×
18.05.2019
219.017.5a17

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ КОРРОЗИИ ТРУБЫ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к акустической дефектоскопии и предназначено для магистральных трубопроводов. Способ определения толщины слоя коррозии трубы по длине трубопровода основан на функциональной зависимости скорости звука в стенке трубы и затухания звука от степени коррозии трубы. Для измерения коррозии на трубе устанавливают обратимые пьезокерамические приемоизлучатели с шагом в несколько километров и с их помощью регистрируют сигналы продольной звуковой волны. Методом математического анализа сигналов определяют скорость и затухание звука в трубе, а по ним вычисляют толщину слоя коррозии выделенного участка трубы между смежными приемоизлучателями. В качестве источника звукового сигнала используют технологический шум перекачиваемого продукта, а на отключенном для профилактики трубопроводе используют активные шумоподобные зондирующие посылки, которые формируют компьютером и излучают пьезокерамическими приемоизлучателями. Техническим результатом изобретения является повышение чувствительности и увеличение дальности контроля.

Изобретение относится к акустической дефектоскопии и предназначено для стационарных систем контроля коррозии магистральных трубопроводов. Известны способы обнаружения и диагностики коррозии трубопроводов, основанные на использовании акустических методов (1-4). Эти способы предусматривают обнаружение и измерение сигналов акустической эмиссии, которые излучаются дефектами трубы. Сигналы акустической эмиссии улавливают вибрационными датчиками, которые устанавливают на поверхности трубы. Акустическая эмиссия локальных участков трубы вызывается потоком перекачиваемого по трубе продукта или приложением специальных диагностических воздействий в виде повышенного давления продукта или внешних изгибающих усилий. Сигналы акустической эмиссии коррозионных дефектов обычно отличаются по амплитуде и частотному спектру от фонового технологического шума перекачиваемого продукта, что позволяет их выделить и идентифицировать в качестве информативного сигнала. Зарегистрированные акустические сигналы обрабатывают цифровыми методами спектрального и корреляционного анализа, с помощью которых выявляют характерный спектр акустической эмиссии и временные задержки сигналов от закрепленных на трубе акустических датчиков, позволяющие рассчитать координаты локальных дефектов. Общим недостатком способов диагностики, основанных на акустической эмиссии дефектов, является малая дальность обнаружения и низкая чувствительность к дефектам, не позволяющая обнаруживать коррозию в начальной стадии развития, при которой акустическая эмиссия еще не проявляется.

Наиболее близким решением к заявленному способу по совокупности признаков является способ обнаружения коррозионных дефектов в трубопроводах водоснабжения (5). Согласно этому способу на концах контролируемого участка трубопровода устанавливают по два акустических датчика, которые воспринимают продольные и поперечные вибрации трубы под действием потока воды. Имеющиеся на трубе коррозионные дефекты достаточной глубины и протяженности начинают вибрировать и излучать характерные сигналы акустической эмиссии, проявляя так называемый "мембранный эффект". В каждой паре акустических датчиков одним датчиком регистрируют продольные колебания трубы, а другим поперечные. После регистрации сигналов от всех четырех датчиков их сравнивают между собой методом корреляционного анализа, при этом о местоположении дефекта судят по наличию максимумов функции корреляции и их временной задержке, а о параметрах дефекта судят по амплитуде максимума. Дальность этого способа обнаружения дефектов составляет до 100 м, способ пригоден для труб диаметром более 80 мм с толщиной стенки от 5 до 15 мм, при которых локальное утонение стенки составляет не менее 50% от исходной толщины, а протяженность дефекта - не менее 100 мм.

Недостатком способа является низкая чувствительность к дефектам, поскольку акустическая эмиссия типа "мембранного эффекта" начинает проявляться только при глубине коррозии, составляющей 50% от толщины стенки трубы.

Другим недостатком является малая дальность обнаружения коррозионных дефектов трубы, что обусловлено малым уровнем сигнала акустической эмиссии локального дефекта, составляющего лишь доли процента от общего уровня шумового сигнала потока воды, на фоне которого нужно обнаруживать и идентифицировать информативный сигнал.

Технической задачей настоящего изобретения является создание способа диагностики коррозии трубы, свободного от указанных недостатков прототипа. Требуется разработать способ непрерывного контроля коррозии трубы по всей длине трассы трубопровода протяженностью до 1000 км и более. При этом способ должен обладать достаточной чувствительностью, чтобы обнаруживать начало развития коррозии в ранней стадии и последующее развитие в течение всего срока эксплуатации трубы.

Поставленная задача достигается тем, что среднюю толщину слоя коррозии трубы определяют по затуханию и скорости звука продольной звуковой волны, распространяющейся в трубопроводе. Для этого на трубе устанавливают обратимые пьезокерамические приемоизлучатели по всей длине трассы с шагом в несколько километров, связанные с удаленным компьютером и источником электропитания кабельными линиями. С помощью приемоизлучателей регистрируют на компьютере шумовые сигналы продольной звуковой волны, распространяющейся в прямом и обратном направлениях. Математической обработкой сигналов определяют их временные задержки и амплитуды, по которым вычисляют затухание и скорость звука на участках трубы между смежными парами приемоизлучателей, а затем по затуханию и скорости звука рассчитывают усредненную по длине толщину слоя коррозии. В качестве источника звука используют технологический шум перекачиваемого продукта, а на отключенном для профилактики трубопроводе используют активные шумоподобные посылки, которые формируют компьютером и излучают пьезокерамическими приемоизлучателями.

Предложенный способ измерения коррозии трубы имеет следующие преимущества перед аналогами и прототипом.

Согласно способу обнаруживаются не единичные локальные дефекты трубы, а средняя толщина коррозионного слоя по всей длине контролируемого участка на всех стадиях развития коррозии, начиная от самой малой. Толщина слоя коррозии определяется по двум независимо измеренным параметрам: величине затухания звука и скорости звука. Причем измерения проводятся дважды - в прямом и обратном направлениях распространения звуковой волны. В результате получаются четыре независимых отсчета измеряемых параметров, которые усредняются с использованием весовых коэффициентов. Избыточность данных значительно повышает достоверность и точность результатов измерения.

Дистанционность способа по сравнению с прототипом увеличивается от 100 м до нескольких километров, и соответственно увеличивается длина контролируемых участков трубопровода. Это достигается за счет того, что в качестве информативного сигнала используется не часть, а полная мощность технологического шума перекачиваемого продукта и полный его частотный спектр, включая низкие частоты с малым погонным затуханием звука. Дистанционность способа определяется только погонным затуханием звука в трубе на преобладающих частотах технологического шума.

Способ предусматривает измерение затухания продольной звуковой волны как самостоятельного параметра, функционально связанного с коррозией трубы. Затухание звука измеряется по степени ослабления звуковой волны при прохождении от одного приемника до следующего в прямом и обратном направлениях. Амплитуда сигналов измеряется спектральным и корреляционным анализом. Физический механизм зависимости затухания звука от степени коррозии объясняется поглощением звука в рыхлых коррозионных образованиях, а также частичными отражениями продольной звуковой волны в обратном направлении от любых даже самых малых коррозионных дефектов. Например, в стальной трубе газопровода диаметром 1 м с толщиной стенки 22 мм частота максимума спектральной огибающей составляет 2 кГц. На этой частоте затухание продольной звуковой волны составляет 1 дб/км, что обеспечивает дистанционность обнаружения сигнала 10 км.

Оценка степени коррозии трубы по величине затухания звука полезна, но недостаточна, поскольку затухание обусловлено не только коррозией, но и другими факторами, в частности изменчивостью акустического контакта трубы с подстилающим грунтом при подъеме грунтовых вод и другими подобными факторами.

Вторым диагностическим параметром, однозначно связанным с коррозией трубы, является скорость продольной звуковой волны в прямом и обратном направлениях. Скорость звуковой волны измеряется по временной задержке сигнала между двумя смежными приемоизлучателями с достаточно высокой точностью порядка сотых долей процента. Величина временных задержек определяется корреляционной обработкой сигналов с разрешением до 1/4 периода верхней частоты спектра шумового сигнала. Причем одна достаточно продолжительная запись сигналов от двух смежных сечений трубопровода позволяет измерить величину задержки распространения звука как в прямом, так и в обратном направлениях. Процедура расчета прямого и обратного хода корреляционным методом отличается только направлением сдвига по оси времени сравниваемых сигналов.

Скорость звука в неповрежденной коррозией трубе определяется формулой, известной из курса физики:

, где

C - скорость звука, м/с;

E - модуль Юнга материала трубы, Н/м2;

ρ - плотность материала трубы, кг/м3.

В этой формуле модуль Юнга характеризует продольную жесткость трубы, от которой и зависит скорость звука. Под действием коррозии площадь поперечного сечения стенки трубы по чистому металлу сокращается, что вызывает уменьшение жесткости трубы и соответствующее снижение скорости звука. Согласно формуле можно заключить, что при среднем показателе коррозии 50% от ее площади сечения жесткость трубы и эффективная величина модуля Юнга сократятся в 2 раза. Соответственно скорость звука при неизменной плотности ρ снизится на 41%. Большая величина приращения скорости звука от степени коррозии подтверждает высокую чувствительность способа диагностики по этому параметру. Высокая чувствительность способа к малым значениям среднего показателя коррозии позволяет осуществлять непрерывный мониторинг коррозионного состояния трубопровода и по скорости процесса прогнозировать сроки наступления предельно допустимого состояния.

В качестве источника звука для проведения измерений используют технологический шум перекачиваемого продукта, который непрерывно создает продольную звуковую волну, распространяющуюся по трубопроводу в прямом и обратном направлениях. Эта волна постепенно затухает на некотором расстоянии от точки возбуждения, но также непрерывно пополняется новыми порциями шума соседних участков. Таким образом, по всей длине трубопровода средняя мощность шумового сигнала, распространяющегося в двух направлениях, остается постоянной. В спектре шумов преобладают частоты в диапазоне от 300 до 2500 Гц, содержащиеся в пульсациях давления турбулентного потока внутри трубы и имеющие малое погонное затухание.

При остановках трубопровода для регламентного обслуживания в качестве источника звука применяют активные шумоподобные посылки, которые формируют компьютером и излучают пьезокерамическими излучателями в прямом и обратном направлениях. При активном излучении посылок обработка принимаемых сигналов выполняется аналогичным методом корреляционного анализа. Использование активных посылок в рабочем режиме трубопровода нецелесообразно по энергетическим причинам, так как для этого мощность излучаемых посылок потребовалось бы многократно увеличить для перекрытия технологического шума трубы.

Средняя толщина слоя коррозии трубы рассчитывается по измеряемым величинам затухания звука и скорости звука в трубе, используя эмпирическую формулу и коэффициенты пересчета. Коэффициенты пересчета эмпирической формулы получают расчетным методом по математической модели трубы или градуировкой измерительной системы по реальным образцам закоррозированных участков трубопровода.

Способ не имеет ограничений по диаметру труб, толщине стенки, материалу трубы.

Источники информации

1. Диагностика как элемент коррозионного мониторинга трубопроводов тепловых сетей. Журнал "Новости теплоснабжения" №4 (20), апрель 2002 г., с.29-34. www.ntsn.ru

2. Способ контроля герметичности и определения координаты места течи в трубопроводе. RU 2181881 С2, 27.04.2002 г.

3. Способ определения координаты источника сигналов акустической эмиссии. SU 1442905.

4. Способ определения координаты течи в трубопроводах. SU 1283566 А1, 15.01.87 г.

5. Способ обнаружения коррозионных дефектов в трубопроводах водоснабжения.

RU 2138037 C1, G01N 29/04 20.09.1999 г. (прототип).

Способ измерения коррозии трубы магистральных трубопроводов, отличающийся тем, что среднюю толщину коррозии определяют по затуханию и скорости звука продольной звуковой волны, распространяющейся в трубопроводе, для чего на трубе по длине трассы устанавливают обратимые пьезокерамические приемоизлучатели с шагом в несколько километров, связанные с удаленным компьютером и источником электропитания кабельными линиями, с помощью приемоизлучателей регистрируют на компьютере шумовые сигналы продольной звуковой волны, распространяющейся в прямом и обратном направлениях, математической обработкой определяют временные задержки и амплитуды сигналов, по которым вычисляют затухание и скорость звука на участках трубы между смежными парами приемоизлучателей, а затем по затуханию и скорости звука рассчитывают среднюю по длине толщину слоя коррозии, при этом в качестве источника звука используют технологический шум перекачиваемого продукта, а на отключенном для профилактики трубопроводе используют активные шумоподобные посылки, которые формируют компьютером и излучают пьезокерамическими приемоизлучателями.
Источник поступления информации: Роспатент

Showing 331-340 of 364 items.
19.06.2019
№219.017.89dd

Автоматизированное устройство для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах

Изобретение относится к области судостроения (прочности конструкции корпусов судов), касается вопросов обеспечения и повышения эксплуатационного ресурса судов арктического плавания, сварные конструкции которых находятся под воздействием циклических нагрузок и низких температур. Заявленное...
Тип: Изобретение
Номер охранного документа: 0002457460
Дата охранного документа: 27.07.2012
19.06.2019
№219.017.8a28

Способ диагностики вида аэроупругих колебаний рабочих лопаток осевой турбомашины

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем диагностики осевых турбомашин в авиации и энергомашиностроении. Способ диагностики заключается в том, регистрируют сигналы с тензодатчиков на рабочих лопатках и с датчика...
Тип: Изобретение
Номер охранного документа: 0002402751
Дата охранного документа: 27.10.2010
19.06.2019
№219.017.8ab1

Роторный узел для газотурбинного двигателя

Роторный узел для газотурбинного двигателя содержит пару металлических дисков с центральным отверстием под вал ротора и множеством прецизионно обработанных сквозных отверстий под штифт, равномерно распределенных по длине двух концентрических окружностей, и лопаточный узел, размещенный между...
Тип: Изобретение
Номер охранного документа: 0002439337
Дата охранного документа: 10.01.2012
19.06.2019
№219.017.8bfa

Тепловой двигатель

Изобретение решает техническую задачу по созданию роторного теплового двигателя. Тепловой двигатель включает топку с теплообменником и блок сжатия и расширения, выполненный в корпусе. В цилиндрической полости корпуса установлен ротор. В карманах корпуса расположены, по меньшей мере, два...
Тип: Изобретение
Номер охранного документа: 0002460898
Дата охранного документа: 10.09.2012
03.07.2019
№219.017.a499

Способ одновременного измерения дальности, скорости и ускорения малоскоростной маневрирующей воздушной цели в импульсно-доплеровских радиолокационных станциях при высокой частоте повторения импульсов и линейной частотной модуляции

Изобретение относится к способу одновременного измерения дальности, скорости и ускорения малоскоростной маневрирующей воздушной цели (ВЦ) в импульсно-доплеровских радиолокационных станциях (ИД РЛС) при высокой (ВЧП) частоте повторения импульсов и линейной частотной модуляции (ЛЧМ) в ИД РЛС,...
Тип: Изобретение
Номер охранного документа: 0002692912
Дата охранного документа: 01.07.2019
17.07.2019
№219.017.b5ee

Способ приготовления стекольной шихты

Изобретение относится к способам приготовления шихты для производства стекла. Способ приготовления стекольной шихты включает измельчение и смешение сырьевых материалов, при этом сырьевые материалы, твердость которых 5 и более единиц по шкале Мооса, измельчают до достижения размера частиц менее...
Тип: Изобретение
Номер охранного документа: 0002694658
Дата охранного документа: 16.07.2019
16.08.2019
№219.017.c00f

Устройство для измерения параметров изгибных пьезокерамических преобразователей

Изобретение относится к области гидроакустики. Устройство для измерения параметров изгибных пьезокерамических преобразователей содержит гидравлическую камеру высокого давления, снабженную эластичной мембраной, излучатель звука, образцовый и контролируемый преобразователи. В качестве излучателя...
Тип: Изобретение
Номер охранного документа: 0002697432
Дата охранного документа: 14.08.2019
17.08.2019
№219.017.c10d

Способ обнаружения, измерения дальности и скорости низколетящей малоскоростной цели в импульсно-доплеровских радиолокационных станциях при высокой частоте повторения импульсов и инвертируемой линейной частотной модуляции

Изобретение относится к радиолокации воздушных целей (ВЦ) и может быть использовано в импульсно-доплеровских радиолокационных станциях (РЛС). Технический результат – повышение точности обнаружения, измерения дальности и скорости низколетящей малоскоростной цели. Указанный результат достигается...
Тип: Изобретение
Номер охранного документа: 0002697509
Дата охранного документа: 15.08.2019
07.09.2019
№219.017.c8a6

Винто-рулевая колонка судна

Изобретение относится к области судостроения, а именно к движителям судна в виде винто-рулевой колонки. Винто-рулевая колонка судна включает в себя гондолу с расположенными в ней электродвигателем с гребным валом, на конце которого установлен размещенный вне гондолы гребной винт, и связанную с...
Тип: Изобретение
Номер охранного документа: 0002699510
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.d11c

Способ определения ресурса корабельной радиоэлектронной аппаратуры

Изобретение относится к области измерительной техники, а именно к способам определения свойств надежности радиоэлектронной аппаратуры, в частности определения ресурса корабельной радиоэлектронной аппаратуры (РЭА). Сущность: перед испытаниями РЭА при воздействии нагрузки с расчетом интенсивности...
Тип: Изобретение
Номер охранного документа: 0002700799
Дата охранного документа: 23.09.2019
Showing 1-6 of 6 items.
10.01.2015
№216.013.1b14

Способ и устройство акустико-эмиссионной диагностики дефектов морских ледостойких сооружений

Использование: для акустико-эмиссионной диагностики морских ледостойких сооружений. Сущность изобретения заключается в том, что в критичных узлах конструкции сооружения устанавливают акустико-эмиссионные преобразователи звукового диапазона частот, регистрируют сигналы акустической эмиссии и по...
Тип: Изобретение
Номер охранного документа: 0002538360
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2b9d

Способ и устройство для измерения толщины и плотности гололедных отложений

Изобретение относится к области измерения и регистрации гололедных отложений на длинномерных конструкциях типа морских буровых установок, линий электропередач и т.п. Целью настоящего изобретения является создание способа и устройства, обеспечивающих непрерывный, через точно определенные...
Тип: Изобретение
Номер охранного документа: 0002542622
Дата охранного документа: 20.02.2015
13.01.2017
№217.015.741c

Гидроакустическая система подводной связи

Использование: изобретение относится к гидроакустике и может использоваться в системах подводной цифровой связи в условиях высокого уровня помех от многолучевости распространения акустического сигнала; сущность: защита от помех многолучевости и реверберации достигается применением в передатчике...
Тип: Изобретение
Номер охранного документа: 0002597685
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.74a2

Гидроакустическая многоэлементная антенна

Использование: для приема цифровых данных в многолучевом гидроакустическом канале связи с выраженным эффектом замираний сигнала, обусловленных интерференцией акустических лучей; сущность: антенна выполнена из отдельных приемных элементов в виде тонкостенных пьезокерамических колец с широкой...
Тип: Изобретение
Номер охранного документа: 0002597687
Дата охранного документа: 20.09.2016
18.05.2019
№219.017.5a13

Система сбора, обработки и передачи измерительной информации с последовательным расположением объектов на магистрали большой протяженности

Изобретение относится к области информационно-измерительных систем, в частности к оптико-электронным устройствам сбора, обработки и передачи измерительной информации с объектов магистрального трубопровода, расположенных вдоль линии передачи на большом расстоянии друг от друга. Техническим...
Тип: Изобретение
Номер охранного документа: 0002450347
Дата охранного документа: 10.05.2012
18.05.2019
№219.017.5b79

Устройство контроля исправности трубопровода газоконденсата

Изобретение относится к стационарным системам мониторинга исправности морского трубопровода газоконденсата. Устройство содержит береговую обрабатывающую и регистрирующую аппаратуру с блоком дистанционного питания и подводным кабелем связи, соединяющим морскую и береговую аппаратуру. Вдоль...
Тип: Изобретение
Номер охранного документа: 0002464485
Дата охранного документа: 20.10.2012
+ добавить свой РИД