×
24.05.2019
219.017.6023

СОПОЛИМЕРЫ НА ОСНОВЕ ПРОИЗВОДНЫХ ЗАМЕЩЕННОГО ЦИКЛОПЕНТАНОНБИТИОФЕНА И СПОСОБ ИХ ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области химической технологии высокомолекулярных соединений. Описаны сополимеры на основе производных замещенного циклопентанонбитиофена общей формулы (I), где Х означает S или остаток дициановинильной группы формулы (II-а), или моноциановинильной группы общей формулы (II-б), или остаток цикла из ряда: диоксаланового общей формулы II-в), дитиоланового общей формулы (II-г), диоксанового общей формулы (II-д), дитианового общей формулы (II-е), где R означает CF, F, перфторалкильный радикал С-С или сложноэфирную группу -СОО-А, где А означает алкильный радикал C-C, возможно разветвленный или арилметиленовый фрагмент, содержащий 7-20 атомов углерода в структуре; R означает Н или радикал СН; Ar означает одинаковые или различные ароматические или гетероароматические фрагменты, выбранные из ряда: замещенный или незамещенный 1,4-фенилен общей формулы (III-а), замещенный циклопентабитиофен общей формулы (III-б), замещенный или незамещенный тиофен общей формулы (III-в), замещенный или незамещенный 2,2'-битиофен общей формулы (III-г), где R и R означают Н, F или заместитель из ряда: алкильные группы C-C, возможно разветвленные, R, R означают заместитель из ряда: алкильные группы С-С, возможно разветвленные, R, R, R, R, R, R означают Н или заместитель из ряда: алкильные группы C-C, возможно разветвленные. Также описан способ получения указанных выше сополимеров, заключающийся в том, что соединение общей формулы (IV), где Y означает остаток борной кислоты, или ее эфира, или Br или J; Х имеет вышеуказанные значения, взаимодействует в условиях реакции Сузуки с реагентом общей формулы (V), где Z означает: Br или J, при условии, что Y означает остаток борной кислоты или ее эфира, или остаток борной кислоты или ее эфира, при условии, что Y означает Br или J; Ar имеет вышеуказанные значения. Технический результат - получение новых сополимеров на основе производных замещенного циклопентанонбитиофена, обладающих набором свойств для их использования в качестве функциональных материалов для органической электроники и фотоники. 2 н. и 23 з.п. ф-лы, 5 ил., 1 табл.
Реферат Свернуть Развернуть

Изобретение относится к области химической технологии высокомолекулярных соединений и может найти промышленное применение при получении новых функциональных органических материалов, обладающих полупроводниковыми и фотовольтаическими свойствами. Более конкретно, изобретение относится к новым сополимерам на основе замещенного циклопентанонбитиофена и способу их получения.

Под замещенным циклопентанонбитиофеном в рамках данного изобретения понимается любое производное циклопента[2,1-b:3,4b']дитиофен-4-она, содержащее тиокето-, дициановинильную, кетальную или тиокетальную группу в виде пятичленного 1,3-диоксаланового или 1,3-дитиоланового кольца, или в виде шестичленного 1,3-диоксанового или 1,3-дитианового кольца, с алкильными заместителями или без них.

Органические полупроводники являются предметом интенсивных исследований в последнее десятилетие. Причиной этого являются их уникальные свойства, позволяющие их применять в качестве функциональных материалов в новых поколениях электронных и оптоэлектронных устройств, таких как органические светоизлучающие диоды, органические полевые транзисторы, фотовольтаические ячейки, лазеры, сенсоры и др. Основными преимуществами таких устройств является их легкость, гибкость, возможность их достаточно простого и быстрого производства на основе струйных и печатных технологий, существенно удешевляющих производственный процесс и при этом позволяющих делать устройства больших размеров (например, широкоформатные дисплеи, солнечные батареи). К органическим полупроводниковым материалам предъявляется требование сочетания таких свойств, как высокая подвижность носителей заряда, прочности и гибкости, термомеханической устойчивости, поглощения видимого излучения в широком интервале спектра. Однако часто органические полупроводники при хороших электрических свойствах (например, в монокристаллах) обладают хрупкостью, что значительно ограничивает их применение. Ряд полупроводниковых материалов при хороших механических свойствах обладают недостаточными полупроводниковыми характеристиками или они поглощают в достаточно узком или коротковолновом диапазоне спектра. Решение этой проблемы лежит в создании комбинированных материалов, в том числе сополимерной природы.

В настоящее время наиболее распространены флуоренсодержащие сополимеры и устройства на их основе, которые достаточно широко представлены в доступной для анализа патентной документации, например в WO 0204543, ЕР 1263837, JP 62231245, US 5,708,130, WO 0022026, ЕР 1009041.

Известно, что сополимеры флуорена с тиофенами и их производными (описанными, например, в GB 2423086, US 7,153,980, US 7,125,930, US 7,094,865) являются соединениями с хорошими полупроводниковыми и электрооптическими свойствами. Это позволяет активно использовать их в различных устройствах - светоизлучающих диодах, органических тонкослойных транзисторах.

Благодаря высокой растворимости, достаточно узкой ширине запрещенной зоны и хорошим транспортным свойствам сополимеры производных флуорена и циклопентабитиофена являются одним из наиболее перспективных классов соединений, применяемых для создания материалов, используемых а качестве активного слоя в фотовольтаических ячейках, тонкослойных транзисторах и светоизлучающих диодах (например, US 7,432,340, US 7,309,876, US 7,399,504, US 7,348,071). Такие сополимеры обладают хорошими полупроводниковым свойствами, присущими олиготиофенам, хорошими электролюминесцентными свойствами, присущими флуореновым звеньям, а также достаточной растворимостью, обеспечиваемой солюбилизирующими заместителями в составе флуореновых и циклопентабитиофеновых звеньев.

Известно, что введение в состав сополимеров кислородсодержащих гетероциклов типа этилендиокситиофена (US 7,094,865) или полимеров этилендиокситиофенов (ЕР 339340) дает хорошие результаты в плане уменьшения ширины запрещенной зоны и повышения проводимости материалов на их основе.

Однако при наличии ряда ценных характеристик, свойства имеющихся на данный момент сополимеров не удовлетворяют требованиям, необходимым для их практического использования в области электрооптических устройств. Это делает дальнейшие изыскания в данном направлении весьма актуальными.

Известно, что сополимеры флуоренового ряда, в том числе перечисленные выше, обычно получают с использованием реакции Сузуки (например, US 2009014690, US 6,353083, US 6,916902, ЕР 19211688). Наиболее полно методы получения таких сополимеров описаны в патенте US6,169,163. В ряду синтезированных таким способом сополимеров присутствуют флуорен-битиофеновые и флуорен-бензодиазольные сополимеры, полученные при взаимодействии следующих мономеров в соответствующих условиях:

В ЕР 190243 9 описан способ синтеза сополимеров замещенного циклопентабитиофена на основе реакции Стилле из соответствующих дигалоген и диоловоорганических производных соответствующих сомономеров в присутствии палладиевых катализаторов. Однако существенным недостатком такого синтетического подхода является необходимость полного удаления остаточных соединений олова, что является технологически достаточно сложной задачей. Более удачным вариантом синтеза представляется реакция Сузуки, не требующая таких усилий:

Наиболее близкие по составу к заявляемым в данном изобретении сополимеры описаны в заявке РСТ WO 0245184. В состав заявленных сополимеров линейного и разветвленного строения, предназначенных для использования в полупроводниковых устройствах, входят звенья пятичленных гетероциклов, в том числе с Х=S, строения:

циклопентабитиофеновые фрагменты строения:

а также звенья флуоренового ряда, строения:

Наряду с вышеперечисленными звеньями сополимеры содержат и циклические кислородсодержащие блоки типа этилендиокситиофенов:

В состав сополимеров входят и связующие блоки типа полистирола и его производных, полибутадиена и т.д.

Наиболее близким по способу получения к заявляемому в данном изобретении способу получения сополимеров является патент US 6,900,285, в котором описаны линейные сополимеры типа:

Сополимеры получены с использованием реакции конденсации диборорганического производного ароматического звена и дибромида тиофенового звена по реакции Сузуки [N.Miyaua, A.Suzuki Chemical Reviews, v.95, p.457 (1995)], катализируемой соединениями палладия в присутствии основания. Эта реакция широко применяется для получения высокомолекулярных полимеров и сополимеров ароматического и гетероциклического ряда.

Примеры использования этого эффективного процесса для получения сополимеров на основе производных циклопентанонбитиофена неизвестны. Поскольку такие сополимеры демонстрируют очень хорошие свойства, разработка эффективного и технологичного способа их получения весьма актуальна.

Задачей заявляемого изобретения является получение нового технического результата, заключающегося в синтезе новых сополимеров, содержащих звенья замещенного циклопентанонбитиофена и различных арильных звеньев, обладающих набором свойств для их использования в качестве функциональных материалов для органической электроники и фотоники. В качестве таких свойств в рамках данного изобретения выступают высокая растворимость (не менее 10 мг/мл) сополимеров, существенный сдвиг спектров поглощения в красную область (не менее чем на 50 нм) по сравнению с известными сополимерами циклопентабитиофена и высокая подвижность носителей зарядов (не менее 10-4 см2/Вс).

Кроме того, задачей изобретения является разработка нового способа получения заявленных сополимеров, позволяющего получить продукты заданного строения высокой чистоты и пригодного к применению в промышленных условиях.

Задача решается тем, что получены сополимеры, содержащие звенья замещенного циклопентанонбитиофена и различные арильные звенья, общей формулы (I):

где Х означает S или остаток дициановинильной группы формулы (II-а)

или моноциановинильной группы общей формулы (II-б)

или остаток цикла из ряда:

диоксаланового общей формулы (II-в) , дитиоланового общей формулы (II-г) , диоксанового общей формулы (II-д) , дитианового общей формулы (II-е) ,

где R1 означает CF3, F, перфторалкильный радикал C1-C8 или сложноэфирную группу -СОО-А, где А означает алкильный радикал C1-C20, возможно разветвленный, или арилметиленовый фрагмент, содержащий 7-20 атомов углерода в структуре;

R2 означает Н или радикал СН3;

Ar означает одинаковые или различные ароматические или гетероароматические фрагменты, выбранные из ряда:

замещенный или незамещенный 1,4-фенилен общей формулы (III-а)

замещенный циклопентабитиофен общей формулы (III-б)

замещенный или незамещенный тиофен общей формулы (III-в)

замещенный или незамещенный 2,2'-битиофен общей формулы (III-г)

где R3 и R4 означают Н, F или заместитель из ряда: алкильные группы C1-C20, возможно разветвленные,

R5, R6 означают заместитель из ряда: алкильные группы C120, возможно разветвленные,

R7, R8, R9, R10, R11, R12 означают Н или заместитель из ряда: алкильные группы C1-C20, возможно разветвленные,

n означает целое число от 3 до 100.

Предпочтительными примерами Х являются S или остаток дициановинильной группы формулы (II-а) или моноциановинильной группы общей формулы (II-б) или остаток диоксаланового цикла общей формулы (II-в) , или остаток дитиоланового цикла общей формулы (II-г) , остаток диоксанового цикла общей формулы (II-д) , остаток дитианового цикла общей формулы (II-е) , где R1 означает CF3 или F или сложноэфирную группу -СОО-А, где А означает алкильный радикал C120, возможно разветвленный, R2 означает Н или радикал СН3. Наиболее предпочтительным является остаток диоксаланового цикла с R2=H.

Предпочтительными примерами Ar являются: замещенный или незамещенный 1,4-фенилен общей формулы (III-a), замещенный циклопентабитиофен общей формулы (III-б), замещенный или незамещенный тиофен общей формулы (III-в), замещенный или незамещенный 2,2'-битиофен общей формулы (III-г), где R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 имеют вышеприведенные значения.

Предпочтительными примерами R3 и R4 являются Н, F, линейные С112 или разветвленные С320 алкильные группы. Наиболее предпочтительными являются R3=Н при R4 - линейные C110 и разветвленные C8-C20.

Предпочтительными примерами R5 и R6 являются линейные или разветвленные С620 алкильные группы. Наиболее предпочтительными R5 и R6 являются н-гексил, н-октил, н-децил, н-додецил, 2-этилгексил.

Предпочтительными примерами R7, R8, R9, R10, R11, R12 являются Н, линейные или разветвленные C1-C20 алкильные группы. Наиболее предпочтительными R7, R8, R9, R10, R11, R12 являются Н, метил, этил, н-бутил, н-гексил, н-децил, н-додецил, 2-этилгексил.

Химические структуры частных случаев могут быть представлены следующим образом.

В частности, если Х означает остаток дициановинильной группы формулы (II-а), Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают разветвленный алкил C8, общая формула (I) имеет следующий вид:

В частности, если X означает остаток моноциановинильной группы общей формулы (II-б), где R1 означает сложноэфирную группу СОО-А, в которой А означает разветвленный алкил C8, Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают линейный алкил С6, общая формула (I) имеет следующий вид:

В частности, если Х означает остаток диоксаланового цикла общей формулы (II-в), где R2 означает H, Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают линейный алкил C8, общая формула (I) имеет следующий вид:

В частности, если X означает остаток диоксаланового цикла общей формулы (II-в), где R2 означает Н, Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают разветвленный алкил C8, общая формула (I) имеет следующий вид:

В частности, если Х означает остаток дитиоланового цикла общей формулы (II-г), где R2 означает Н, Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают разветвленный алкил C8, общая формула имеет следующий вид:

В частности, если Х означает остаток диоксанового цикла общей формулы (II-д), где R2 означает СН3, Ar означает незамещенный 1,4-фенилен формулы (III-a), где R3 и R4 означают линейный алкил, С10, общая формула (I) имеет следующий вид:

В частности, если Х означает остаток диоксаланового цикла общей формулы (II-в), где R2 означает СН3, Ar означает замещенный 2,2'-битиофен формулы (III-г), где R9 и R12 означают Н, R10 и R11 означают линейный алкил C8, общая формула (I) имеет следующий вид:

Структуру полученных сополимеров доказывали с помощью данных ЯМР и ИК-спектроскопии, а также хроматографических методов анализа. В качестве примера доказательства строения сополимера приводятся результаты исследования соединения по примеру 3. ГПХ кривая на Фиг.1, которая демонстрирует мономодальное и достаточно узкодисперсное молекулярно-массовое распределение продукта, и спектры 1H ЯМР и 13С ЯМР на Фиг.2 и 3, которые полностью соответствуют представленной структуре.

Заявленные сополимеры на основе замещенного циклопентанонбитиофена обладают растворимостью в органических растворителях (таких как толуол, ТГФ, хлороформ, хлорбензол, дихлорметан) не менее 10 мг/мл и проводимостью р-типа не менее 10-4 см2/Bc. Особенностью этих соединений является сдвиг поглощения в красную область спектра не менее чем на 50 нм по сравнению с известными сополимерами циклобитиофена. Сочетание этих свойств позволяет их использовать в качестве функциональных материалов или их компонентов в составе нанокомпозитов для изготовления активного слоя в фотовольтаических ячейках, светоизлучающих диодах, электрохимических ячейках. Приведенные данные являются только примерами, и ни в коей мере не ограничивают характеристик заявленных сополимеров.

Заявленные сополимеры предназначены для использования в качестве материалов или их компонентов в составе нанокомпозитов для изготовления активного слоя в фотовольтаических ячейках, светоизлучающих диодах, электрохимических ячейках.

Задача решается также тем, что разработан способ получения сополимеров на основе замещенного циклопентанонбитиофена, заключающийся в том, что соединение общей формулы (IV)

где Y означает остаток борной кислоты, или ее эфира, или Br или J;

Х имеет вышеуказанные значения,

взаимодействуют в условиях реакции Сузуки с реагентом общей формулы (V)

,

где Z означает:

Br или J, при условии, что Y означает остаток борной кислоты или ее эфира,

или

остаток борной кислоты или ее эфира, при условии, что Y означает Br или J;

Ar имеет вышеуказанные значения.

Эфиром борной кислоты является эфир, выбранный из ряда:

4,4,5,5-тетраметил-1,3,2-диоксаборолан общей формулы (VI-a)

1,3,2-диоксаборолан общей формулы (VI-б)

1,2,3-диоксаборинан общей формулы (VI-в)

5,5-диметил-1,2,3-диоксаборинан общей формулы (VI-г)

Под реакцией Сузуки подразумевается взаимодействие арил- или гетероарилгалогенида с арил- или гетероарилборорганическим соединением (Suzuki, Chem. Rev. 1995. V.95. Р.2457-2483) в присутствии основания (В) и катализатора (С), содержащего металл VIII подгруппы. Как известно, для данной реакции в качестве основания могут выступать любые доступные основания, такие как гидроксиды, например NaOH, КОН, LiOH, Ba(OH)2, Са(ОН)2; алкоксиды, например NaOEt, KOEt, LiOEt, NaOMe, KOMe, LiOMe; соли щелочных металлов угольной кислоты и ее производных, например карбонаты, гидрокарбонаты; ацетаты, цитраты, ацетилацетонаты, глицинаты натрия, калия, лития или карбонаты других металлов, например Cs2CO3, Tl2CO3; фосфаты, например фосфаты натрия, калия, лития, CsF. Предпочтительным основанием является карбонат натрия. Основания используются в виде водных растворов или суспензий в органических растворителях, таких как толуол, диоксан, этанол, диметилформамид или в их смесях. Предпочтительны водные растворы основания. Также в реакции Сузуки в качестве катализаторов могут использоваться любые подходящие соединения, содержащие металлы VIII подгруппы таблицы Менделеева. Предпочтительными металлами являются Pd, Ni, Pt. Наиболее предпочтительным металлом является Pd. Катализатор или катализаторы предпочтительно используются в количестве от 0,01 мол.% до 10 мол.%. Наиболее предпочтительное количество катализаторов от 0,5 мол.% до 5 мол.% по отношению к молярному количеству соединения с меньшей молярной массой, вступающего в реакцию. Наиболее доступными катализаторами являются комплексы металлов VIII подгруппы. В частности, стабильные на воздухе комплексы палладия (0), комплексы палладия, восстанавливающиеся непосредственно в реакционном сосуде металлоорганическими соединениями (алкил литиевыми или магнийорганическими соединениями) или фосфинами до палладия (0), такие как комплексы палладия (2) с трифенилфосфином или другими фосфинами. Например, PdCl2(PPh3)2, PdBr2(PPh3)2, Pd(OAc)2 или их смеси с трифенилфосфином. Предпочтительно использовать коммерчески доступный Pd(PPh3)4 с или без добавления дополнительных фосфинов. В качестве фосфинов предпочтительно использовать PPh3, PEtPh2, PMePh2, PEt2Ph, PEt3. Наиболее предпочтителен трифенилфосфин.

Взаимодействие компонентов осуществляют при температуре (Т) от 60 до 200°С, предпочтительно при температуре от 65 до 120°С.

Также взаимодействие компонентов проводят в среде органического растворителя (S), выбранного из ряда: толуол, тетрагидрофуран, метанол, этанол, пропанол, бутанол, диметилформамид, моноглим, диглим или их смесей. Предпочтительной средой реакции является толуол, тетрагидрофуран, диметилформамид, этанол или их смесь.

Общая схема процесса может быть представлена следующим образом:

где X, Y, Z и Ar имеют вышеуказанные значения; С - катализатор, S -растворитель, В - основание, Т - температура.

В частности, если Х означает остаток дициановинильной группы формулы (II-а); Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают разветвленный алкил C8; Y означает Br, Z означает 4,4,5,5-тетраметил-1,3,2-диоксаборолан общей формулы (VI-a), общая схема процесса имеет вид:

В частности, если X означает остаток моноциановинильной группы общей формулы (II-б), где R1 означает сложноэфирную группу СОО-А, в которой А означает разветвленный алкил C8, Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают линейный алкил С6: Y означает Br, Z означает 4,4,5,5-тетраметил-1,3,2-диоксаборолан общей формулы (VI-a), общая схема процесса имеет вид:

В частности, если Х означает остаток диоксаланового цикла общей формулы (II-в), где R1 и R2 означают Н; Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают линейный алкил C8; Y означает J (йод); Z означает 1,3,2-диоксаборолан общей формулы (VI-б), общая схема процесса имеет вид:

В частности, если Х означает остаток диоксаланового цикла общей формулы (II-в), где R1 и R2 означают Н, Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают разветвленный алкил C8; Y означает 4,4,5,5-тетраметил-1,3,2-диоксаборолан общей формулы (VI-a), Z означает Br, общая схема процесса имеет вид:

В частности, если Х означает остаток дитиоланового цикла общей формулы (II-г), где R1 и R2 означают Н; Ar означает замещенный циклопентабитиофен общей формулы (III-б), где R5 и R6 означают разветвленный алкил C8, Y означает 4,4,5,5-тетраметил-1,3,2-диоксаборолан общей формулы (VI-a), Z означает Br, общая схема процесса имеет вид:

В частности, если X означает остаток диоксанового цикла общей формулы (II-д), где R2 означает СН3, Ar означает незамещенный 1,4-фенилен формулы (III-а), где R3 и R4 означают линейный алкил C10; Y означает 1,2,3- диоксаборинан общей формулы (VI-в), Z означает Br, общая схема процесса имеет вид:

В частности, если Х означает остаток диоксаланового цикла общей формулы (II-в), где R2 означает СН3, Ar означает замещенный 2,2'-битиофен формулы (III-г), где R9 и R12 означают Н, R10 и R11 означают линейный алкил C8, Y означает 5,5-диметил-1,2,3-диоксаборинан общей формулы (V-г), Z означает Br, общая схема процесса имеет вид:

Весь ряд синтезированных сополимеров показал хорошие потребительские свойства. Их поглощение сдвинуто в красную область на 50-100 нм по сравнению с известными сополимерами циклопентабитиофена. На основе полученных сополимеров были изготовлены диоды, измерения транспортных свойств которых показало хорошую дырочную подвижность, достигающую 10-4-10-3 м2/Вc. Эффективность работы фотовольтаических ячеек, изготовленных на основе композитов полученных сополимеров с производными фуллеренов С60 (РСВМ) составила 0.36-0.53%. Таким образом, первые серии испытаний подтвердили перспективность использования сополимеров на основе замещенного пиклопентанонбитиофена в качестве функциональных материалов или их компонентов в составе нанокомпозитов для изготовления активного слоя в фотовольтаических ячейках, светоизлучающих диодах, электрохимических ячейках.

Исходные соединения для синтеза сополимеров согласно изобретению получали по известным методикам:

[Р.Jordens, G.Rawson and H.Wynberg, J. Chem. SOC., 1970, 273]

[M.Ranger, D.Rondeau and M.Leclerc, Macromolecules, 1997, 30, 7686]

[J.Z.Brzezinski, J.R.Reynolds, Synthesis, 2002, 8, 1053]

[P.Lucas et al. Synhtesis, 2000, 9, 1253]

[P.Coppo, D.Cupertino, S.Yeates, and M.Turner, Macromolecules, 2003, 36, 2705]

На Фиг.1 приведена ГПХ кривая соединения по примеру 3.

На Фиг.2 представлен 1H ЯМР спектр соединения по примеру 3.

На Фиг.3 представлен 13С ЯМР спектр соединения по примеру 3.

На Фиг.4 схематически представлена структура органических фотовольтаических ячеек, изготовленных на основе нанокомпозитов из полученных сополимеров и производного [60]фуллерена РСВМ (PEDOT:PSS - комплекс поли(3,4-этилендиокситиофена) с полистиролсульфокислотой, ITO - допированный индием оксид олова (прозрачный анод)).

На Фиг.5 приведены вольтамперные кривые фотовольтаической ячейки, измеренные в темноте (1) и при облучении светом со спектром AM1.5 и интенсивностью потока 100 мВт/см2 (2).

В Таблице представлены конкретные исходные и конечные соединения с обозначением радикалов, функциональных групп, условий процесса и выхода целевых соединений по примерам 1-7.

Изобретение может быть проиллюстрировано следующими примерами:

ПРИМЕРЫ 1-18.

Сополимеры синтезируют по нижеследующей общей методике.

Конкретные исходные соединения с обозначением радикалов и функциональных групп и условия процесса представлены в Таблице.

Общая методика получения сополимеров: к раствору 1.0 ммоль соединения IV в органическом растворителе прибавляют 1,0 ммоль соединения V, 0.05 ммоль катализатора, содержащего металлы VIII подгруппы таблицы Менделеева, и 3.0 ммоль основания. Перемешивают в течение нескольких часов при температуре 65°С - 120°С. После окончания реакции продукт выделяют по известным методикам. Продукт очищают методом колоночной хроматографии на силикагеле с последующей перекристаллизацией.

ПРИМЕР 19.

На основе нанокомпозитов из полученного в примере 9 сополимера и производного [60]фуллерена РСВМ в соотношении 1:2 были изготовлены органические фотовольтаические ячейки, структура которых схематически показана на Фиг.4. Методики изготовления таких фотовольтаических ячеек подробно описаны в Adv. Funct. Mater., 2009, V. 19, P.779. Вольтамперные кривые, измеренные в темноте и при облучении светом со спектром AM 1.5 и интенсивностью потока 100 мВт/см2, приведены на Фиг.5. Из полученных данных видно, что изготовленные устройства показывают выраженный фотовольтаический эффект. Из световых вольтамперных кривых были определены основные характеристики фотовольтаической ячейки:

ток короткого замыкания ISC=2.94 мА/см2,

напряжение холостого хода VOC=561 мВ,

фактор заполнения FF=32% и

эффективность преобразования света η=0.53%.

Источник поступления информации: Роспатент

Showing 21-26 of 26 items.
29.04.2019
№219.017.45b2

Способ очистки многослойных углеродных трубок

Изобретение относится к нанотехнологии и может быть использовано в качестве компонента композиционных материалов. Многослойные углеродные нанотрубки получают пиролизом углеводородов с использованием катализаторов, содержащих в качестве активных компонентов Fe, Co, Ni, Mo, Mn и их комбинаций, а...
Тип: Изобретение
Номер охранного документа: 0002430879
Дата охранного документа: 10.10.2011
09.05.2019
№219.017.4e87

Способ модификации пористой структуры неорганической мембраны углеродным наноматериалом

Изобретение относится к технологии получения фильтрующих элементов для баромембранных процессов, используемых в различных отраслях промышленности: нефтехимической, фармацевтической, пищевой и других. Способ модификации пористой структуры неорганической мембраны углеродным наноматериалом...
Тип: Изобретение
Номер охранного документа: 0002411069
Дата охранного документа: 10.02.2011
18.05.2019
№219.017.567e

Нитроксисукцинат 2-этил-6-метил-3-оксипиридина (варианты использования) и способ его получения

Изобретение относится к нитроксисукцинату 2-этил-6-метил-3-оксипиридина формулы 1 и его использованию в качестве противоишемического, или противострессорного, или противогипоксического средства, или гепатопротектора, а также средства для лечения глазных кровоизлияний. А также к способу его...
Тип: Изобретение
Номер охранного документа: 0002394815
Дата охранного документа: 20.07.2010
19.06.2019
№219.017.8c03

Аминофуллерены и способ их получения

Изобретение относится к химической и фармацевтической отраслям промышленности и может быть использовано в биомедицинских исследованиях и фармакологии, а также при получении наномодификаторов пластических масс. Новые аминофуллерены, являющиеся биосовместимыми и улучшающие механические свойства...
Тип: Изобретение
Номер охранного документа: 0002460688
Дата охранного документа: 10.09.2012
10.07.2019
№219.017.ad27

Способ получения наноструктур полупроводника

Изобретение относится к области низкоразмерной нанотехнологии и высокодисперсным материалам и может быть использовано для получения упорядоченного массива наночастиц полупроводников на основе мезапористых твердофазных матриц. Сущность изобретения: в способе получения наноструктур...
Тип: Изобретение
Номер охранного документа: 0002385835
Дата охранного документа: 10.04.2010
10.07.2019
№219.017.af30

Сверхрешетка нанокристаллов со скоррелированными кристаллографическими осями и способ ее изготовления

Изобретение относится к квантовой электронике, к технологии создания сверхрешеток из нанокристаллов. Сущность изобретения: сверхрешетка нанокристаллов, состоящая из монодисперсных анизотропных нанокристаллов, обладает скоррелированными кристаллографическими осями отдельных нанокристаллов и всей...
Тип: Изобретение
Номер охранного документа: 0002414417
Дата охранного документа: 20.03.2011
Showing 81-90 of 94 items.
02.10.2019
№219.017.cc56

Способ получения полых кремнеземных нанокапсул

Изобретение относится к получению нанокапсул, которые могут использоваться для контролируемого высвобождения разнообразных инкапсулированных агентов. Предложен способ получения полых кремнеземных нанокапсул. При перемешивании готовят водную эмульсию, содержащую дисперсную фазу, выбранную из...
Тип: Изобретение
Номер охранного документа: 0002701030
Дата охранного документа: 24.09.2019
01.11.2019
№219.017.dce8

Применение водорастворимых производных фуллерена в качестве лекарственных препаратов нейропротекторного и противоопухолевого действия

Изобретение относится к медицине и предназначено для лечения заболеваний нервной системы. Раскрыто использование водорастворимых производных фуллерена С60 в производстве лекарственных препаратов нейропротекторного действия. Используют производные фуллеренов формулы I, содержащие 5 гидрофильных...
Тип: Изобретение
Номер охранного документа: 0002704483
Дата охранного документа: 29.10.2019
08.11.2019
№219.017.df48

Силоксансодержащая эпоксидная композиция

Изобретение относится к области разработки полимерных композиций на основе эпоксидных смол, аминных отвердителей, наполнителей и других составляющих для использования в качестве адгезионно-активных покрытий высоконаполненных полимерных композиций (энергетических конденсированных систем), а...
Тип: Изобретение
Номер охранного документа: 0002705332
Дата охранного документа: 06.11.2019
22.01.2020
№220.017.f816

Способ получения циклопропановых производных фуллеренов

Изобретение относится к способу получения циклопропановых производных фуллеренов. Изобретение может быть использовано в производстве полупроводниковых фуллеренсодержащих материалов. Cпособ получения метилового эфира фенил-С61-бутановой кислоты ([60]РСВМ) или метилового эфира фенил-С71-бутановой...
Тип: Изобретение
Номер охранного документа: 0002711566
Дата охранного документа: 17.01.2020
01.02.2020
№220.017.fcc5

Самоотверждающаяся композиция на основе полидиметилсилоксана

Изобретение относится к области получения эластомерных композиций на основе полидиметилсилоксана и может использоваться для получения прочных силоксановых резин и герметиков. Самоотверждающаяся композиция, включающая полидиметилсилоксан с концевыми 3-аминопропил-диалкоксисилильными группами и...
Тип: Изобретение
Номер охранного документа: 0002712558
Дата охранного документа: 29.01.2020
18.03.2020
№220.018.0cfc

Новые мононатриевые соли органоалкоксисиланов и способ их получения

Изобретение относится к области химии кремнийорганических соединений. Предложены новые мононатриевые соли органоалкоксисиланов общей формулы (1), где Alk означает углеводородный радикал из ряда: -СН, -СН, -СНСНСН, -СНСНСНСН; R означает заместитель из ряда: -Cl, -N. Предложен также способ их...
Тип: Изобретение
Номер охранного документа: 0002716710
Дата охранного документа: 16.03.2020
19.03.2020
№220.018.0ddf

Разветвленные олигоарилсиланы на основе тетрафенилбутадиена и способ их получения

Изобретение относится к области химической технологии кремнийорганических соединений. Предложены разветвленные олигоарилсиланы на основе тетрафенилбутадиена общей формулы (I), где R означает Н или заместитель из ряда: линейные или разветвленные С-С алкильные группы; линейные или разветвленные...
Тип: Изобретение
Номер охранного документа: 0002716826
Дата охранного документа: 17.03.2020
12.04.2023
№223.018.4312

Радиационно стойкая пластичная смазка

Изобретение относится к пластичным смазкам на синтетической основе для работы различных узлов трения механизмов в условиях повышенной радиации в широком интервале температур. Предложена радиационно стойкая пластичная смазка на синтетической основе, содержащая (мас. %) димочевину 10,0-21,0,...
Тип: Изобретение
Номер охранного документа: 0002793583
Дата охранного документа: 04.04.2023
12.04.2023
№223.018.470c

Устройство для регистрации петель гистерезиса ферромагнитных материалов

Изобретение относится к области измерения магнитных характеристик ферромагнитных материалов путем регистрации их петель гистерезиса. Техническим результатом является возможность регистрировать как предельные, так и частные петли гистерезиса ферромагнитных материалов при разных частотах...
Тип: Изобретение
Номер охранного документа: 0002758812
Дата охранного документа: 02.11.2021
20.04.2023
№223.018.4d14

Способ определения свежести мясных, рыбных или молочных продуктов питания и устройство для его осуществления

Изобретение относится к области исследования и анализа качества мясных, рыбных или молочных продуктов путем измерения параметров состава газовой среды в объеме их хранения. Устройство включает сенсорную ячейку, измерительный блок, микропроцессор. Микропроцессор выполнен с возможностью расчета...
Тип: Изобретение
Номер охранного документа: 0002756532
Дата охранного документа: 01.10.2021
+ добавить свой РИД