×
24.05.2019
219.017.5ea8

Результат интеллектуальной деятельности: Способ получения износостойких покрытий на поверхностях титановой пластины

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения износостойких покрытий на титановой пластине с помощью энергии взрывчатых веществ и лазерного излучения и может быть использовано, в частности, при изготовлении материалов для пар трения, тормозных устройств. Составляют трехслойный пакет из чередующихся плакирующих слоев из медно-никелевого сплава и титана с симметричным расположением титановой пластины относительно плакирующих слоев и заданным соотношением толщин слоев. Сваривают пакет взрывом, после чего производят его горячую прокатку с обжатием до заданной толщины. Термическое воздействие на прокатанную заготовку осуществляют сканирующим лазерным лучом последовательно со стороны каждого слоя из медно-никелевого сплава с оплавлением металлических слоев. Скорость перемещения луча относительно обрабатываемой поверхности и его диаметр выбирают из условия получения проплавления титанового слоя на заданную глубину с формированием при этом на поверхностях титановой пластины высокотвердых износостойких покрытий, состоящих из титана и компонентов медно-никелевого сплава. Изобретение обеспечивает получение высокотвердых износостойких покрытий без пор, трещин и других дефектов с низкой склонностью к хрупкому разрушению при динамических нагрузках. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к технологии получения износостойких покрытий на титане с помощью энергии взрывчатых веществ (ВВ), а также лазерного излучения и может быть использовано при изготовлении материалов для пар трения, тормозных устройств и т.п.

Известен способ получения износостойких покрытий, при котором осуществляют сварку взрывом пластины из титана со стальной пластиной на режимах, обеспечивающих амплитуду волн в зоне соединения металлов, равную 0,18-0,37 мм. Сваренную заготовку нагревают до температуры 900-950°С и выдерживают при этой температуре в вакуумной печи 10-14 часов до образования в волнообразной зоне соединения титана и стали высокотвердой интерметаллидной диффузионной прослойки толщиной 160-300 мкм. После охлаждения заготовки вместе с печью ее дополнительно нагревают до температуры 930-950°С, выдерживают при этой температуре, после чего ее охлаждают в воде для отделения титана от стали по диффузионной прослойке с формированием при этом на титане и стали высокотвердых износостойких покрытий с регулярной волнообразной поверхностью. Указанный способ обеспечивает одновременное получение на титановой и стальной пластинах износостойких интерметаллидных покрытий с регулярной волнообразной поверхностью с заданной амплитудой шероховатостей поверхности. (Патент РФ №2350442, МПК В23К 20/08, опубл. 27.10. 2008, бюл. №30).

Данный способ имеет невысокий технический уровень, что обусловлено наличием в его технологической схеме длительного высокотемпературного нагрева (10-14 часов), до температуры, достигающей 950°С, что приводит к значительному удорожанию получаемой продукции и к снижению пластических и других механических свойств металлических слоев из-за процессов рекристаллизации. Кроме того, покрытие по этому способу наносят лишь с одной стороны титановой пластины, его толщина не превышает 0,2 мм, все это весьма ограничивает возможности применения данного способа при изготовлении материалов для тормозных устройств, пар трения и т.п.

Известен способ получения композиционного материала медь-титан, при котором составляют трехслойный пакет из чередующихся слоев меди и титана с симметричным расположением титановой пластины относительно медных, располагают на поверхностях медных пластин защитные металлические прослойки с зарядами взрывчатого вещества и осуществляют сварку взрывом полученной сборки путем одновременного взрыва зарядов взрывчатого вещества. После горячей прокатки сваренного трехслойного пакета производят разделку прокатанного пакета на мерные трехслойные заготовки, из которых составляют многослойный пакет под сварку взрывом из расположенных параллельно друг другу 3-8 трехслойных заготовок и медной пластины, располагают на поверхности верхней трехслойной заготовки защитную металлическую прослойку с зарядом взрывчатого вещества и осуществляют сварку взрывом многослойного пакета. Отжиг сваренной многослойной заготовки для образования сплошных интерметаллидных слоев из меди и титана проводят при температуре 850-860°С в течение 20-30 ч с последующим охлаждением на воздухе. В результате на медной пластине получают толстое многослойное износостойкое покрытие, содержащее от 4 до 9 сплошных интерметаллидных слоев из титана и меди, а также от 3 до 8 слоев из титана. Такое покрытие обладает большой величиной допускаемого износа и малой скоростью изнашивания в контакте с потоками газов, содержащих абразивные вещества. (Патент РФ №2533508, МПК В23К 20/08, В32В 7/04, опубл. 20.11.2014, бюл. №30). В изделиях, полученных указанным способом имеются титановые слои, соединенные с двух сторон с износостойкими интерметаллидными покрытиями.

Недостатком данного способа является наличие в его технологической схеме весьма длительного высокотемпературного нагрева (20-30 ч), при температуре, 850-860°С, что приводит, как и в предыдущем способе, к значительному удорожанию получаемой продукции и к снижению пластических и других механических свойств всех металлических слоев из-за процессов рекристаллизации.

Известен способ восстановления изделий из титановых сплавов с помощью лазерной наплавки, при котором осуществляют подачу порошкового присадочного материала на основе титана и дальнейшее его оплавление лазерным лучом, подачу порошкового присадочного материала осуществляют непосредственно в зону воздействия коаксиально лазерному лучу, при этом устанавливают мощность лазерного излучения 4800-5000 Вт, скорость наплавки 800-1000 мм/мин и расход присадочного материала 45-51 г/мин. (Патент РФ №2509640, МПК В23К 26/34, В23Р 6/04, опубл. 20.03.2014, бюл. №8). Наплавку ремонтных покрытий этим способом возможно осуществлять с двух сторон ремонтируемого изделия, при этом свойства титана вне зон расположения наплавленного металла остаются неизменными.

Недостатком данного способа является невысокая твердость, а, следовательно, и низкая износостойкость наплавленного этим способом металла. Кроме того, наплавленный таким способом металл содержит значительное количество пор, поэтому герметичность у него невысокая, а это ограничивает применение этого способа для нанесения металлических слоев (покрытий) на изделия ответственного назначения.

Наиболее близким по техническому уровню и достигаемому результату является способ получения износостойкого покрытия на поверхности титановой пластины, при котором составляют пакет из слоев алюминия и титана, размещают на нем заряд взрывчатого вещества (ВВ), осуществляют сварку взрывом. Соотношение толщин слоев алюминия и титана в пакете выбирают 1:(2-8) при толщине слоя алюминия 1-1,5 мм, сварку осуществляют при скорости детонации заряда ВВ 1760-2700 м/с, при этом высоту заряда ВВ и сварочный зазор между пластинами пакета выбирают из условия получения скорости их соударения при сварке взрывом в пределах 550-650 м/с, после сварки пакет подвергают отжигу путем нагрева до температуры, превышающей температуру плавления алюминия на 90-100°С в течение 1,5-3 ч с формированием между слоями алюминия и титана сплошной интерметаллидной прослойки, затем производят обжатие пакета стальными пуансонами до полного удаления с поверхности интерметаллидной прослойки остатков алюминиевого слоя, после этого полученную заготовку нагревают до температуры 730-740°С, выдерживают в течение 0,2-0,3 ч, а затем ускоренно охлаждают между металлическими пластинами с высокой теплопроводностью с получением на поверхности титановой пластины высокотвердого износостойкого интерметаллидного покрытия. (Патент РФ №2373036, МПК В23К 20/08, С23С 26/00, опубл. 20.11. 2009, бюл. №32 - прототип). При реализации этого способа пластические и другие механические свойства титановой пластины снижаются незначительно.

Данный способ имеет невысокий технический уровень, что обусловлено возможностью нанесения покрытия лишь с одной стороны титановой пластины, наличием в его технологической схеме операции длительного отжига сваренного пакета в течение 1,5-3 ч при температуре, превышающей температуру плавления алюминия, а также операции обжатия пакета стальными пуансонами до полного удаления с поверхности интерметаллидной прослойки остатков алюминиевого слоя, что требует применения специального прессового оборудования и дорогостоящей оснастки, при этом длина и ширина получаемых изделий с покрытиями обычно не превышает 120-150 мм, что исключает возможность применения данного способа для получения износостойких покрытий на титановых пластинах больших размеров и удорожает получаемую продукцию. Кроме того, твердость покрытия, полученного данным способом чрезмерно высока (7-7,5 ГПа), из-за чего оно обладает повышенной склонностью к хрупкому разрушению при эксплуатации в условиях динамических нагрузок. Все это ограничивает применение данного способа для получения материалов для пар трения, тормозных устройств и т.п.

В связи с этим важнейшей задачей является создание нового способа получения износостойких покрытий на поверхностях титановой пластины по новой, в сравнении с прототипом, технологической схеме формирования размеров получаемой продукции, а также, состава и свойств покрытий за счет сварки взрывом на оптимальных режимах трехслойного пакета из медно-никелевого сплава и титана с заданным соотношением толщин плакирующих и плакируемой пластин, операции горячей прокатки сваренного взрывом трехслойного пакета, способствующей увеличению его длины и ширины, а также получению необходимой оптимальной толщины каждого слоя из медно-никелевого сплава равной 0,1-0,3 мм, с термическим воздействием на прокатанную заготовку лазерным лучом с оплавлением металлических слоев с двух сторон прокатанной заготовки на заданную глубину, с формированием при этом на поверхностях титановой пластины (с двух ее сторон) высокотвердых износостойких покрытий с пониженной склонностью к хрупкому разрушению при эксплуатации в условиях динамических нагрузок, без снижения механических свойств титановой пластины при термическом воздействии на прокатанную заготовку лазерным лучом, с большей, в сравнении с прототипом, длиной и шириной титановой пластины с нанесенными на нее покрытиями.

Техническим результатом заявленного способа является создание новой технологии, обеспечивающей с помощью сварки взрывом трехслойного пакета из двух медно-никелевых пластин и титановой пластины на оптимальных режимах, горячей прокатки сваренного пакета с последующим термическим воздействием на прокатанную заготовку лазерным лучом заданной интенсивности с оплавлением металлических слоев как из медно-никелевого сплава, так и титанового слоя, с обеспечением проплавления с каждой стороны титанового слоя на глубину, равную 1-1,2 толщины каждого слоя из медно-никелевого сплава, получение высокотвердых износостойких покрытий на поверхностях титановой пластины (с двух ее сторон) без пор, трещин и других дефектов, имеющей значительно большую, чем у изделий по прототипу длину и ширину, с снижением склонности получаемых покрытий к хрупкому разрушению при динамических нагрузках без снижения механических свойств титановой пластины при термическом воздействии на прокатанную заготовку лазерным лучом.

Указанный технический результат достигается тем, что в предлагаемом способе получения износостойких покрытий на поверхностях титановой пластины, включающем составление пакета из металлических пластин с использованием плакируемой пластины из титана, размещение на его поверхности заряда взрывчатого вещества (ВВ), осуществление сварки взрывом, термическое воздействие на сваренную заготовку, составляют трехслойный пакет из чередующихся слоев из медно-никелевого сплава (плакирующие слои) и титана с симметричным расположением титановой пластины относительно плакирующих слоев, в котором соотношение толщин слоев медно-никелевый сплав-титан-медно-никелевый сплав составляет 1:(10-20):1 при толщине каждого слоя из медно-никелевого сплава равной 0,8-1,2 мм, располагают на поверхностях плакирующих пластин защитные прослойки из высокоэластичного материала, например, из резины с зарядами ВВ и осуществляют сварку взрывом трехслойного пакета из металлических пластин путем одновременного взрыва зарядов ВВ, имеющих скорость детонации 2000-2580 м/с, при этом высоту зарядов ВВ, а также сварочные зазоры между пластинами в пакете выбирают из условия получения скорости соударения каждой плакирующей пластины с плакируемой в пределах 520-600 м/с, горячую прокатку сваренного трехслойного пакета проводят при температуре 600-650°С с обжатием, обеспечивающим толщину каждого слоя из медно-никелевого сплава равную 0,1-0,3 мм, термическое воздействие на прокатанную заготовку осуществляют сканирующим лазерным лучом последовательно со стороны каждого слоя из медно-никелевого сплава с мощностью излучения 1,3-1,4 кВт, с оплавлением металлических слоев, при этом скорость его перемещения относительно обрабатываемой поверхности, а также его диаметр выбирают из условия получения проплавления титанового слоя на глубину, равную 1-1,2 толщины каждого слоя из медно-никелевого сплава с формированием при этом на поверхностях титановой пластины высокотвердых износостойких покрытий. В качестве медно-никелевого сплава для изготовления плакирующих пластин используют сплав МН19.

Новый способ получения износостойких покрытий на поверхностях титановой пластины имеет существенные отличия по сравнению с прототипом как по используемым материалам, составу получаемых покрытий, а также по совокупности технологических приемов и режимов получения покрытий. Так предложено составлять трехслойный пакет из чередующихся слоев из медно-никелевого сплава (плакирующие слои) и титана с симметричным расположением титановой пластины относительно плакирующих слоев, в котором соотношение толщин слоев медно-никелевый сплав-титан-медно-никелевый сплав составляет 1:(10-20):1 при толщине каждого слоя из медно-никелевого сплава равной 0,8-1,2 мм, что создает необходимые условия для получения качественных сварных соединений разнородных металлических слоев, исключает появление расслоений и других дефектов в сваренных взрывом заготовках при их горячей прокатке, способствует получению при последующем термическом воздействии на прокатанную заготовку лазерным лучом высокотвердых износостойких покрытий на поверхности титановой пластины, состоящих из титана и компонентов медно-никелевого сплава.

При толщине каждого слоя из медно-никелевого сплава менее 0,8 мм возможны их неконтролируемые деформации при сварке взрывом. Их толщина более 1,2 мм является избыточной, поскольку при этом потребуется применение слишком больших обжатий при прокатке сваренной заготовки, а это, в свою очередь, может привести к появлению в ней трещин.

Соотношение толщин слоев медно-никелевый сплав-титан-медно-никелевый сплав в пакете равное 1:(10-20):1 обеспечивает оптимальную толщину металлических слоев сваренной заготовки после ее горячей прокатки. При соотношении толщин плакирующих и плакируемой пластин в пакете выходящим за рекомендованные пределы возможно уменьшение толщины титанового слоя при горячей прокатке до недопустимой толщины, либо увеличение доли металла, идущего в отходы после прокатки. Симметричное расположение титановой пластины относительно плакирующих слоев обеспечивает одинаковое качество сварных соединений с двух ее сторон при сварке взрывом.

Предложено сварку взрывом трехслойного пакета из металлических пластин осуществлять путем одновременного взрыва зарядов ВВ, имеющих скорость детонации 2000-2580 м/с, при этом высоту зарядов ВВ, а также сварочные зазоры между пластинами в пакете выбирать из условия получения скорости соударения каждой плакирующей пластины с плакируемой в пределах 520-600 м/с.

При скорости детонации ВВ и скорости соударения пластин в пакете ниже нижних предлагаемых пределов в зонах соединения пластин возможно появление непроваров, что приводит к невозможности дальнейшего использования полученных заготовок. При скорости детонации ВВ и скорости соударения пластин выше верхних предлагаемых пределов в зонах соединения пластин возможно появление обширных оплавленных зон, что исключает возможность получения качественных износостойких покрытий на титановой пластине. Кроме того, это приводит к неоправданно высокому расходу взрывчатых материалов в расчете на единицу продукции.

Горячую прокатку сваренного трехслойного пакета предложено проводить при температуре 600-650°С с обжатием до толщины каждого слоя из медно-никелевого сплава равном 0,1-0,3 мм, что обеспечивает увеличение длины и ширины сваренной заготовки с одновременным уменьшением толщины металлических слоев до оптимальных размеров. При температуре горячей прокатки менее 600°С возможно появление трещин в металлических слоях. Ее температура более 650°С является избыточной, поскольку это приводит к излишним энергетическим затратам при осуществлении прокатки. При обжатии сваренного пакета до толщины слоя из медно-никелевого сплава менее 0,1 мм толщина получаемого покрытия на поверхности титановой пластины оказывается недостаточной, а при обжатии до толщины слоя из медно-никелевого сплава более 0,3 мм толщина покрытия оказывается избыточной поскольку это приводит к снижению его стойкости к хрупкому разрушению при динамических нагрузках.

Предложено термическое воздействие на прокатанную заготовку осуществлять сканирующим лазерным лучом последовательно, со стороны каждого слоя из медно-никелевого сплава, с мощностью излучения 1,3-1,4 кВт с оплавлением металлических слоев, при этом скорость его перемещения относительно обрабатываемой поверхности, а также его диаметр выбирать из условия получения проплавления титанового слоя на глубину, равную 1-1,2 толщины каждого слоя из медно-никелевого сплава, что обеспечивает одновременное оплавление медно-никелевых и титанового слоев: медно-никелевых - на всю толщину, а титанового лишь на часть его толщины с перемешиванием титана с компонентами медно-никелевого сплава и с формированием при этом требуемого состава и свойств износостойких покрытий на поверхности титановой пластины, при этом механические свойства титана вне зон его оплавления остаются неизменными.

Использование сканирующего лазерного луча для термического воздействия на прокатанную заготовку позволяет получать покрытия на титановых пластинах со значительно большими размерами, чем при получении покрытий по прототипу. Мощность лазерного излучения 1,3-1,4 кВт является достаточной для получения покрытий необходимой толщины и высокого качества.

Мощности лазерного излучения менее 1,3 кВт может быть недостаточно для проплавления металлических слоев на заданную глубину. Его мощность более 1,4 кВт является избыточной для получения покрытий требуемого качества. Предложено скорость перемещения лазерного луча относительно обрабатываемой поверхности, а также его диаметр выбирать из условия получения проплавления с каждой стороны титанового слоя на глубину, равную 1-1,2 толщины каждого слоя из медно-никелевого сплава, что обеспечивает формирование покрытия на поверхности титановой пластины необходимой толщины и состава, а также с необходимыми служебными свойствами. При проплавлении титанового слоя на глубину менее толщины каждого слоя из медно-никелевого сплава твердость получаемых покрытий оказывается недостаточной для обеспечения их высокой износостойкости. Проплавление титанового слоя на глубину более 1,2 толщины каждого слоя из медно-никелевого сплава является избыточным, поскольку это приводит к появлению высокого уровня внутренних напряжений как в титановом слое, так и в получаемом покрытии, а это снижает его стойкость к хрупкому разрушению при динамических нагрузках.

Использование сплава МН19 при изготовлении плакирующих пластин обеспечивает получение оптимального состава покрытий на титановой пластине с необходимой высокой твердостью и износостойкостью.

Предлагаемый способ получения износостойких покрытий на поверхностях титановой пластины осуществляется в следующей последовательности. Составляют трехслойный пакет из предварительно очищенных от окислов и загрязнений чередующихся слоев из медно-никелевого сплава (плакирующие слои) и титана с симметричным расположением титановой пластины относительно плакирующих слоев, в котором соотношение толщин слоев медно-никелевый сплав-титан-медно-никелевый сплав составляет 1:(10-20):1 при толщине каждого слоя из медно-никелевого сплава равной 0,8-1,2 мм. Слои в пакете располагают параллельно друг другу на расстоянии одинаковых технологических сварочных зазоров. Располагают на поверхностях плакирующих пластин защитные прослойки из высокоэластичного материала, например, из резины, с одинаковыми зарядами ВВ, располагают полученную сборку вертикально на песчаном грунте и осуществляют сварку взрывом полученной при этом сборки путем одновременного взрыва зарядов ВВ с помощью электродетонатора и двух отрезков детонирующих шнуров равной длины. Скорость детонации каждого заряда ВВ должна быть равной 2000-2580 м/с, при этом высоту зарядов ВВ, а также сварочные зазоры между пластинами трехслойного пакета выбирают из условия получения скорости соударения каждой плакирующей пластины с плакируемой в пределах 520-600 м/с.

Сваренный трехслойный пакет подвергают горячей прокатке при температуре 600-650°С с обжатием, обеспечивающим толщину каждого слоя из медно-никелевого сплава равную 0,1-0,3 мм, после чего осуществляют термическое воздействие на прокатанную заготовку сканирующим лазерным лучом последовательно со стороны каждого медно-никелевого слоя с мощностью излучения 1,3-1,4 кВт, с оплавлением обоих металлических слоев, при этом скорость его перемещения относительно обрабатываемой поверхности, а также его диаметр выбирают из условия получения проплавления титанового слоя на глубину, равную 1-1,2 толщины каждого слоя из медно-никелевого сплава.

В результате реализации предлагаемого способа на поверхностях титановой пластины получают высокотвердые износостойкие покрытия толщиной каждого из них 0,2-0,63 мм без пор, трещин и других дефектов, с значительно большей, чем у изделий по прототипу длиной и шириной титановой пластины с нанесенными на нее покрытиями, с пониженной склонностью полученного покрытия к хрупкому разрушению при динамических нагрузках. При этом механические свойства титановой пластины вне зон нанесенных покрытий остаются неизменными.

Пример 1 (см. таблицу, пример 1).

Составляют трехслойный пакет под сварку взрывом, для чего берут пластины из медно-никелевого сплава МН19 и титана ВТ1-0 и очищают их соединяемые поверхности от окислов и загрязнений. Размеры каждой плакирующей (метаемой) пластины из сплава МН19: длина 270 мм, ширина 220 мм, толщина δ1 = 0,8 мм. У плакируемой пластины из титана ВТ1-0 длина и ширина такие же, но толщина δ2 = 8 мм, при этом соотношение толщин δ121 = 1:10:1. Плакируемую титановую пластину в пакете располагают симметрично относительно плакирующих слоев, которые устанавливают параллельно друг другу на расстоянии одинаковых технологических сварочных зазоров. Для сварки взрывом выбираем взрывчатое вещество со скоростью детонации Dвв = 2580 м/с, представляющее собой смесь порошкообразного аммонита 6ЖВ с аммиачной селитрой в соотношении 3:1. Взрывчатое вещество помещают в два одинаковых контейнера, например, из электрокартона, высотой каждого из них Нвв = 20 мм, длиной 300 мм, шириной 240 мм. Из предлагаемого диапазона выбираем необходимую для надежной сварки скорость соударения Vc = 600 м/с. Для обеспечения такой скорости с помощью компьютерной технологии, с учетом указанных выше параметров ВВ и свариваемых пластин, определяем величину необходимых сварочных зазоров h между титановой пластиной и плакирующими слоями. Величина каждого из них в данном случае равна: h = 1,5 мм.

Располагают на поверхностях плакирующих пластин защитные прослойки из высокоэластичного материала толщиной 1 мм, например, из резины, с одинаковыми зарядами ВВ, располагают полученную сборку вертикально на песчаном грунте и осуществляют сварку взрывом полученной при этом сборки путем одновременного взрыва зарядов ВВ с помощью электродетонатора и двух отрезков детонирующих шнуров равной длины. Направление детонации - вдоль свариваемого пакета. У сваренного трехслойного пакета, например, на фрезерном станке, обрезают боковые кромки с краевыми эффектами. Ширина удаленных кромок - по 10 мм каждой стороны сваренной заготовки.

Горячую прокатку сваренного трехслойного пакета проводят при температуре 600°С с обжатием, обеспечивающим толщину каждого слоя из медно-никелевого сплава равную 0,1 мм. После обрезки боковых кромок размеры у прокатанной заготовки: длина - 1900 мм, ширина - 180 мм, толщина -1,1 мм.

Термическое воздействие на прокатанную заготовку осуществляют сканирующим лазерным лучом последовательно, со стороны каждого медно-никелевого слоя с мощностью излучения 1,3 кВт с оплавлением металлических слоев. Скорость перемещения лазерного луча относительно обрабатываемой поверхности (скорость сканирования) Vск = 12 мм/с. Диаметр лазерного луча равен 1,2 мм. Глубина проплавления с каждой стороны титанового слоя соответствует толщине каждого слоя из медно-никелевого сплава и равна δпр = 0,1 мм.

В результате получают на поверхностях титановой пластины (с двух ее сторон) высокотвердые износостойкие покрытия с толщиной каждого из них около 0,2 мм, с твердостью по Виккерсу 5-5,5 ГПа. Толщина пластины вместе с покрытием δИзд=1,1 мм. Ее длина - 2100 мм, ширина - 180 мм, что, соответственно, в 14 и в 1,2 раза больше, чем у изделий по прототипу. Полученные покрытия, благодаря более низкой (в 1,3-1,5 раза) твердости, чем у покрытий, получаемых по прототипу, обладают пониженной склонностью к хрупкому разрушению при динамических нагрузках. При этом после термического воздействия на прокатанную заготовку лазерным лучом пластические и другие механические свойства титановой пластины вне зон расположения покрытий остались без изменений.

Пример 2 (см. таблицу, пример 2).

То же, что в примере 1, но внесены следующие изменения. Толщина каждой плакирующей пластины из сплава МН19 δ1 = 1 мм. У плакируемой пластины из титана ВТ1-0 толщина δ2 = 15 мм, при этом соотношение толщин δ12: δ1 = 1:15:1. Для сварки взрывом выбираем взрывчатое вещество со скоростью детонации Dвв = 2240 м/с, представляющее собой смесь порошкообразного аммонита 6ЖВ с аммиачной селитрой в соотношении 1:1. Из предлагаемого диапазона выбираем необходимую для надежной сварки скорость соударения пластин Vc = 560 м/с. Для обеспечения такой скорости величина необходимых сварочных зазоров h = 3 мм.

Горячую прокатку сваренного трехслойного пакета проводят при температуре tпр = 630°С с обжатием, обеспечивающим толщину каждого слоя из медно-никелевого сплава равную 0,2 мм. После обрезки боковых кромок размеры у прокатанной заготовки: длина - 900 мм, ширина - 180 мм, толщина - 4,5 мм.

Термическое воздействие на прокатанную заготовку осуществляют сканирующим лазерным лучом с мощностью излучения 1,35 кВт. Скорость перемещения лазерного луча относительно обрабатываемой поверхности Vск = 10 мм/с. Глубина проплавления с каждой стороны титанового слоя составляет 1,1 толщины слоя из медно-никелевого сплава и равна δпр = 0,22 мм.

Результаты как в примере 1, но на поверхностях титановой пластины получают высокотвердые износостойкие покрытия с толщиной каждого из них около 0,42 мм. Толщина пластины вместе с покрытиями δизд = 4,5 мм. Ее длина - 900 мм, ширина - 180 мм, что, соответственно, вбив 1,2 раза больше, чем у изделий по прототипу.

Пример 3 (см. таблицу, пример 3).

То же, что в примере 1, но внесены следующие изменения. Толщина каждой плакирующей пластины из сплава МН19 δ1 = 1,2 мм. У плакируемой пластины из титана ВТ 1-0 толщина δ2 = 24 мм, при этом соотношение толщин δ121 = 1:20:1. Для сварки взрывом выбираем взрывчатое вещество со скоростью детонации Dвв = 2000 м/с, представляющее собой смесь порошкообразного аммонита 6ЖВ с аммиачной селитрой в соотношении 1:2. Нвв = 30 мм. Из предлагаемого диапазона выбираем необходимую для надежной сварки скорость соударения Vc = 520 м/с. Для обеспечения такой скорости сварочный зазор h = 3 мм.

Горячую прокатку сваренного пакета проводят при температуре tпр = 650°С с обжатием до толщины слоя из медно-никелевого сплава равной 0,3 мм. После обрезки боковых кромок размеры у прокатанной заготовки: длина - 780 мм, ширина - 180 мм, толщина - 7,8 мм.

Термическое воздействие на прокатанную заготовку осуществляют сканирующим лазерным лучом с мощностью излучения 1,4 кВт. Скорость перемещения лазерного луча относительно обрабатываемой поверхности Vск = 8 мм/с. Глубина проплавления титанового слоя составляет 1,2 толщины слоя из медно-никелевого сплава и равна δпр = 0,36 мм.

Результаты как в примере 1, но на поверхности титановой пластины получают высокотвердое износостойкое покрытие с толщиной около 0,66 мм. Толщина пластины вместе с покрытием δизд = 7,8 мм. Ее длина - 780 мм, ширина - 180 мм, что, соответственно, в 5,2 и в 1,2 раза больше, чем у изделий по прототипу.

При получении износостойкого покрытия на поверхности титановой пластины по прототипу (см. таблицу, пример 4) твердость покрытия 7-7,5 ГПа, что в 1,3-1,5 раза выше, чем у покрытия, полученному по предлагаемому способу, из-за чего оно обладает повышенной склонностью к хрупкому разрушению при динамических нагрузках. Длина получаемых изделий с покрытиями не превышает 150 мм, что в 5,2 - 14 раз меньше, а их ширина, не превышающая 120 мм, меньше в 1,2 раза, чем у изделий по предлагаемому способу. Все это ограничивает применение данного способа для получения материалов для пар трения, тормозных устройств и т.п.

Источник поступления информации: Роспатент

Showing 81-90 of 362 items.
17.02.2018
№218.016.2b23

Система защиты гидропривода

Изобретение относится к машиностроению и может быть использовано для защиты от несанкционированного выброса рабочей жидкости гидросистем и гидроприводов рабочих органов машин. Система содержит гидробак, насос, соединенный напорной гидролинией с гидродвигателем через распределитель, линию слива...
Тип: Изобретение
Номер охранного документа: 0002642914
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2b67

Ветчинное изделие из мяса кролика

Изобретение относится к мясоперерабатывающей промышленности, в частности к производству ветчинных изделий. Ветчинное изделие содержит мясо кролика, пюре топинамбура, комплексную пищевую добавку, предварительно гидратированную льняную муку, нитритно-посолочную смесь, перец душистый молотый,...
Тип: Изобретение
Номер охранного документа: 0002643254
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2bd3

Способ производства изделия колбасного полукопченого

Изобретение относится к мясной промышленности, а именно к производству изделий колбасных полукопченых. Способ предусматривает измельчение баранины, посол и смешивание с основными составляющими фарша, чесноком и пряностями, формование батонов, их обжарку, копчение и охлаждение. В качестве...
Тип: Изобретение
Номер охранного документа: 0002643253
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2c57

Способ производства хлебобулочных изделий функционального назначения

Изобретение относится к пищевой промышленности и может быть использовано на предприятиях хлебопекарной, кондитерской промышленности, общественного питания. Способ производства хлебобулочных изделий функционального назначения предусматривает замешивание теста, его выбраживание при температуре...
Тип: Изобретение
Номер охранного документа: 0002643251
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2c61

Способ производства хлебобулочных изделий функционального назначения

Изобретение относится к пищевой промышленности и может быть использовано на предприятиях хлебопекарной, кондитерской промышленности и общественного питания. Способ производства хлебобулочных изделий функционального назначения из пшеничной муки и предварительно гидратированной гороховой муки...
Тип: Изобретение
Номер охранного документа: 0002643252
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2e33

Способ получения меланина из лузги подсолнечника

Предложенное изобретение относится к получению биополимера растительного происхождения - меланина, обладающего высокой биологической активностью, и может быть использовано для производства биологически активных и пищевых добавок. Способ получения меланина из лузги подсолнечника, включающий...
Тип: Изобретение
Номер охранного документа: 0002643932
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.30e9

Способ закрепления оползневых массивов

Предлагаемый способ закрепления оползневых массивов относится к области мелиоративного строительства и может быть использован для рекультивации неудобий. Способ осуществляют следующим образом. В полосе оползневой трещины механическим буром, установленным на раму автомобиля, бурят скважины...
Тип: Изобретение
Номер охранного документа: 0002644955
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3106

Способ получения металлсодержащей смазки для поливинилхлоридной композиции

Изобретение относится к способу получения металлсодержащей смазки, используемой при производстве жестких и полужестких материалов на основе поливинилхлоридной композиции. Способ осуществляют взаимодействием олеиновой или стеариновой кислот с глицерином в присутствии производного...
Тип: Изобретение
Номер охранного документа: 0002644898
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3177

Способ приготовления известнякового строительного щебня

Изобретение относится к области производства строительных материалов, в частности известнякового строительного щебня, для дальнейшего его применения в гражданском и дорожном строительстве. Способ приготовления известнякового строительного щебня, включающий пропитку известнякового щебня в водном...
Тип: Изобретение
Номер охранного документа: 0002645030
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.34a5

Фотополимеризующаяся композиция для ускоренного формирования покрытий защитного назначения

Изобретение относится к промышленности полимеризационных пластмасс. Описана фотополимеризующаяся композиция для ускоренного формирования покрытий защитного назначения. Композиция включает полимер - каучук марки Hydrin С2000, реакционно-способный растворитель - диглицидиловый эфир гомоолигомера...
Тип: Изобретение
Номер охранного документа: 0002646003
Дата охранного документа: 01.03.2018
Showing 31-40 of 40 items.
02.10.2019
№219.017.d12b

Способ получения медно-никелевого покрытия на поверхностях титановой пластины

Изобретение относится к получению износостойких покрытий на титане с помощью энергии взрывчатых веществ и с использованием лазерного излучения, в частности, при изготовлении материалов для пар трения, тормозных устройств и т.п. Составляют симметричный трехслойный пакет из чередующихся пластин...
Тип: Изобретение
Номер охранного документа: 0002700441
Дата охранного документа: 17.09.2019
16.01.2020
№220.017.f5ee

Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама

Изобретение относится к получению износостойких композиционных материалов взрывным прессованием, которые могут быть использованы для изготовления пар трения. Прессуемую порошковую смесь, состоящую из никеля и 45-50 мас.% борида вольфрама, размещают в цилиндрических ампулах в виде труб из...
Тип: Изобретение
Номер охранного документа: 0002710828
Дата охранного документа: 14.01.2020
21.01.2020
№220.017.f77a

Способ получения износостойких покрытий на поверхностях пластин из меди и алюминиевого сплава

Изобретение может быть использовано для получения износостойких покрытий на металлах с помощью энергии взрывчатых веществ (ВВ), например при изготовлении пар трения в виде тормозных устройств. Составляют симметричный пакет, содержащий две одинаковые плакирующие пластины из меди и плакируемую...
Тип: Изобретение
Номер охранного документа: 0002711284
Дата охранного документа: 16.01.2020
21.01.2020
№220.017.f7a4

Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама

Изобретение относится к технологии получения износостойких композиционных материалов с помощью энергии взрывчатых веществ (ВВ) и может быть использовано для изготовления пар трения. Прессуемые порошковые смеси из никеля (Ni) и 25-30 мас.% борида вольфрама (WB) размещают в цилиндрических ампулах...
Тип: Изобретение
Номер охранного документа: 0002711289
Дата охранного документа: 16.01.2020
21.01.2020
№220.017.f7ce

Способ получения композиционных материалов из стали и смесей порошков никеля и борида вольфрама

Изобретение относится к получению композиционного материала из стали и смесей порошков никеля и борида вольфрама. Способ включает размещение в цилиндрической стальной ампуле прессуемой порошковой смеси, инициирование процесса детонации в заряде взрывчатого вещества (ВВ) и взрывное прессование....
Тип: Изобретение
Номер охранного документа: 0002711288
Дата охранного документа: 16.01.2020
27.01.2020
№220.017.fa67

Способ получения износостойких покрытий на поверхностях пластин из алюминиевого сплава и меди

Изобретение может быть использовано для получения износостойких покрытий на металлах с помощью энергии взрывчатых веществ (ВВ), например, при изготовлении пар трения в виде тормозных устройств. Составляют двухслойный пакет, содержащий плакирующую пластину из алюминиевого сплава и плакируемую -...
Тип: Изобретение
Номер охранного документа: 0002712156
Дата охранного документа: 24.01.2020
04.07.2020
№220.018.2e63

Способ получения жаростойких покрытий на стали

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Cоставляют трехслойный пакет, состоящий из неподвижной стальной...
Тип: Изобретение
Номер охранного документа: 0002725503
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2e8e

Способ получения жаростойких покрытий на стали

Изобретение относится к способу получения жаростойких покрытий на стали и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Составляют пакет из стальной пластины и размещенных по обе её стороны нихромовых пластин...
Тип: Изобретение
Номер охранного документа: 0002725510
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2ea0

Способ получения жаростойкого покрытия на стали

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Cоставляют двухслойный пакет из неподвижной стальной пластины и...
Тип: Изобретение
Номер охранного документа: 0002725501
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2ebf

Способ получения жаростойкого покрытия на стали

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Cоставляют двухслойный пакет из неподвижной стальной пластины и...
Тип: Изобретение
Номер охранного документа: 0002725507
Дата охранного документа: 02.07.2020
+ добавить свой РИД