углами.

Контактная сетка может содержать четыре одинаковых осесимметричных токосъемных шины, отделенных друг от друга зазором вблизи осей симметрии прямоугольника.

Наиболее предпочтительным является вариант, когда токосъемные полоски эквидистантно выходят из по меньшей мере одной токосъемной шины под углом 45° к сторонам упомянутого прямоугольника.

В заявляемой конструкции концентраторного солнечного элемента обеспечивается минимальная длина контактных полосок от центра солнечного элемента, т.е. области с максимальной концентрацией солнечного излучения, до токосъемной шины, в результате чего минимизируются потери на сопротивление контактной сетки. Данное преимущество позволяет достичь увеличения КПД заявляемого концентраторного солнечного элемента по сравнению с известным концентраторным солнечным элементом-прототипом.

Прямоугольная форма концентраторного солнечного элемента обусловлена необходимостью проведения резки полупроводниковой пластины на отдельные элементы. Оптимальной формой концентраторного солнечного элемента является квадрат (соотношение сторон равно 1), так как проекция падающего концентрированного солнечного излучения на солнечный элемент имеет форму круга или круга, сплющенного с четырех сторон, то при возрастании соотношения сторон прямоугольника до 1,5 возрастает доля площади солнечного элемента, не принимающей участие в генерации носителей заряда, что приводит к неэффективному использованию материала. Угол, под которым расположены токосъемные полоски к сторонам упомянутого прямоугольника, определяется из условий обеспечения минимального электрического сопротивления для части тока, генерированного в центральной области солнечного элемента, где концентрация солнечного излучения достигает максимального значения. Оптимальным значением данного угла является величина в 45°. При использовании углов, меньших или больших 35-55°, значительно возрастают потери на электрическом сопротивлении контактной сетки, и теряется конкурентное преимущество по сравнению с прототипом. Одинаковое расстояние между токосъемными полосками и их параллельность обуславливаются необходимостью обеспечения равномерного токосъема.

Заявляемое изобретение поясняется чертежами, где:

на фиг.1 приведен вид сбоку концентраторного солнечного элемента-прототипа в поперечном сечении по А-А;

на фиг.2 показан вид сверху концентраторного солнечного элемента-прототипа;

на фиг.3 приведен вид сбоку заявляемого концентраторного солнечного элемента в поперечном сечении по Б-Б;

на фиг.4 показан вид сверху заявляемого концентраторного солнечного элемента со смещенными токосъемными полосками и четырьмя осесимметричными токосъемными шинами;

на фиг.5 показан вид сверху заявляемого концентраторного солнечного элемента с симметрично расположенными разомкнутыми токосъемными полосками и четырьмя осесимметричными токосъемными шинами;

на фиг.6 показан вид сверху заявляемого концентраторного солнечного элемента с симметрично расположенными токосъемными полосками, соединенными проксимальными концами, и одной токосъемной шиной;

на фиг.7 показан вид сверху заявляемого концентраторного солнечного элемента с симметрично расположенными токосъемными полосками, соединенными сопряжением проксимальными концами, и одной токосъемной шиной.

Концентраторный солнечный элемент-прототип 1 включает нижний электрод 2, подложку 3, сформированную на ней гетероструктуру 4, контактный слой 5, верхний электрод, состоящий из токосъемной шины 6 и токосъемных полосок 7. Конструкция верхнего электрода концентраторного солнечного элемента-прототипа видна на фиг.2.

Концентраторный солнечный элемент 8 (см. фиг.3) включает нижний электрод 2, подложку 3, сформированную на ней гетероструктуру 4, контактный слой 9, верхний электрод (см. фиг.4), состоящий из четырех токосъемных шин 10 и токосъемных полосок 11. Фоточувствительная область 12 солнечного элемента 8 может иметь форму круга (см. фиг.4, 6), форму круга, сплющенного с четырех сторон упомянутого прямоугольника (см. фиг.7); форму квадрата со срезанными углами (см. фиг.5), что позволяет увеличить фотоактивную область 12 солнечного элемента 8. В каждом из четырех сегментов а, б, в и г фоточувствительной области 12 токосъемные полоски 11 параллельны друг другу. Контактные токосъемные полоски 11 располагают в сегментах а, б, в и г под углом 35-55° к боковой грани 13 солнечного элемента 8. Для более равномерного токосъема токосъемные полоски 11 (см. фиг.4) одного сегмента (например, а) могут быть смещены относительно токосъемных полосок 11 соседнего сегмента (например, б) вдоль линии раздела этих сегментов на расстояние d=1/2D, где D - расстояние между проксимальными концами 14 соседних полосок 11. Токосъемные полоски 11 (см. фиг.5) двух соседних сегментов (например, а и б) могут быть расположены симметрично относительно плоскости, проходящей по линии раздела этих сегментов. В случае, если реализация контактной сетки с контактными полосками 11 технологически окажется слишком сложной, каждая токосъемная полоска 11 одного сегмента (например, а) может быть соединена с симметричной ей токосъемной полоской 11 соседнего сегмента (например, б). В частности, соединение симметричных полосок 11 соседних сегментов (например, б и в) может быть выполнено сопряжением 15 (см. фиг.7). Как показано на фиг.5, проксимальный конец 14 каждой токосъемной полоски 11 одного сегмента (например, б) может быть отделен зазором 16 от проксимального конца 14 симметричной ей токосъемной полоски 11 соседнего сегмента (например, в), что позволяет увеличить фотоактивную площадь. В каждом углу квадрата к токосъемной шине 10 прикреплен ультразвуковой или термозвуковой микросваркой токоотвод 17, выполненный, например, в виде проволоки из золота.

Увеличение КПД заявляемого концентраторного солнечного элемента подтверждается проведенной численной оценкой. Конструкция контактной сетки концентраторного солнечного элемента-прототипа 1 представлена на фиг.2, а конструкция используемой в численной оценке контактной сетки заявляемого солнечного элемента 8 представлена на фиг.4. Размер фоточувствительной области 12 в обоих случаях будет равен 1 мм (длина стороны квадрата на фиг.2 и диаметр круга на фиг.4). Ширина контактных полосок 7 и 11 равна 5 мкм, удельное поверхностное сопротивление 0,35 Ом/□. Ширина токосъемных шин 10, расположенных по периметру фоточувствительной области 12 (фиг.4), равна 100 мкм. Учитывая симметричность рисунка контактной сетки концентраторного солнечного элемента-прототипа 1 и концентраторного солнечного элемента 8, задача определения падения напряжения будет решаться только для области, составляющей 1/8 от всей площади солнечного элемента и выделенной жирной штриховой линией на фиг.2 и 4. Учитывая симметричность распределения интенсивности солнечного излучения, а также схожесть геометрии контактных полосок 7 и 11, различиями в падении напряжения на контактных полосках 7 и 11, представленных соответственно на фиг.2 и фиг.4, можно пренебречь. Таким образом, задача сводится к определению падения напряжения на токосъемных шинах 6 и 10 для двух указанных выше вариантов исполнения контактной сетки. Величина падения напряжения на токосъемной шине 6 и 10 между двумя контактными полосками 11 (n-1 и n) равна

где Jk - величина силы тока, протекающей по k-ой токосъемной полоске 11; m=5 - число токосъемных полосок 11 в рассматриваемой области; rn -сопротивление участка токосъемной шины 6, 10 между контактными полосками 11 (n-1 и n), которое можно выразить как

где ln - длина этого участка токосъемной шины 6, 10; Wn - его ширина в случае конструкции контактной сетки, представленной на фиг.2, или эффективная ширина для случая конструкции контактной сетки, представленной на фиг.4; ρs - удельное поверхностное сопротивление. С учетом формулы (1) суммарное падение напряжения на токосъемной шине 6, 10 может быть выражено следующим образом:

Считая, что падающее на солнечный элемент 1 и 8 концентрированное солнечное излучение распределено по закону Гаусса, а также что плотность тока короткого замыкания при одном солнце равна 14 мА/см2, расчет по формуле (3) при концентрации 1000 солнц дает величину падения напряжения 60 мВ и 20 мВ соответственно для солнечных элемента 1 и солнечного элемента 8. Таким образом, заявляемая конструкция концентраторного солнечного элемента 8 позволяет в три раза уменьшить потери на сопротивлении контактной сетки при высоких уровнях концентрации солнечного излучения, что может дать увеличение абсолютного значения КПД на 0,5-1%. Дополнительным положительным эффектом может являться снижение стоимости концентраторного солнечного элемента 8 за счет уменьшения его размеров без уменьшения площади фоточувствительной области 12.

Источник поступления информации: Роспатент

Showing 1-6 of 6 items.
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
18.05.2019
№219.017.566b

Туннельно-связанная полупроводниковая гетероструктура

Изобретение относится к полупроводниковой технике, квантовой оптоэлектронике и может быть использовано для разработки мощных когерентных импульсных источников излучения на основе эпитаксиально-интегрированных гетероструктур. Сущность изобретения: туннельно-связанная полупроводниковая...
Тип: Изобретение
Номер охранного документа: 0002396655
Дата охранного документа: 10.08.2010
18.05.2019
№219.017.5967

Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей

Концентраторный фотоэлектрический модуль на основе наногетероструктурных солнечных элементов относится к области фотоэлектрического преобразования энергии, в частности к системам с расщеплением солнечного спектра. Модуль содержит корпус (1), имеющий фронтальную панель (2), содержащую...
Тип: Изобретение
Номер охранного документа: 0002426198
Дата охранного документа: 10.08.2011
09.06.2019
№219.017.79be

Способ определения размеров наночастиц и устройство для измерения спектра электронного парамагнитного резонанса

Изобретение относится к технике спектроскопии электронного парамагнитного резонанса (ЭПР) при исследованиях наноструктур методом ЭПР. Техническим результатом заявленного изобретения является повышение чувствительности регистрации спектров ЭПР мелких доноров в полупроводниковых нанокристаллах....
Тип: Изобретение
Номер охранного документа: 0002395448
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.7d2a

Способ изготовления наноструктурного омического контакта фотоэлектрического преобразователя

Изобретение относится к технологии изготовления полупроводниковых приборов. Сущность изобретения: в способ изготовления наноструктурного омического контакта проводят предварительную очистку поверхности GaSb р-типа проводимости ионно-плазменным травлением на глубину 5-30 нм с последующим...
Тип: Изобретение
Номер охранного документа: 0002426194
Дата охранного документа: 10.08.2011
09.06.2019
№219.017.7d72

Способ формирования контакта для наногетероструктуры фотоэлектрического преобразователя на основе арсенида галлия

Изобретение относится к области создания полупроводниковых приборов, чувствительных к излучению, и может использоваться в технологиях по изготовлению омических контактных систем к фотоэлектрическим преобразователям (ФЭП) с высокими эксплуатационными характеристиками, и, в частности, изобретение...
Тип: Изобретение
Номер охранного документа: 0002428766
Дата охранного документа: 10.09.2011
Showing 21-30 of 64 items.
13.01.2017
№217.015.919e

Фотоэлектрический преобразователь

Изобретение относится к электронной технике, а именно к фотоэлектрическим преобразователям солнечной энергии. Фотоэлектрический преобразователь на основе изотипной варизонной гетероструктуры из полупроводниковых соединений A3B5 и/или A2B6 содержит полупроводниковую подложку и изотипный с...
Тип: Изобретение
Номер охранного документа: 0002605839
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a5d3

Способ изготовления фотоэлемента на основе gaas

Способ изготовления фотопреобразователя на основе GaAs включает выращивание методом жидкофазной эпитаксии на подложке n-GaAs базового слоя n-GaAs, легированного оловом или теллуром, толщиной 10-20 мкм и слоя p-AlGaAs, легированного цинком, при х=0,2-0,3 в начале роста и при х=0,10-0,15 в...
Тип: Изобретение
Номер охранного документа: 0002607734
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a9ae

Солнечный концентраторный модуль

Солнечный концентраторный модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами (4) Френеля на внутренней стороне фронтальной панели (3), тыльную панель (9) с фоконами (6) и солнечные элементы (7), снабженные теплоотводящими основаниями (8). Теплоотводящие основания (8)...
Тип: Изобретение
Номер охранного документа: 0002611693
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.a9ce

Система управления платформой концентраторных солнечных модулей

Система управления платформой концентраторных солнечных модулей содержит платформу (6) с концентраторными каскадными солнечными модулями, оптический солнечный датчик (24), выполненный в виде CMOS матрицы, подсистему (7) азимутального вращения, подсистему (8) зенитального вращения, включающую...
Тип: Изобретение
Номер охранного документа: 0002611571
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa69

Метаморфный фотопреобразователь

Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий...
Тип: Изобретение
Номер охранного документа: 0002611569
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aaa3

Способ изготовления наногетероструктуры со сверхрешеткой

Изобретение относится к электронной технике, в частности к способам создания наногетероструктур для фотопреобразующих и светоизлучающих устройств. Способ изготовления наногетероструктуры со сверхрешеткой включает выращивание на подложке GaSb газофазной эпитаксией из металлоорганических...
Тип: Изобретение
Номер охранного документа: 0002611692
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.ddee

Фотоэлектрический преобразователь на основе полупроводниковых соединений abc , сформированных на кремниевой подложке

Изобретение относится к солнечной энергетике, в частности к конструкции и составу слоев фотоэлектрических преобразователей с несколькими переходами. Задачей заявляемого изобретения является создание фотоэлектрического преобразователя с несколькими р-n-переходами, отличающегося повышенным КПД за...
Тип: Изобретение
Номер охранного документа: 0002624831
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e151

Система слежения за солнцем концентраторной энергоустановки

Изобретение относится к области солнечной энергетики и может найти применение, например, при создании установок с фотоэлектрическими модулями. Система слежения за Солнцем концентраторной энергоустановки включает подсистему (1) азимутального вращения и подсистему (2) зенитального вращения....
Тип: Изобретение
Номер охранного документа: 0002625604
Дата охранного документа: 17.07.2017
13.02.2018
№218.016.20f8

Солнечный фотоэлектрический концентраторный модуль

Солнечный фотоэлектрический концентраторный модуль содержит первичный оптический концентратор (3) в виде линзы Френеля, с линейным размером D, оптическая ось (4) которой проходит через центр (5) фотоактивной области фотоэлемента (1), выполненной в виде круга диаметром d, и соосный с ним...
Тип: Изобретение
Номер охранного документа: 0002641627
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.36e8

Фотопреобразователь лазерного излучения

Изобретение относится к полупроводниковой электронике. Фотопреобразователь лазерного излучения включает подложку (1) из n-GaAs, на которую последовательно нанесены слой (2) тыльного барьера из n-AlGaAs, базовый слой (3) из n-GaAs, эмиттерный слой (4) из p-GaAs, слой (5) широкозонного окна из...
Тип: Изобретение
Номер охранного документа: 0002646547
Дата охранного документа: 05.03.2018
+ добавить свой РИД