×
25.08.2017
217.015.aa69

МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий базовый слой (4) и эмиттерный слой (5), слой (6) широкозонного окна из In(AlGa)As, где x=0,2-0,5, и контактный субслой (7) из InGaAs. Метаморфный фотопреобразователь, выполненный согласно изобретению, имеет повышенные величину фототока и КПД. 5 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотопреобразователей (солнечных элементов).

В последние десятилетия в мире постоянно возрастал интерес к возобновляемым источникам энергии, в частности использующим солнечную энергию. Для космических летательных аппаратов фотовольтаика (солнечная энергетика) является единственным источником энергии, что во многом обуславливает ее развитие, однако в последние годы постоянно растет и доля фотовольтаики в общем объеме энергии, генерируемой наземными электростанциями. При этом разработка полупроводниковых структур каскадных фотоэлектрических преобразователей (ФЭП) на основе соединений А3В5, преобразующих концентрированное излучение, является одним из наиболее перспективных путей к достижению наивысших значений КПД фотоэлектрического преобразования. Значительное ограничение на КПД каскадных ФЭП накладывают свойства полупроводниковых материалов, из которых выполнены элементы их полупроводниковой структуры. В первую очередь, это относится к параметру кристаллической решетки. Наличие рассогласования материалов по параметру решетки приводит к накапливанию упругих напряжений, которые релаксируют при достижении определенной толщины с образованием дефектов, что особенно критично для фотопреобразующих структур ввиду большой толщины их фотоактивных слоев. Таким образом, обеспечение возможности расширения спектрального диапазона фоточувствительности субэлементов каскадного ФЭП, которое влечет за собой увеличение генерируемого ими фототока, является важной задачей для реализации потенциала КПД каскадных фотопреобразователей.

Известен метаморфный фотопреобразователь (см. заявка US 20140370648, МПК H01L 31/18, опубл. 18.12.2014), содержащий подложку из GaAs и три инвертированных фотоактивных p-n-перехода, один из которых выполнен из GalnAs с использованием метаморфного буферного слоя, при этом GaInAs p-n-переход включает базовый слой, эмиттерный слой и слой широкозонного окна, выполненный из GaInP.

Недостатком известного метаморфного фотопреобразователя является недостаточный фототок GaInAs p-n-перехода, связанный с рекомбинацией носителей на гетерогранице эмиттерного слоя GaInAs и слоя широкозонного окна GaInP, а также с потерей носителей, фотогенерированных в слое широкозонного окна.

Известен метаморфный фотопреобразователь (см. заявка US 20120211068, МПК H01L 31/18, опубл. 24.09.2007), содержащий подложку из GaAs и четыре инвертированных фотоактивных p-n-перехода, два из которых выполнены из GaInAs с использованием метаморфных буферных слоев, при этом один из GaInAs p-n-переходов включает базовый слой, эмиттерный слой и слой широкозонного окна, выполненный из AlGaInAs.

Недостатком известного метаморфного фотопреобразователя является значительное последовательное сопротивление структуры за счет большого разрыва зон на гетерогранице широкозонное окно-эмиттерный слой, связанное с наличием AlGaInAs широкозонного окна с большим содержанием алюминия.

Известен метаморфный фотопреобразователь (см. заявка ЕР 2086024, МПК H01L 31/18, опубл. 24.09.2007), содержащий подложку из GaAs и четыре инвертированных фотоактивных p-n-перехода, два из которых выполнены из GaInAs с использованием метаморфных буферных слоев, при этом один из GaInAs p-n-переходов является гетеропереходом.

Недостатками известного метаморфного фотопреобразователя являются большое последовательное сопротивление структуры, связанное с наличием AlGaInAs широкозонного окна, а также малый фототок, генерируемый метаморфными p-n-переходами в случае использования широкозонного окна GaInP.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является метаморфный фотопреобразователь (см. заявка US 20120240987, МПК H01L 31/18, опубл. 27.09.2012), принятый за прототип и включающий подложку из Ge, метаморфный буферный слой и один фотоактивный p-n-переход, выполненный из GaInAs и включающий базовый слой, эмиттерный слой и слой широкозонного окна из GaInP.

Недостатками известного метаморфного фотопреобразователя является рекомбинация носителей на гетерогранице эмиттерного слоя из GaInAs и слоя широкозонного окна из GaInP, а также выход носителей, фотогенерированных в слое широкозонного окна за пределы фотоактивного перехода, что снижает эффективность его преобразования.

Задачей настоящего решения является создание такого метаморфного фотопреобразователя, в котором обеспечивалось бы хорошее собирание носителей, фотогенерированных в слое широкозонного окна и в эмиттерном слое, что обуславливает повышение фототока и КПД фотопреобразователя.

Поставленная задача достигается тем, что метаморфный фотопреобразователь включает последовательно выращенные на подложке из GaAs метаморфный буферный слой и по меньшей мере одни фотоактивный p-n-переход, выполненный из InGaAs и включающий базовый слой и эмиттерный слой, а также слой широкозонного окна из In(AlxGa1-x)As, где x=0,2-0,5, и контактный субслой из InGaAs.

В метаморфном фотопреобразователе p-n-переход может быть выполнен из InyGa1-yAs, где y=0,24.

Между метаморфным буферным слоем и базовым слоем может быть включен слой тыльного потенциального барьера из In(AlGa)As.

В метаморфном фотопреобразователе базовый слой может быть выполнен толщиной 3000 нм, эмиттерный слой может быть выполнен толщиной 500 нм, слой широкозонного окна может быть выполнен толщиной 50 нм, а контактный субслой может быть выполнен 300 нм.

Новым в метаморфном фотопреобразователе является выполнение слоя широкозонного окна из Inx(AlyGa1-y)1-xAs, где x=0,2-0,5, что позволяет повысить фототок, генерируемый фотопреобразователем, и сократить его последовательное сопротивление.

В метаморфном фотопреобразователе уровень легирования базового слоя атомами кремния может составлять порядка 1⋅1017 см-3, уровень легирования эмиттерного слоя атомами цинка может составлять порядка 1⋅1018 см-3, а уровень легирования слоя широкозонного окна атомами цинка может составлять порядка 2⋅1018 см-3.

В метаморфном фотопреобразователе уровень легирования контактного субслоя атомами цинка может составлять порядка 1⋅1019 см-3.

Настоящее техническое решение поясняется чертежами, где

на фиг. 1 показано схематичное изображение поперечного сечения настоящего метаморфного фотопреобразователя;

на фиг. 2 представлены зонные диаграммы гетеропереходов: контактный субслой/слой широкозонного окна/эмиттер для метаморфного фотопреобразователя, включающего слой широкозонного окна, выполненный из In0.24Al0.76As (кривая 1 - зона проводимости, кривая 2 - валентная зона) и In0.24(Al0.5Ga0.5)0.76As (кривая 3 - зона проводимости, кривая 4 - валентная зона), кривая 5 - уровень Ферми;

на фиг. 3 представлены спектральные характеристики метаморфного фотопреобразователя, включающего слой широкозонного окна, выполненный из In0.24Al0.76As (кривая 6) и In0.24(Al0.5Ga0.5)0.76As (кривая 7);

на фиг. 4 представлены вольтамперные характеристики метаморфного фотопреобразователя, включающего слой широкозонного окна, выполненный из In0.24Al0.76As (кривая 8) и In0.24(Al0.5Ga0.5)0.76As (кривая 9).

Настоящий метаморфный фотопреобразователь (фиг. 1) включает подложку 1, выполненную из GaAs, метаморфный буферный слой 2 и по меньшей мере один фотоактивный p-n-переход 3, выполненный из InGaAs и включающий базовый слой 4, с толщиной, например, 3000 нм и уровнем легирования, например, атомами кремния порядка 1⋅1017 см-3, и эмиттерный слой 5, выполненный толщиной, например 500 нм и уровнем легирования, например, атомами цинка порядка 1⋅1018 см-3, слой 6 широкозонного окна, выполненный из In(AlxGa1-x)As, где x=0,2-0,5, толщиной, например, 50 нм, и уровнем легирования, например, атомами цинка порядка 2⋅1018 см-3, и контактный субслой 7, выполненный из InxGa1-xAs с толщиной, например 300 нм, и уровнем легирования, например, атомами цинка порядка 1⋅1019 см-3.

В случае рассогласования подложки 1 и растущего метаморфного буферного слоя 2 в последнем будут накапливаться упругие напряжения. При накоплении критического значения упругих напряжений происходит пластическая деформация, и часть упругой энергии превращается в энергию дислокаций. Другая часть упругой энергии идет на работу, совершаемую кристаллической решеткой при расширении или сжатии объема твердой фазы после частичной релаксации упругих напряжений.

Метаморфный буферный слой (МБС) 2 может представлять собой набор релаксированных субслоев переменного состава, на интерфейсы которого загибаются дислокации. Профиль изменения состава может быть линейным, ступенчатым или пилообразным.

С целью увеличения собирания фотогенерированных носителей из области широкозонного окна, в настоящем изобретении были оптимизированы параметры слоя 6 широкозонного окна. Для этого предварительно был проведен численный расчет зонной диаграммы структуры ФЭП. В результате было обнаружено, что при составе слоя 6 широкозонного окна In0.24AlAs (в случае ФЭП с концентрацией In 24%), данный слой имеет энергетический максимум для дна зоны проводимости (фиг 2, кривая 1). Так как слой 6 широкозонного окна легирован акцепторной примесью, неосновными носителями заряда (ННЗ) в нем являются электроны. Подобный вид дна зоны проводимости приводит к тому, что ННЗ, рожденные в области поля, направленного к контактному субслою 7, погибнут, не дав вклада в фототок. В результате в коротковолновой области снижается внутренний квантовый выход.

Такое же поведение происходит при использовании слоя 6 широкозонного окна, выполненного из GaInP. Важно также отметить, что интерфейс между слоями GaInP слоя 6 широкозонного окна и GaInAs эмиттерного слоя 5 может характеризоваться повышенной рекомбинацией, так как эти материалы этих слоев имеют разные атомы пятой группы (мышьяк и фосфор), что будет приводить к рекомбинации носителей, фотогенерированных в эмиттерном слое 5, вблизи слоя 6 широкозонного окна.

При добавлении в состав слоя 6 широкозонного окна In0.24AlAs галлия, ширина запрещенной зоны снижается, что существенно изменяет вид зонной диаграммы. Оптимальным составом для слоя 6 широкозонного окна в исследованной структуре ФЭП является состав In0.24(Al0.5Ga0.5)0.76As. При данном составе в слое 6 окна оказывается встроено поле (фиг. 2, кривая 3). Направление поля способствует движению фотогенерированных электронов в сторону эмиттера, что способствует более полному собиранию ННЗ.

Было дополнительно проведено сравнение спектральных характеристик квантового выхода ФЭП с различным составом широкозонного окна. Несмотря на то что уменьшение ширины запрещенной зоны слоя окна должно приводить к улучшению поглощения длинноволновых фотонов и, как следствие, являться оптическим фильтром для ФЭП, измеренная спектральная характеристика фотоэлемента с более узкозонным окном (фиг 4, кривая 7) имела более высокий внутренний квантовый выход. Это полностью подтверждает моделирование зонной диаграммы. При увеличении спектральной эффективности для коротковолнового диапазона была сохранена спектральная эффективность для длинноволнового края, тем самым увеличив суммарный вырабатываемый фототок.

Оптимизация широкозонного окна также позволила значительно улучшить электрические характеристики. Это является следствием уменьшения ширины запрещенной зоны и уменьшения барьера для основных носителей заряда в слое широкозонного окна (фиг. 2, кривая 4). Действительно, в случае использования широкозонного окна In0.24AlAs в валентной зоне возникал высокий барьер, препятствующий транспорту дырок в сторону контактного подслоя (фиг. 2, кривая 2), что выражалось в повышении последовательного сопротивления и падении КПД ФЭП (фиг 4, кривая 8). В результате использования широкозонного окна, выполненного из In0.24(Al0.5Ga0.5)0.76As, удалось уменьшить последовательное сопротивление структуры и существенно увеличить фактор заполнения (фиг. 4, кривая 9), а следовательно, и КПД.


МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
МЕТАМОРФНЫЙ ФОТОПРЕОБРАЗОВАТЕЛЬ
Источник поступления информации: Роспатент

Showing 1-10 of 121 items.
20.02.2013
№216.012.2880

Конструкция фотоэлектрического модуля

Изобретение относится к области солнечной энергетики. Конструкция фотоэлектрического модуля (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4), светопрозрачную тыльную панель (5), солнечные элементы (6) с фотоприемными площадками (15), совмещенными с фокальным пятном...
Тип: Изобретение
Номер охранного документа: 0002475888
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2ca5

Солнечная концентраторная фотоэлектрическая установка

Солнечная концентраторная фотоэлектрическая установка содержит концентраторные фотоэлектрические модули (2), размещенные на механической системе, азимутальный и зенитальный приводы, расположенные в электромеханическом шкафу, и систему ориентации концентраторных фотоэлектрических модулей (2) на...
Тип: Изобретение
Номер охранного документа: 0002476956
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2ca6

Солнечная фотоэнергоустановка

Изобретение относится к солнечной фотоэнергетике и может найти применение как в мощных солнечных электростанциях, так и в качестве фотоэлектрической энергоустановки индивидуального пользования. Солнечная фотоэнергоустановка включает прямоугольные концентраторные фотоэлектрические модули (1),...
Тип: Изобретение
Номер охранного документа: 0002476957
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.3815

Автономная система электроснабжения на основе солнечной фотоэлектрической установки

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и...
Тип: Изобретение
Номер охранного документа: 0002479910
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.454b

Способ оптического детектирования магнитного резонанса и устройство для его осуществления

Изобретение относится к технике спектроскопии магнитного резонанса, а именно оптического детектирования магнитного резонанса (ОДМР), включающего оптическое детектирование электронного парамагнитного резонанса (ЭПР), и может найти применение при исследованиях конденсированных материалов и...
Тип: Изобретение
Номер охранного документа: 0002483316
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4592

Способ предэпитаксиальной обработки поверхности германиевой подложки

Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки....
Тип: Изобретение
Номер охранного документа: 0002483387
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4e4d

Способ изготовления фотовольтаического преобразователя

Способ изготовления фотовольтаического преобразователя включает нанесение на периферийную область подложки из n-GaSb диэлектрической маски, формирование на открытых участках фронтальной поверхности подложки высоколегированного слоя р-типа проводимости диффузией цинка из газовой фазы, удаление...
Тип: Изобретение
Номер охранного документа: 0002485627
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e4e

Способ изготовления чипов наногетероструктуры и травитель

Изобретение относится к созданию высокоэффективных солнечных элементов на основе полупроводниковых многослойных наногетероструктур для прямого преобразования энергии солнечного излучения в электрическую энергию с использованием солнечных батарей. Способ изготовления чипов наногетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002485628
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.554f

Способ активации мембранно-электродного блока

Активацию мембранно-электродного блока осуществляют подачей увлажненного водорода к первому электроду и увлажненного кислорода ко второму электроду, по меньшей мере одним циклическим изменением напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В при комнатной...
Тип: Изобретение
Номер охранного документа: 0002487442
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.57a6

Система слежения за солнцем фотоэнергоустановки

Изобретение относится к устройствам солнечной энергетики и может найти применение при конструировании и изготовлении установок с фотоэлектрическими модулями, требующими как одноосного, так и двухосного слежения за солнцем. В частности, к таким установкам относятся станции, использующие...
Тип: Изобретение
Номер охранного документа: 0002488046
Дата охранного документа: 20.07.2013
Showing 1-10 of 107 items.
20.02.2013
№216.012.2880

Конструкция фотоэлектрического модуля

Изобретение относится к области солнечной энергетики. Конструкция фотоэлектрического модуля (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4), светопрозрачную тыльную панель (5), солнечные элементы (6) с фотоприемными площадками (15), совмещенными с фокальным пятном...
Тип: Изобретение
Номер охранного документа: 0002475888
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2ca5

Солнечная концентраторная фотоэлектрическая установка

Солнечная концентраторная фотоэлектрическая установка содержит концентраторные фотоэлектрические модули (2), размещенные на механической системе, азимутальный и зенитальный приводы, расположенные в электромеханическом шкафу, и систему ориентации концентраторных фотоэлектрических модулей (2) на...
Тип: Изобретение
Номер охранного документа: 0002476956
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2ca6

Солнечная фотоэнергоустановка

Изобретение относится к солнечной фотоэнергетике и может найти применение как в мощных солнечных электростанциях, так и в качестве фотоэлектрической энергоустановки индивидуального пользования. Солнечная фотоэнергоустановка включает прямоугольные концентраторные фотоэлектрические модули (1),...
Тип: Изобретение
Номер охранного документа: 0002476957
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.3815

Автономная система электроснабжения на основе солнечной фотоэлектрической установки

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и...
Тип: Изобретение
Номер охранного документа: 0002479910
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.454b

Способ оптического детектирования магнитного резонанса и устройство для его осуществления

Изобретение относится к технике спектроскопии магнитного резонанса, а именно оптического детектирования магнитного резонанса (ОДМР), включающего оптическое детектирование электронного парамагнитного резонанса (ЭПР), и может найти применение при исследованиях конденсированных материалов и...
Тип: Изобретение
Номер охранного документа: 0002483316
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4592

Способ предэпитаксиальной обработки поверхности германиевой подложки

Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки....
Тип: Изобретение
Номер охранного документа: 0002483387
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4e4d

Способ изготовления фотовольтаического преобразователя

Способ изготовления фотовольтаического преобразователя включает нанесение на периферийную область подложки из n-GaSb диэлектрической маски, формирование на открытых участках фронтальной поверхности подложки высоколегированного слоя р-типа проводимости диффузией цинка из газовой фазы, удаление...
Тип: Изобретение
Номер охранного документа: 0002485627
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e4e

Способ изготовления чипов наногетероструктуры и травитель

Изобретение относится к созданию высокоэффективных солнечных элементов на основе полупроводниковых многослойных наногетероструктур для прямого преобразования энергии солнечного излучения в электрическую энергию с использованием солнечных батарей. Способ изготовления чипов наногетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002485628
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.554f

Способ активации мембранно-электродного блока

Активацию мембранно-электродного блока осуществляют подачей увлажненного водорода к первому электроду и увлажненного кислорода ко второму электроду, по меньшей мере одним циклическим изменением напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В при комнатной...
Тип: Изобретение
Номер охранного документа: 0002487442
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.5aff

Полупроводниковый приемник инфракрасного излучения

Полупроводниковый приемник инфракрасного излучения включает полупроводниковую подложку (1) AIIIBV с активной областью (2) в форме диска с отверстием в центре на основе гетероструктуры, выполненной из твердых растворов AIIIBV, первый омический контакт (4) и второй омический контакт (7). Первый...
Тип: Изобретение
Номер охранного документа: 0002488916
Дата охранного документа: 27.07.2013
+ добавить свой РИД