×
24.05.2019
219.017.5e83

Результат интеллектуальной деятельности: Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике сверхвысоких частот и предназначено для измерения удельного сопротивления материалов. Сущность: в измеряемом частотном диапазоне волноводный резонатор с подвижным торцевым поршнем последовательно настраивают в резонанс на ряде фиксированных частот. На каждой резонансной частоте проводят измерение добротности и положения торцевого поршня, фиксируют их величины. Измеряют толщину образца материала и устанавливают его на торцевой поршень резонатора. Последовательно на каждой из фиксированных частот опускают торцевой поршень на величину толщины образца материала, измеряют и фиксируют величину добротности, измеряют и фиксируют величину резонансной частоты резонатора с образцом материала. Рассчитывают величину удельного сопротивления материала по формуле, в которую входят измеренные величины. Устройство содержит соединенные последовательно сверхвысокочастотный генератор, измерительный резонатор, сверхвысокочастотный приемник. Торцевой поршень волноводного цилиндрического резонатора, настроенный на волну Н, выполнен подвижным, с возможностью вывода его из резонатора и соединен с механизмом перемещения, снабженным датчиком перемещения торцевого поршня. Сверхвысокочастотный генератор, сверхвысокочастотный приемник, механизм перемещения и датчик перемещения торцевого поршня соединены с компьютером. Технический результат: повышение точности измерений в полосе частот. 2 н.п. ф-лы, 4 ил., 2 табл.

Изобретение относится к измерительной техники сверхвысоких частот, к способам и устройствам определения удельного сопротивления материалов.

Известны контактные способы измерения удельного сопротивления и устройства для его реализации [Четырехзондовый метод измерения электрического сопротивления полупроводниковых материалов: Учебно-методическое пособие по спецпрактикуму «Физика полупроводниковых материалов и приборов» для студентов физического факультета / Под редакцией Н.А. Поклонского - Минск: Белгосуниверситет, 1998. - 46 с.; ГОСТ 24392-80 «Кремний и германий монокристаллические. Измерение удельного электрического сопротивления четырехзондовым методом»; Physics of thin films. G. Hass, R. Thun. Vol. II. Academic press, New York and London, 1964; Physics of thin films. M. Francombe, R. Hoffman. Vol. VI. Academic press, New York and London, 1971; A method of measurements the resistivity and hall coefficient on lamellae of arbitrary shape. L.J. van der Pauw. Philips Technical Review, volume 20, 1958/59, No. 1, pp. 220-224].

Недостатком указанных способов и устройств является снижение точности определения удельного сопротивления с возрастанием частоты измерения.

Наиболее близким к заявляемому изобретению является способ измерения удельного сопротивления материалов в полосе сверхвысоких частот, включающий помещение образца материала в измерительный резонатор, измерение изменения коэффициента передачи и вычисление по нему удельного сопротивления на частоте измерения [Приборы для неразрушающего контроля материалов и изделий. Справочник. В 2-х книгах. Кн. 1 / Под ред. В.В. Клюева. - 2-е изд., перераб. и доп. - М.: Машиностроение, 1986. 488 с. (стр. 251-253)].

Недостатком представленного способа является его узкополосность.

Наиболее близким по технической сущности и достигнутому результату к заявляемому изобретению является устройство для измерения распределения удельного сопротивления полупроводниковых материалов, в котором к выходу сверхвысокочастотного детектора последовательно подключены время-амплитудный преобразователь и блок вычитания, выход которого соединен с управляющим входом введенного механизма осевого перемещения индуктивного штыря. Механизм осевого перемещения индуктивного штыря выполнен в виде ультразвукового генератора, а индуктивный штырь выполнен в виде стержневого концентратора ультразвука [А.с. СССР №967177, кл. G01R 27/32, 15.01.1981].

Недостатком известного устройства является низкая точность измерения из-за применения механического принципа, обеспечивающего сканирование по частоте, а также узкополосность.

Задачей изобретения является повышение точности измерений удельного сопротивления материалов в полосе частот.

Поставленная задача решается тем, что предложен способ измерения удельного сопротивления материала в полосе сверхвысоких частот, включающий измерение изменения добротности резонатора и определение по нему удельного сопротивления материала на частоте измерения, отличающийся тем, что в измеряемом частотном диапазоне волноводный резонатор с подвижным торцевым поршнем последовательно настраивают в резонанс на фиксированных частотах, на которых проводят измерение добротности и положения торцевого поршня, фиксируют их величины, измеряют толщину образца материала и устанавливают его на торцевой поршень резонатора, последовательно на каждой из фиксированных частот опускают торцевой поршень на величину толщины образца материала, измеряют и фиксируют величину добротности, измеряют и фиксируют величину резонансной частоты резонатора с образцом материала, по которым рассчитывают величину удельного сопротивления материала по формуле:

где μ2 _ магнитная проницаемость образца материала;

π - константа;

- частота на которую настроен резонатор с образцом материала;

Δ2 - глубина скин-слоя образца материала равная:

где - частота, на которую настроен резонатор без образца материала;

L0 - геометрическая длина резонатора настроенного в резонанс;

Q1 - добротность резонатора без образца материала;

Q2 - добротность резонатора с образцом материала;

Δ1 - глубина скин-слоя материала торцевого поршня;

λ1 - длина волны в свободном пространстве на частоте резонанса резонатора без образца материала;

λ2 - длина волны в свободном пространстве на частоте резонанса резонатора с образцом материала;

λkp=1,638⋅R - критическая длина волны в резонаторе радиусом R для волны Н01;

β1 - волновое число на частоте резонанса резонатора без образца материала;

β2 - волновое число на частоте резонанса резонатора с образцом материала.

Как установили авторы, способы определения удельного сопротивления материалов в диапазоне сверхвысоких частот отличаются от способов их измерения на постоянном токе.

Основным параметром, определяющим проводящие свойства материала на сверхвысоких частотах является глубина скин-слоя (Δ1) [Дж.А. Стрэттон. Теория электромагнетизма. / Под ред. С.М. Рытова. Государственное издательство технико-теоретической литературы, М.-Л.: ОГИЗ, 1948, - 541 с.], определяемая для массивных материалов расчетной формулой:

,

где - циклическая частота измерения;

- частота измерений,

μ1 - магнитная проницаемость;

σ1 - проводимость материала.

Глубина скин-слоя определяется по изменению коэффициента передачи резонатора.

Известно, что изменение коэффициента передачи резонатора эквивалентно изменению добротности резонатора настроенного в резонанс на фиксированной частоте [Зальцман Е.Б. Измерение tgδ диэлектриков методом передачи через резонатор. Приборы и техника эксперимента. 1965, №6, с. 101-104.].

Применяя для измерения глубины скин-слоя проводящего покрытия на диэлектрическом образце измерительный объемный волноводный цилиндрический резонатор с волной H01 и используя методику измерения в резонаторе на фиксированной частоте при вариации длины резонатора по ГОСТ Р 8.623-2015 были проведены измерения свойств образцов материалов в широкой полосе частот, перестраивая резонатор, способом определения глубины скин-слоя, основанным на сравнении добротности резонатора без образца с добротностью резонатора в котором торцевая часть поверхности заменена образцом диэлектрического материала с проводящим покрытием [ГОСТ Р 8.623-2015. Относительная диэлектрическая проницаемость и тангенс угла диэлектрических потерь твердых диэлектриков. Методики измерений в диапазоне свервысоких частот. Стандартинформ., М: 2016].

В предложенном техническом решении не изменяется структура полей в объеме резонатора при замене части его поверхности испытуемым проводящим покрытием, а так как других потерь энергии резонатора нет, то изменение добротности определяется только потерями в проводящем слое на поверхности внесенного образца материала, что повышает точность производимых измерений глубины скин-слоя и определения удельного сопротивления покрытия.

Собственная добротность резонатора равна:

где - циклическая частота измерения;

- резонансная частота измерения резонатора без образца;

- энергия, запасенная в объеме резонатора на частоте резонанса резонатора без образца, соответствующая волне Н01 в круглом волноводе для цилиндрического резонатора,

где L0 - геометрическая длина резонатора настроенного в резонанс;

λ1 - длина волны в свободном пространстве на частоте резонанса резонатора без образца;

λkp=1,638⋅R- критическая длина волны в резонаторе радиусом R для волны H01;

β1 - волновое число на частоте резонанса резонатора без образца материала;

qw - погонная плотность энергии во времени;

- потери в стенках пустого резонатора,

где - потери в верхнем торце резонатора;

- потери в нижнем торце резонатора;

- потери в боковых стенках;

- потери в резонаторе на связь.

При замещении торца резонатора образцом с поверхностью из проводящего материала длина и объем резонатора сохраняются перемещением поршня до восстановления резонансной длины резонатора без образца.

При настройке добротность и резонансная частота резонатора с образцом изменятся:

где - циклическая частота измерения,

- резонансная частота измерения резонатора с образцом;

- энергия, запасенная в объеме резонатора на частоте резонанса резонатора с образцом, соответствующая волне H01 в круглом волноводе для цилиндрического резонатора,

где λ2 - длина волны в свободном пространстве на частоте резонанса резонатора без образца;

β2 - волновое число на частоте резонанса резонатора с образцом;

- потери в стенках пустого резонатора,

где - потери в верхнем торце резонатора;

- потери в нижнем торце резонатора;

- потери в боковых стенках;

- потери в резонаторе на связь.

Связывая результаты (1) и (2) получаем:

Для объемного цилиндрического резонатора с волной Н01:

где - потери в нижнем торце резонатора;

Δ1 - глубина скин-слоя торцевого поршня резонатора;

ω1 - циклическая частота измерения;

λ1 - длина волны в свободном пространстве на частоте резонанса резонатора без образца;

λkp=1,638⋅R- критическая длина волны в резонаторе радиусом R для волны H01;

qw - погонная плотность энергии во времени.

Для объемного цилиндрического резонатора с волной H01:

где - потери в проводящем поверхностном слое образца, помещенного на торце резонатора;

ω2 - циклическая частота измерения;

Δ2 - глубина скин-слоя образца материала;

λ2 - длина волны в свободном пространстве на частоте резонанса резонатора без образца;

λkp=1,638⋅R - критическая длина волны в резонаторе радиусом R для волны H01;

qw - погонная плотность энергии во времени.

Тогда:

Для упрощения вида выражения произведем замену:

тогда

Подставляя выражение для циклической частоты, получаем глубину скин-слоя образца, уложенного на поршень для частоты резонанса резонатора с образцом :

или в более развернутом виде:

Удельная проводимость, которая соответствует измеренной глубине скин-слоя, равна:

где μ2 - магнитная проницаемость;

π - константа;

- резонансная частота измерения резонатора с образцом;

Δ2 - глубина скин-слоя образца материала.

Удельное сопротивление ρ2 при известной удельной проводимости, соответствующее измеренной глубине скин-слоя, равно:

где σ2 - удельная проводимость материала;

μ2 - магнитная проницаемость;

- резонансная частота измерения резонатора с образцом;

Δ2 - глубина скин-слоя образца материала.

Для проверки предложенного способа проведены измерения массивных металлических образцов, для которых омическое сопротивление плоского проводника бесконечной толщины при скин-эффекте в точности равно сопротивлению плоского проводника толщины Δ2 для постоянного тока, что соответствует выводам проведенным в работе [С. Рамо, Дж. Уиннери. Поля и волны в современной радиотехнике. / Под ред. Ю.Б. Кобзарева, Гос. изд-во технико-теоретической литературы, М. - Л., 1948: ОГИЗ, 631 с.].

Для проверки использовался резонаторный метод измерения на фиксированной частоте в соответствии с ГОСТ Р 8.623-2015 при температуре окружающей среды и при нагреве до 1200°C.

Для оценки корреляции свойств покрытий, измеренных на СВЧ и на постоянном токе, сравнения проводились по измерению удельного поверхностного сопротивления, которые проводились четырехконтактным методом при помощи резистивиметра Mitsubishi Loresta GX (МСР-Т610).

Результаты определения глубины скин-слоя по предложенному способу для массивных металлических материалов представлены в таблице 1.

Из-за отсутствия способа измерения удельного поверхностного сопротивления на постоянном токе на массивных образцах металлов, сравнение результатов определения на СВЧ с измерениями на постоянном токе брались из литературных источников [Справочник по расчету и конструированию СВЧ полосковых устройств / С.И. Бахарев, В.И. Вольман, Ю.Н. Либ и др.; Под ред. В.И. Вольмана. - М: Радио и связь, 1982. - 328 с.; Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М., Атомиздат, 1976, 1008 с.].

Ферромагнитные материалы значительно искажают поле резонатора, поэтому способ определения удельного сопротивления по измерению глубины скин-слоя в резонаторе можно использовать только для диамагнитных и парамагнитных материалов с величиной магнитной проницаемости близкой к единице μ2~1,0.

Предложенный способ применим для определения удельного сопротивления металлических диамагнитных покрытий на керамических образцах.

Результаты измерений, представленных образцов и вычисленные по ним величины, соответствующие общепринятым электрическим показателям, представлены в таблице 2.

Методом вжигания пасты изготавливались образцы с покрытием из палладия толщиной от 10 до 40 мкм.

Методом вакуумного напыления изготавливались образцы с покрытием из меди толщиной не более 1 мкм.

В таблице 2 приведены следующие литературные данные.

В колонке 4 указано удельное сопротивление, измеренное на массивных образцах. В колонке 7 приведена величина удельного поверхностного сопротивления, рассчитанного из экспериментальных данных глубины скин-слоя, представленных в колонке 3. В колонке 8 приведена величина удельного поверхностного сопротивления, измеренного прибором на постоянном токе четырехконтактным методом.

Для определения электрических свойств металлических покрытий на керамических материалах по предлагаемому способу при нагреве использовалась установка для измерения температурных зависимостей диэлектрических свойств при нагреве до 1200°C в волноводном цилиндрическом резонаторе.

На фиг. 1 представлены результаты измерения температурных зависимостей глубин скин-слоев медного покрытия толщиной 1 мкм на кварцевой керамике, выполненного вакуумным напылением и покрытия с палладием толщиной 10-40 мкм на кварцевой керамике, выполненного вжиганием пасты. Температура плавления меди составляет 1084°C, поэтому образец с медным покрытием нагревался до 1050°C.

На фиг. 2 представлены, рассчитанные по экспериментально измеренным температурным зависимостям глубины скин-слоя, температурные зависимости удельного поверхностного сопротивления для покрытия с палладием толщиной 10-40 мкм на кварцевой керамике.

На фиг. 3 представлены, рассчитанные по экспериментально измеренным температурным зависимостям глубины скин-слоя, температурные зависимости удельного поверхностного сопротивления для покрытия из меди толщиной 1 мкм на кварцевой керамике.

Устройство для измерения удельного сопротивления материалов в полосе сверхвысоких частот, содержащее соединенные последовательно сверхвысокочастотный генератор, измерительный резонатор, сверхвысокочастотный приемник, отличающийся тем, что торцевой поршень волноводного цилиндрического резонатора, настроенного на волну Hoi, выполнен подвижным, с возможностью вывода его из резонатора, и соединен с механизмом перемещения, снабженного датчиком перемещения торцевого поршня, а сверхвысокочастотный генератор, сверхвысокочастотный приемник, механизм перемещения и датчик перемещения торцевого поршня соединены с компьютером.

Предлагаемое устройство для измерения диэлектрических свойств образца материала в свободном пространстве представлено на фиг. 4.

В устройстве генератор и приемник представлены в виде сверхвысокочастотного анализатора цепей 1, соединенного с измерительным объемным цилиндрическим волноводным резонатором 2 через отверстия связи в верхней части резонатора, перестраиваемого по частоте с помощью перемещения торцевого поршня 3, связанного с датчиком перемещений 4, двигателем и блоком управления двигателя 5. Анализатор цепей 1, датчик положения 4 и блок управления двигателем 5 связаны с компьютером 6.

Устройство работает следующим образом (фиг. 4).

С port 1 выхода анализатора цепей 1 высокочастотные колебания поступают на вход перестраиваемого измерительного резонатора 2 (без образца материала) торцевой поршень которого находится в положении 2, сигнал с выхода резонатора поступает на port 2 вход анализатора цепей 1 на экране которого наблюдается зависимость коэффициента передачи от частоты, настроенного в резонанс резонатора, в виде резонансной кривой и измеряется ее добротность. Резонатор настраивают последовательно на ряд частот с помощью двигателя 5 и положение торцевого поршня, измеряемое датчиком 4, резонансную частоту и добротность резонатора, измеряемую на анализаторе цепей 1, записывают для каждой частоты в компьютере 6. Торцевой поршень 3 выводят из резонатора в положение 1, укладывают на него образец материала, переводят поршень в положение 2, но отличающееся от предудущего на толщину образца, с помощью двигателя 5, а положение торцевого поршня, измеряемое датчиком 4, резонансную частоту и добротность резонатора, измеряемую анализатором цепей 1, фиксируют для каждой частоты в компьютере 6. В компьютере 6 по алгоритму, представленному выше, рассчитывают глубину скин-слоя и величину удельного сопротивления для каждой измеренной частоты.

Таким образом, использование в способе измерения удельного сопротивления процедуры, изложенной в предлагаемом техническом решении, позволяет определить частотную зависимость удельного сопротивления с более высокой точностью, чем при использовании известных способов.

Предложенное устройство, реализующее способ для измерения удельного сопротивления материалов в полосе сверхвысоких частот за счет использования широкополосной измерительной системы и перестраиваемого измерительного волноводного резонатора позволяет производить измерение в широкой частотной полосе с точностью более высокой, чем в известных устройствах.


Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления
Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления
Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления
Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления
Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления
Способ измерения удельного сопротивления материалов в полосе сверхвысоких частот и устройство для его осуществления
Источник поступления информации: Роспатент

Showing 31-40 of 136 items.
26.08.2017
№217.015.e16d

Способ сушки керамических изделий

Изобретение относится к технологии сушки и может быть использовано при сушке отформованных крупногабаритных сложнопрофильных керамических изделий типа обтекателей летательных аппаратов. Технический результат изобретения - снижение уровня технологического брака, возникающего при обжиге изделий,...
Тип: Изобретение
Номер охранного документа: 0002625579
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e44b

Способ тепловых испытаний радиопрозрачных обтекателей

Изобретение относится к технике наземных испытаний головных частей (обтекателей) летательных аппаратов. Достигаемый технический результат - контроль радиотехнических характеристик радиопрозрачного обтекателя в условиях, имитирующих аэродинамический нагрев. Сущность способа заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002626406
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e894

Способ неразрушающего контроля клеевого соединения монолитных листов из полимерных композиционных материалов

Использование: для неразрушающего контроля деталей и конструкций из полимерных композиционных материалов (ПКМ), а именно клеевых соединений монолитных листов из ПКМ. Сущность изобретения заключается в том, что осуществляют ввод ультразвуковых колебаний в материал одного из соединяемых листов и...
Тип: Изобретение
Номер охранного документа: 0002627539
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.eacd

Способ изготовления изделия из композиционного материала

Изобретение относится к способам изготовления изделий из композиционного материала и может применяться в области авиастроения и космической техники, а также судостроения, автомобилестроения и др. Согласно способу выкладывают пакет слоев из волокнистого материала и закрепляют его накладкой,...
Тип: Изобретение
Номер охранного документа: 0002627882
Дата охранного документа: 14.08.2017
29.12.2017
№217.015.f2db

Способ соединения керамического изделия с металлическим шпангоутом

Изобретение относится к керамической и авиационной отраслям промышленности и преимущественно может быть использовано при изготовлении крупногабаритных, сложнопрофильных керамических изделий типа обтекателей летательных аппаратов. Способ соединения керамического изделия с металлическим...
Тип: Изобретение
Номер охранного документа: 0002637692
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f3b1

Способ вырезки узловых соединений ячеек стеклосотопластового блока

Изобретение относится к области механической обработки сотового заполнителя на основе стеклоткани с целью придания ему гибкости. Техническим результатом является повышение гибкости стеклосотопластовых панелей, вырезаемых из стеклосотопластового блока, с сохранением достаточной прочности....
Тип: Изобретение
Номер охранного документа: 0002637709
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f4c8

Способ получения высокоплотной кварцевой керамики и изделий из нее

Изобретение относится к способам получения высокоплотных керамических материалов на основе кварцевого стекла - кварцевой керамики с открытой пористостью, близкой к нулю. Предлагаемый способ получения высокоплотной кварцевой керамики и изделий из нее включает приготовление водного шликера...
Тип: Изобретение
Номер охранного документа: 0002637352
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f4d5

Способ определения диэлектрической проницаемости диэлектрических материалов

Изобретение способ определения диэлектрической проницаемости диэлектрических материалов относится к технике измерения диэлектрической проницаемости диэлектрических материалов. Способ определения диэлектрической проницаемости в объемном волноводном резонаторе включает настройку резонатора на...
Тип: Изобретение
Номер охранного документа: 0002637174
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f4fd

Композиция изделий авиационного остекления на основе монолитного поликарбоната

Изобретение относится к авиационному остеклению. На поверхность монолитного поликарбоната наносят слой прозрачного кремнийорганического лака на основе изопропилового спирта толщиной 4-5 мкм. Далее размещают два слоя из сплава оксидов индий-олово, между которыми расположен слой золота. Затем на...
Тип: Изобретение
Номер охранного документа: 0002637673
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f584

Способ испытания обтекателей ракет из неметаллических материалов

Изобретение относится к способам воспроизведения аэродинамического теплового и силового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Сущность: осуществляют силовое воздействие к наружной поверхности обтекателя через многослойную структуру, состоящую из жесткой...
Тип: Изобретение
Номер охранного документа: 0002637176
Дата охранного документа: 30.11.2017
Showing 31-40 of 41 items.
05.09.2019
№219.017.c74c

Способ пеленгации и широкополосный пеленгатор для его осуществления

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство. Технический результат - повышение точности угловой пеленгации в широкой полосе частот. Указанный результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002699079
Дата охранного документа: 03.09.2019
05.09.2019
№219.017.c790

Способ повышения надежности крепления датчика температуры к поверхности керамических материалов

Изобретение относится к испытательной технике, преимущественно к технике проведения тепловых испытаний керамических обтекателей ракет при радиационном нагреве. Заявлен способ повышения надежности крепления датчика температуры к поверхности керамического материала, включающий крепление спаянных...
Тип: Изобретение
Номер охранного документа: 0002699037
Дата охранного документа: 03.09.2019
12.10.2019
№219.017.d557

Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол и устройство для его реализации

Изобретение относится к области контрольно-измерительной техники, в частности к устройствам для контроля температурной зависимости вязкости и характеристических температур стекол. Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол включает...
Тип: Изобретение
Номер охранного документа: 0002702695
Дата охранного документа: 09.10.2019
27.11.2019
№219.017.e734

Способ определения толщины изделия при одностороннем доступе

Использование: для ультразвуковой толщинометрии, дефектоскопии материалов и изделий. Сущность изобретения заключается в том, что на ультразвуковом эхо-импульсном толщиномере устанавливают скорость распространения ультразвуковых колебаний, соответствующих материалу измеряемого изделия, на...
Тип: Изобретение
Номер охранного документа: 0002707199
Дата охранного документа: 25.11.2019
25.12.2019
№219.017.f20e

Способ крепления термоэлектрического преобразователя температуры на поверхности керамических материалов

Изобретение относится к испытательной технике, а именно к технике проведения тепловых испытаний образцов и изделий из керамических материалов при радиационном нагреве. Способ крепления термоэлектрического преобразователя температуры на поверхности керамических материалов, включающий...
Тип: Изобретение
Номер охранного документа: 0002710123
Дата охранного документа: 24.12.2019
22.01.2020
№220.017.f7ed

Способ определения предела прочности при растяжении керамических и композиционных материалов при индукционном нагреве

Изобретение относится к методам определения механических характеристик конструкционных материалов с учетом условий их применения. Способ определения предела прочности при растяжении керамических и композиционных материалов, включает индукционный нагрев до заданной температуры со скоростью...
Тип: Изобретение
Номер охранного документа: 0002711557
Дата охранного документа: 17.01.2020
06.02.2020
№220.017.ff63

Способ определения диэлектрической проницаемости материала

Изобретение относится к измерительной технике, в частности к измерению диэлектрической проницаемости материала в свободном пространстве. Предложен способ определения диэлектрической проницаемости материала, основанный на явлении отражения электромагнитной энергии от пластины из диэлектрического...
Тип: Изобретение
Номер охранного документа: 0002713162
Дата охранного документа: 04.02.2020
09.03.2020
№220.018.0adb

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано преимущественно в конструкциях радиопрозрачных антенных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН). Сущность заявленного решения...
Тип: Изобретение
Номер охранного документа: 0002716174
Дата охранного документа: 06.03.2020
13.03.2020
№220.018.0b84

Способ пеленгации и устройство для его осуществления

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство. Достигаемый технический результат - повышение точности углового обнаружения цели для произвольной поляризации сигналов от цели....
Тип: Изобретение
Номер охранного документа: 0002716273
Дата охранного документа: 11.03.2020
10.05.2023
№223.018.5399

Способ определения диэлектрических свойств деструктирующих материалов при нагреве

Изобретение относится к технике определения диэлектрических свойств деструктирующих материалов на сверхвысоких частотах. Предложен способ определения диэлектрических свойств деструктирующих материалов при нагреве, который включает настройку резонатора без образца, состоящего из...
Тип: Изобретение
Номер охранного документа: 0002795249
Дата охранного документа: 02.05.2023
+ добавить свой РИД