×
18.05.2019
219.017.53c9

Результат интеллектуальной деятельности: Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных органов. Способ включает осаждение магнетита FeO из раствора, содержащего соли железа (II) и железа (III), концентрированным раствором аммиака при значении рН реакционной смеси не менее 10 в присутствии стабилизатора - лимонной кислоты, взятой из расчета 0,02-0,5 моль на 1 моль образующегося по стехиометрии коллоидного FeO, который обрабатывают в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов, после чего выделяют декантацией на внешнем магните и промывают. Добавляют к полученному осадку водный раствор аммиака, затем в полученную суспензию вводят лимонную кислоту и раствор тантала во фтористоводородной кислоте при рН реакционной смеси 9-11. Обрабатывают полученную смесь в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов с получением осадка ферримагнитных частиц FeO размером 70-400 нм, покрытых рентгеноконтрастной оболочкой оксида тантала TaO. Отфильтровывают и промывают полученный осадок. Технический результат - повышение устойчивости получаемого магнитоактивного рентгеноконтрастного средства к седиментации, улучшение стабильности его водной суспензии за счет оптимизации размеров его частиц при одновременном увеличении прочности и повышении адгезии их рентгеноконтрастной оболочки к ферримагнитному ядру. 1 табл., 4 пр.

Изобретение относится к медицине, в частности к рентгенологии, и может быть использовано в качестве рентгеноконтрастного средства при рентгенологических исследованиях различных, преимущественно полых, органов.

В рентгенологической практике среди рентгеноконтрастных средств главное место занимают йодсодержащие препараты. Однако их использование для контрастирования полых органов и внутрисосудистого введения сопровождается рядом побочных эффектов. Отмечено их токсическое действие на кровь, почки, печень и щитовидную железу. Наиболее перспективными для рентгенодиагностики являются нетоксичные рентгеноконтрастные соединения тантала. В то же время рентгеноконтрастные препараты не могут необходимое время быть зафиксированными в нужной области из-за протекающих физиологических процессов, обусловленных током крови, лимфы и сократительной деятельности полых органов, что обусловливает интерес к созданию магнитоуправляемых нетоксичных рентгеноконтрастных средств, содержащих в качестве магнитных частиц ферримагнетики, в частности, магнетит.

Известно (RU 2497546, опубл. 2013.11.10) контрастное средство, используемое в диагностике для проведения магнитно-резонансной томографии и рентгеновской компьютерной томографии и способ его получения. Известное средство содержит сложный оксид железа в концентрации 600 мг/мл, а также 2,4 мг/л лимонной кислоты для стабилизации размера частиц сложного оксида железа в диапазоне 5-10 нм, 140 мг/мл цитрата натрия для стабилизации структуры контрастного средства, 160 г/л полиэтиленгликоля и 460 мг/мл воды для инъекций. Способ получения указанного выше контрастного средства включает интенсивное перемешивание на скорости 800 об/мин растворенных в воде солей трех- и двухвалентного железа и гидрата аммония с получением высокодисперсного сложного оксида железа, добавление к нему лимонной кислоты с последующим введением полиэтиленгликоля и разбавленного в воде цитрата натрия при интенсивном перемешивании, охлаждение полученного продукта и отделение от него нерастворенного цитрата натрия. Известное средство и способ его получения характеризуются следующими недостатками. Частицы магнетита с размерами в диапазоне 5-10 нм являются однодоменными и теряют ферримагнитные свойства. Известно, что для ферримагнетиков существует критический размер (dкр), ниже которого его частицы становятся однодоменными. Для ферримагнетика Fe3O4 при комнатной температуре экспериментально установленное значение dкр≥50 нм. Частицы с размером меньше критического переходят в суперпарамагнитное состояние, вследствие чего уже не могут удерживаться внешним магнитным полем в заданной области, например, в зоне злокачественной опухоли. Недостатком, связанным с малым размером частиц магнетита, является сложность их отделения от других продуктов реакции. Эти частицы в присутствии ПАВ (лимонной кислоты) практически невозможно осадить простым отстаиванием и промыть, как указано в известном патенте. Для отмывания таких частиц в процессе синтеза необходимо высокооборотное центрифугирование. Кроме того, установлено, что оболочка из полиэтиленгликоля (ПЭГ), согласно известному способу формируемая на наночастицах магнетита, может оказывать отрицательное воздействие на живой организм. Исследования показывают, что обработанные полиэтиленгликолем эритроциты становятся иммуногенными и обладают, соответственно, низкой выживаемостью в организме реципиента при трансфузии.

Наиболее близким к заявляемому является способ получения дисперсного магнитоактивного рентгеноконтрастного средства (RU 2639567, опубл. 2017.12.12), содержащего оксид железа Fe3O4 и оксид тантала Ta2O5, путем последовательного осаждения из соответствующих растворов, содержащих соединения железа либо соединения тантала, с помощью раствора аммиака при рН смеси не менее 10 в присутствии олеата натрия в качестве стабилизатора, при этом в водный раствор, содержащий соль железа (II) и соль железа (III), добавляют концентрированный раствор аммиака до значения рН смеси не менее 10 и раствор олеата натрия; в полученную смесь вводят содержащий тантал водный фторидный либо водный сульфооксалатный раствор, добавляют раствор аммиака до значения рН не менее 10 и раствор олеата натрия, перемешивают в течение 5-10 минут.Дают отстояться в течение 0,5 часа, сливают часть раствора над осадком, а оставшуюся пульпу фильтруют. Осадок на фильтре дважды промывают водой, после чего его распульповывают в воде и диспергируют ультразвуком.

Недостатком известного способа является формирование крупных частиц с ферритным ядром микронных размеров, подверженных быстрой седиментации в составе суспензии и требующих диспергирования перед применением, причем при длительном хранении выпавший осадок частиц магнитоактивного рентгеноконтрастного средства, полученного известным способом, настолько уплотняется, что практически не поддается диспергированию. Под действием аммиака на поверхности ферримагнитных частиц Рез04 формируется аморфный слой оксида тантала с низкой адгезией к ядру, что также отрицательно сказывается на стабильности полученного средства, сохранении его свойств с течением времени.

Задачей изобретения является создание способа получения магнитоактивного рентгеноконтрастного средства, устойчивого к седиментации и стабильного при хранении.

Технический результат способа заключается в повышении устойчивости получаемого магнитоактивного рентгеноконтрастного средства к седиментации и улучшении стабильности его водной суспензии за счет формирования частиц оптимального размера, увеличения их прочности и возрастания адгезии их рентгеноконтрастной оболочки к ферримагнитному ядру.

Указанный технический результат достигают способом получения нанодисперсного магнитоактивного рентгеноконтрастного средства, содержащего оксид железа Fe3O4 и оксид тантала Ta2O5, путем последовательного осаждения из раствора, содержащего соли железа (II) и железа (III), и, соответственно, из раствора тантала во фтористоводородной кислоте с помощью концентрированного раствора аммиака, используемого в количестве, обеспечивающем значение рН реакционной смеси не менее 9, в присутствии стабилизатора, с последующим выделением и промыванием осажденных продуктов, в котором, в отличие от известного, в качестве стабилизатора используют лимонную кислоту из расчета 0,02-0,5 моля на 1 моль образующегося магнетита Fe3O4, при этом полученный виде коллоидных частиц магнетит подвергают термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 ч, после чего декантацией на внешнем магните выделяют осадок Fe3O4, к промытому осадку добавляют водный раствор аммиака с получением суспензии, вводят в нее лимонную кислоту из расчета 0,02-0,5 моля на 1 моль содержащегося в суспензии Fe3O4 и раствор тантала во фтористоводородной кислоте, и подвергают полученный продукт термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 1800С в течение 12-16 часов и после промывания подвергают лиофильной сушке. Способ осуществляют следующим образом.

Готовят смесь растворимых солей двух- и трехвалентного железа, например, сульфата FeSO4 и хлорида FeCl3, с лимонной кислотой и добавляют при перемешивании 4-12 М водный раствор аммиака до значения рН=10-11 и выше.

Коллоидный раствор магнетита, образующегося в процессе синтеза согласно уравнению реакции:

FeSO4+2FeCl3+8NH4OH=Fe3O4+6NH4Cl+(NH4)2SO4+4H2O,

содержит аморфные частицы Fe3O4, размер который, как установлено экспериментально, находится в непосредственной зависимости от концентрации лимонной кислоты в реакционной смеси, при этом их оптимальный размер обеспечивается при соотношении 0,02-0,5 моля лимонной кислоты на один моль синтезируемого магнетита.

Таким образом, для получения частиц магнетита размером 70-400 нм, который является оптимальным для обеспечения устойчивости его суспензии, берут 1 моль сульфата FeSO4, 2 моля хлорида FeCl3 и лимонную кислоту из расчета 0,02-0,5 молей на 1 моль синтезируемого Fe3O4. Образовавшийся после добавления концентрированного раствора аммиака коллоидный раствор, содержащий магнетит Fe3O4 в виде аморфных частиц, помещают в автоклав.

После обработки полученного коллоидного раствора в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов аморфные частицы Fe3O4 переходят в кристаллическое состояние. Эти частицы размером 70-400 нм выделяют декантацией на внешнем магните и десятикратно промывают дистиллированной водой.

К полученным ферримагнитным частицам добавляют 4-12 М водный раствор аммиака с получением суспензии. В подготовленную суспензию вводят лимонную кислоту из расчета 0,02-0,5 молей на 1 моль содержащегося в суспензии Fe3O4 и раствор тантала во фтористоводородной кислоте, поддерживая значение рН реакционной смеси в интервале 10-11. На поверхности ферримагнитных частиц Fe3O4 формируется рентгеноконтрастный слой оксида тантала, для стабилизации и закрепления которого полученный продукт нагревают в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов. Образовавшиеся ферримагнитные рентгеноконтрастные наночастицы выделяют декантацией на внешнем магните и десятикратно промывают дистиллированной водой.

Благодаря оптимальному размеру частиц магнитоактивного рентгеноконтрастного средства, полученного предлагаемым способом при заявленном соотношении исходных компонентов, его препараты в виде суспензии в физиологическом растворе, спонтанно не седиментируют в течение длительного времени, и как показывает эксперимент, не осаждаются центрифугированием при 3000 об/мин в течение 10 мин.

Результаты экспериментальной проверки зависимости размера формируемых частиц Fe3O4, определяющего скорость седиментации получаемого средства и его магнитные свойства, от относительного содержания используемой в качестве стабилизатора лимонной кислоты даны в таблице и частично отражены в приведенных примерах.

Средство обладает хорошими магнитными и рентгеноконтрастными характеристиками. Его препараты, не содержащие поверхностно-активных веществ и полиэтиленгликоля, обнаруживают хорошую биосовместимость. Как показали эксперименты, они нетоксичны для мышей при перитонеальном введении в дозе 20 г/кг.

Примеры конкретного осуществления способа.

Пример 1

К смеси, содержащей 10 мл 1 MFeSO4, 20 мл 1 М FeCl3 и 3 мл 1 М лимонной кислоты, добавляли 4 М водный раствор аммиака до рН 11. При этом образуется 0.01 моль магнетита (мольное отношение лимонная кислота/магнетит равно 0,3). Нагревали при 100°С в течение 30 мин, затем при 180°С в течение 12 часов. Наночастицы Fe3O4 выделяли путем декантации на магните, отмывали дистиллированной водой и лиофильно высушивали. В результате получены ферримагнитные частицы с размерами, близкими к 107 нм.

Далее к суспензии, содержащей 1,45 г полученных, как описано выше, частиц Fe3O4 в 22 мл 4 М водного раствора аммиака, добавляли 2 мл 1 М лимонной кислоты, затем 56 мл 0,055 М раствора тантала во фтористоводородной кислоте, при значении рН реакционной среды равном 9.

Затем нагревали при 100°С в течение 20 мин, затем при 180°С в течение 16 часов. Полученные наночастицы выделяли декантацией на внешнем магните, десятикратно промывали дистиллированной водой и лиофильно высушивали. В результате получено магнитоактивное рентгеноконтрастное средство типа ядро-оболочка Fe3O4@Ta2O5.

Препарат в виде порошкообразного средства, суспензированного в физиологическом растворе, устойчив к седиментации в течение длительного времени, не осаждается центрифугированием при 3000 об/мин в течение 10 мин. Нетоксичен для мышей при перитонеальном введении в дозе 20 г/кг и ниже.

Пример 2

К смеси, содержащей 10 мл 1 М FeSO4, 20 мл 1 М FeCl3 и 1 мл 1 М лимонной кислоты, добавляли 4 М водный раствор аммиака до рН 11 (мольное отношение лимонная кислота/магнетит равно 0,1). Нагревали при 100°С в течение 30 мин и при 180°С в течение 12 часов. Наночастицы отмывали декантацией на магните дистиллированной водой и лиофильно высушивали. В результате получены ферримагнитные частицы размером примерно 125 нм.

Далее к суспензии, содержащей 1,45 г полученного Fe3O4 (6,25 ммоля) в 22 мл 12 М водного раствора аммиака, добавляли 2 мл 1 М лимонной кислоты, затем 56 мл 0,055 М раствора тантала во фтористоводородной кислоте при рН реакционной смеси 9. нагревали при 100°С в течение 20 мин, затем при 180°С в течение 16 часов.

Дальнейшую обработку проводили аналогично примеру 1 с получением аналогичного результата. Пример 3

При добавлении к смеси, содержащей 10 мл 1 М FeSO4, 20 мл 1 М FeCl3 и 1 М раствор лимонной кислоты в количестве 6 мл (мольное отношение лимонная кислота/магнетит более 0,5), 4 М водного раствора аммиака образуются частицы магнетита с размерами меньше критического, не обладающие ферримагнитными свойствами. Частицы с такими размерами являются суперпарамагнитными, полученное средство на их основе с ядром из Fe3O4 и оболочкой из Ta2O5 при исследованиях не может удерживаться магнитным полем в заданной зоне, например, в зоне злокачественного новообразования.

Пример 4

К смеси, содержащей 10 мл 1 М FeSO4, 20 мл 1 М FeCl3 и одномолярный раствор лимонной кислоты в количестве 0,1 мл (мольное отношение лимонная кислота/магнетит менее 0,02), добавляли аммиак в виде 4 М водного раствора. В результате получались слишком крупные (микронного размера) частицы магнетита, которые оседали в физиологическом растворе в течение 30 мин без внешнего магнитного поля. Использование магнитоактивного средства с ядром такого размера нецелесообразно, тем более что, при длительном хранении его осадок сильно уплотняется и не поддается суспензированию.

* - - не оседают на постоянном магните, +- оседают в течение 2 мин, ++-оседают в течение 15 сек, +++- оседают мгновенно

Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства, содержащего оксид железа FeO и оксид тантала TaO, путем их последовательного осаждения соответственно из раствора, содержащего соли железа (II) и железа (III), и из раствора тантала во фтористоводородной кислоте концентрированным раствором аммиака при рН смеси не менее 9 в присутствии стабилизатора с последующим выделением и промыванием полученных частиц, отличающийся тем, что в качестве стабилизатора используют лимонную кислоту из расчета 0,02-0,5 моль на 1 моль образующегося магнетита FeO, при этом полученный в виде коллоидных частиц магнетит подвергают термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 ч, после чего декантацией на внешнем магните выделяют осадок FeO, к промытому осадку добавляют водный раствор аммиака с получением суспензии, вводят в нее лимонную кислоту из расчета 0,02-0,5 моль на 1 моль содержащегося в суспензии FeO и раствор тантала во фтористоводородной кислоте и подвергают полученный продукт термообработке в автоклаве при 100°С в течение 20-30 мин, затем при 180°С в течение 12-16 часов и после промывания подвергают лиофильной сушке.
Источник поступления информации: Роспатент

Showing 21-30 of 125 items.
20.07.2015
№216.013.6327

Додекагидро-клозо-додекаборат полиэтиленимина и способ его получения

Изобретение относится к химии полиэдрических боргидридных соединений и полиэтиленимина. Способ получения додекагидро-клозо-додекабората полиэтиленимина состава CHNH×0,4HBH включает взаимодействие водных растворов полиэтиленимина (ПЭИ) и додекагидро-клозо-додекаборной кислоты (HBH), взятых в...
Тип: Изобретение
Номер охранного документа: 0002556930
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.65c6

Способ получения алюмосиликатов натрия или калия из кремнийсодержащего растительного сырья

Изобретение может быть использовано для получения носителей катализаторов, ионообменных материалов, сорбентов, используемых при очистке, сушке и разделении газов, при очистке воды от бактерий и пестицидов, для приготовления пигментов, для получения пищевых добавок. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002557607
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.65c7

Способ утилизации отработанных электролитов хромирования

Изобретение может быть использовано в производствах, где отработанные концентрированные растворы и сточные воды требуют очистки от соединений шестивалентного хрома, например при переработке токсичных отходов гальванического производства - отработанных электролитов хромирования. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002557608
Дата охранного документа: 27.07.2015
20.08.2015
№216.013.7365

Способ переработки политетрафторэтилена

Изобретение относится к области переработки политетрафторэтилена (ПТФЭ) и утилизации его отходов и может найти применение для получения растворов, содержащих ионы фтора (электролитов) и используемых для проведения электролиза и химических реакций в растворах с участием ионов фтора с выделением...
Тип: Изобретение
Номер охранного документа: 0002561111
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.78ab

Аддукты додекагидро-клозо-додекабората хитозана с солями-окислителями переходных металлов и способ их получения

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей переходных металлов, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами переходных металлов, в частности Cu(II), или Со(II), или Ni(II), или Zn(II), или Мn(II), и...
Тип: Изобретение
Номер охранного документа: 0002562480
Дата охранного документа: 10.09.2015
10.11.2015
№216.013.8d49

Способ получения защитных супергидрофобных покрытий на сплавах алюминия

Изобретение относится к способам получения супергидрофобных покрытий с высокими защитными свойствами, обеспечивающими эффективное снижение скорости коррозионных процессов при эксплуатации конструкций и сооружений из сплавов алюминия в атмосфере с высокой влажностью и в агрессивной среде. Способ...
Тип: Изобретение
Номер охранного документа: 0002567776
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9309

Способ получения защитных полимерсодержащих покрытий на металлах и сплавах

Изобретение относится к способам получения защитных антикоррозионных покрытий на алюминии, титане, их сплавах и сплавах магния и может найти применение для защиты изделий и конструкций, контактирующих со средой, содержащей коррозионно-активные ионы, в частности, в химическом производстве, в...
Тип: Изобретение
Номер охранного документа: 0002569259
Дата охранного документа: 20.11.2015
20.12.2015
№216.013.9a32

Способ получения каталитически активных композитных слоев на сплаве алюминия

Изобретение относится к способам изготовления оксидных композитных катализаторов на металлическом носителе-подложке, которые могут быть использованы в реакциях конверсии СО в СO, при очистке технологических и выхлопных газов, в частности, в двигателях внутреннего сгорания. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002571099
Дата охранного документа: 20.12.2015
10.01.2016
№216.013.9f4a

Способ переработки вольфрамовых концентратов

Изобретение относится к пирогидрометаллургии вольфрама, в частности к извлечению вольфрама из шеелитовых CaWO и вольфрамитовых (Fe, Mn) WOконцентратов в виде соединений, являющихся товарной продукцией. Способ предусматривает обработку вольфрамового концентрата бифторидом аммония при нагревании...
Тип: Изобретение
Номер охранного документа: 0002572415
Дата охранного документа: 10.01.2016
10.03.2016
№216.014.bf29

Способ получения прекурсора на основе гидратированного диоксида титана с наноразмерными металлическими частицами палладия для каталитически активного покрытия на инертном носителе

Изобретение относится к получению прекурсора на основе гидратированного диоксида титана для каталитически активного покрытия на инертном носителе, содержащего наноразмерные металлические частицы палладия. К коллоидному раствору силоксан-акрилатной эмульсии при перемешивании добавляют раствор...
Тип: Изобретение
Номер охранного документа: 0002576568
Дата охранного документа: 10.03.2016
Showing 21-30 of 39 items.
11.03.2019
№219.016.dc1c

Способ получения наноразмерных порошков гидроксиапатита

Изобретение может быть использовано в технологии сорбентов и медицинских материалов. Наноразмерные порошки гидроксиапатита получают взаимодействием органического производного кальция с органическим производным фосфора в органическом полярном растворителе при атомном отношении кальция к фосфору...
Тип: Изобретение
Номер охранного документа: 0002457174
Дата охранного документа: 27.07.2012
29.03.2019
№219.016.f300

Средство, обладающее иммуномодулирующим, противовоспалительным и ранозаживляющим действием

Изобретение относится к области медицины и косметологи и касается создания лекарственных средств животного происхождения. Предложено средство, обладающее иммуномодулирующим, противовоспалительным и ранозаживляющим действием, которое характеризуется тем, что оно представляет собой 1,4;...
Тип: Изобретение
Номер охранного документа: 0002379044
Дата охранного документа: 20.01.2010
10.04.2019
№219.017.07db

Способ получения нанодисперсных манганитов редкоземельных металлов

Изобретение может быть использовано в производстве магниторезисторов, материалов для создания головок магнитной записи, катализаторов. Приготавливают водный раствор соли марганца и соли редкоземельного металла. Из полученного раствора экстрагируют соединения марганца бензольным раствором,...
Тип: Изобретение
Номер охранного документа: 0002402489
Дата охранного документа: 27.10.2010
24.05.2019
№219.017.5fd6

Способ коррекции эндотелиальной дисфункции

Изобретение относится к медицине, а именно к кардиологии, и может быть использовано для коррекции эндотелиальной дисфункции. Для этого на фоне диеты, дозированных физических нагрузок и прекращения курения дополнительно вводят биологически активную добавку «Тимарин» в дозе 5 мл 2 раза в день до...
Тип: Изобретение
Номер охранного документа: 0002359686
Дата охранного документа: 27.06.2009
08.06.2019
№219.017.75ac

Способ получения борсодержащего биоактивного стекла

Изобретение относится к медицине, а именно к способу получения борсодержащего биоактивного стекла, которое может быть использовано в травматологии, ортопедии, челюстно-лицевой хирургии для создания на имплантатах биоактивного покрытия. Способ включает в себя смешение олеата кальция, олеата...
Тип: Изобретение
Номер охранного документа: 0002690854
Дата охранного документа: 06.06.2019
05.07.2019
№219.017.a6a5

Способ профилактики лучевого пневмонита

Изобретение относится к фармацевтической промышленности, в частности к способу профилактики лучевого пневмонита. Способ профилактики лучевого пневмонита, заключающийся в ингалировании неомитилана в эффективном количестве за один час до применения ионизирующего излучения и через сутки после...
Тип: Изобретение
Номер охранного документа: 0002469731
Дата охранного документа: 20.12.2012
06.07.2019
№219.017.a8db

Способ оценки общего оксидантного статуса организма

Изобретение относится к медицине, а именно к внутренним болезням, диагностике. Способ основан на определении общей оксидантной активности (ООА) и общей антиоксидантной активности (ОАА) с последующим определением оксидантного индекса (ОИ), который равен отношению ООА к ОАА. Согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002407450
Дата охранного документа: 27.12.2010
10.07.2019
№219.017.ac46

Способ диагностики рака шейки матки

Изобретение относится к медицине, а именно к диагностике злокачественных новообразований и клинической биохимии. Для осуществления способа путем лектин-иммуноферментного анализа исследуют вагинальный секрет, в котором определяют концентрацию лектин-связанных РЭА/РЭА-подобных антигенов (ЛСА)....
Тип: Изобретение
Номер охранного документа: 0002343485
Дата охранного документа: 10.01.2009
10.07.2019
№219.017.b163

Способ получения катализатора для очистки выхлопных газов двигателей внутреннего сгорания

Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания. Способ включает пропитку инертного носителя смесью органических растворов соединений европия и/или церия, платины и/или палладия и висмута, отгонку...
Тип: Изобретение
Номер охранного документа: 0002465047
Дата охранного документа: 27.10.2012
15.10.2019
№219.017.d5c4

Способ вскрытия флюорита

Изобретение относится к способам переработки минерального сырья, в частности флюорита и флюоритовых концентратов, с получением соединений фтора, используемых в качестве фторирующих агентов. Способ переработки сырья включает сульфатизацию, осуществляемую путем обжига с 20% избытком фторида...
Тип: Изобретение
Номер охранного документа: 0002702883
Дата охранного документа: 11.10.2019
+ добавить свой РИД