05.07.2018
218.016.6bcc

Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Пластинчатый теплообменник, содержащий цилиндрический наружный корпус, одно центральное и два периферийных разделительных кольца, размещенные между корпусом и кольцами и опирающиеся на центральное разделительное кольцо теплообменные элементы, выполненные из попарно соединенных по периферийным кромкам гофрированных пластин, при этом теплообменные элементы имеют выступающие за периферийную кромку отбортовки, образующие впускные и выпускные коллекторные окна, соединеные без зазора с окнами соседних теплообменных элементов и охватываемые разделительными кольцами, причем отбортовки, центральное и периферийные кольца формируют коллекторы подвода и отвода внутреннего теплоносителя, а торцевые части теплообменника выполнены таким образом, чтобы обеспечить возможность прохождения между теплообменными элементами внешнего теплоносителя. Технический результат – снижение массы и повышение герметичности и прочности теплообменника. 2 н. и 18 з.п. ф-лы, 10 ил.
Реферат Свернуть Развернуть

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора.

Известен пластинчатый рекуператор (Патент РФ №125321, МПК F28D 9/00, Пластинчатый рекуператор с поверхностями теплообмена типа Френкеля. Опубликован 27.02.2013) с многозаходным трактом, по холодному, и однозаходным трактом, по горячему теплоносителям, содержащий корпус, подводящие и отводящие каналы для обоих теплоносителей, матрицу, с поверхностями теплообмена типа Френкеля, представляющими собой попарно соединенные металлические пластины с копланарным направлением гофр, расположенных на верхней и нижней пластинах каждой пары.

Такая конструкция не обладает достаточной надежностью из-за необходимости герметизации многих мест подвода и отвода теплоносителя с высоким давлением.

Известен также пластинчатый теплообменник и способ изготовления пластинчатого теплообменника (Патент РФ №2100733, МПК F28D 9/00, B21D 53/04, Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника. Опубликован 27.12.1997.). Теплообменник содержит корпус с устройствами для подвода и отвода одного теплоносителя, а также пакеты попарно соединенных по периферийным кромкам гофрированных пластин и патрубки подвода и отвода второго теплоносителя, сообщенные с коллекторами, образованными выполненными в пластинах окнами с отбортовками, соединенные стяжными элементами прижимные плиты, между которыми установлен вышеописанный пакет пластин. На пластинах могут быть выполнены дополнительные выштамповки, образующие прямолинейные или зигзагообразные каналы. При изготовлении пластинчатого теплообменника путем штамповки изготавливают идентичные гофрированные пластины с периферийными кромками и окнами с отбортовками, затем пластины попарно жестко соединяют по периферийным кромкам, а образованные при этом теплообменные элементы соединяют между собой отбортовок окон пластин в смежных элементах, присоединяют подводящие и отводящие патрубки и помещают в корпус. Отбортовки окон выполняют с выступающими на 0,3-0,6 мм участками над поверхностью гофр пластин с образованием между периферийными кромками и отбортовками окон наклонной поверхности с углом у основания, равным от 45° до 75°. Пакет пластин стягивают с помощью прижимных плит и стяжных элементов. Периферийные кромки пластин заданной ширины соединяют посредством роликовой контактной сварки или путем аргонно-дуговой сварки, или соединяют пайкой.

К недостаткам данного известного теплообменника и способа его изготовления следует отнести большую металлоемкость и низкую эффективность конструкции. Кроме того, подобные теплообменники обладают повышенными напряжениями, возникающими в пластинах, примыкающих к стяжным плитам из-за большой разницы температур.

Наиболее близким к предлагаемому изобретению по технической сущности является известный пластинчатый теплообменник рекуператора газотурбинной установки (Патент США №7,065,873, опубликованный 27.06.2006 - прототип), содержащий цилиндрический наружный корпус, внутренние разделительные кольца, размещенные между ними и опирающиеся на центральное внутреннее разделительное кольцо, идентичные теплообменные элементы в виде конвертов, выполненные из попарно соединенных по периферийным кромкам оребренных пластин. Патрубки подвода и отвода внутреннего теплоносителя с большим давлением здесь формируются набором конструктивных элементов, включающим планки, опирающиеся на разделительные кольца. Известен также способ изготовления данного пластинчатого теплообменника, включающий поэтапную вырезку и сборку элементов конструкции, с указанием мест сварки, включающий приварку планок.

К недостаткам данной конструкции и способа ее изготовления можно отнести большое количество конструктивных элементов и сварных швов, что негативно сказывается на герметичности и прочности теплообменника. Кроме того, использование в районе патрубков подвода и отвода теплоносителя планок с приваркой их аргонно-дуговой сваркой увеличивает металлоемкость и стоимость изделия, а также снижает его эффективность вследствие загромождения проходных сечений окон патрубков. Фотография вида на патрубок подвода теплоносителя рекуператора Capstone С-30 (по прототипу) представлен на фиг. 1.

Задачей, на решение которой направлено заявленное изобретение, является устранение указанных выше недостатков прототипа.

Технический результат заключается в уменьшении массы теплообменника, его стоимости, при одновременном увеличении его эффективности и надежности за счет обеспечения герметичности и прочности теплообменника.

Технический результат достигается за счет того, что пластинчатый теплообменник, содержит цилиндрический наружный корпус, одно центральное и два периферийных разделительных кольца, размещенные между корпусом и кольцами и опирающиеся на центральное разделительное кольцо теплообменные элементы, выполненные из попарно соединенных по периферийным кромкам гофрированных пластин, согласно изобретению, теплообменные элементы имеют выступающие за периферийную кромку отбортовки, образующие впускные и выпускные коллекторные окна, соединены без зазора с окнами соседних теплообменных элементов и охватываемые разделительными кольцами, причем отбортовки, центральное и периферийные кольца формируют коллекторы подвода и отвода внутреннего теплоносителя, а торцевые части теплообменника выполнены таким образом, чтобы обеспечить возможность прохождения между теплообменными элементами внешнего теплоносителя.

Теплообменные элементы могут примыкать друг к другу по огибающим поверхностям гофр и иметь линейчатую поверхность с эвольвентой направляющей.

Гофрированные пластины могут состоять из, по меньшей мере, двух вихревых матриц, соединенных продольным гладким каналом и разделенных с помощью внутренних перегородок.

Перегородки каждого теплообменного элемента могут быть выполнены методом штамповки пластин и соединены между собой.

При количестве вихревых матриц, равному больше двух, перегородки и продольные гладкие каналы могут быть расположены в шахматном порядке.

Соседние гофры матриц каждой пластины теплообменного элемента могут быть расположены под углом 20°-90° друг к другу.

Ширина кромки и перегородки в местах соединения составляет от 20 толщин пластины, предпочтительно до 40 толщин пластины.

Вдоль периферийных кромок вблизи гладких каналов могут быть установлены соединенные с теплообменными элементами перегородки.

Соединение элементов может быть выполнено с помощью сварки или пайки.

Технический результат также достигается за счет способа изготовления пластинчатого теплообменника, который заключается в том, что наружные и внутренние гофрированные пластины изготавливают методом штамповки, а затем попарно соединяют по периферийным кромкам, а образованные при этом теплообменные пластины соединяют друг с другом с помощью наружного цилиндрического корпуса, двух периферийных и одного центрального разделительных колец, отличающийся тем, что в каждом теплообменном элементе выполняют отбортовки, образующие впускные и выпускные окна, таким образом, что они выступают за периферийную кромку пластин по внутреннему диаметру теплообменника, причем торцы центрального кольца, а также по одному торцу периферийных колец выполняют с профилем, повторяющим внешний профиль выпускных окон, в который вставляют поочередно теплообменные элементы, а затем теплообменные элементы соединяют между собой и с кольцами.

Разница наружного и внутреннего диаметров разделительных колец в местах соединения с впускными и выпускными окнами может составлять от 2,0 до 2,2 мм.

Отбортовки могут выступать за периферийную кромку на величину, составляющую 0,95-1,05 от разницы наружного и внутреннего диаметров разделительных колец в местах соединения с впускными и выпускными окнами.

Каждый теплообменный элемент может быть установлен на центральном разделительном кольце таким образом, что периферийная кромка соприкасается с цилиндрической поверхностью разделительного кольца.

Гофрированные пластины могут быть выполнены с имеющимися, по меньшей мере, двумя вихревыми матрицами, соединенными продольным гладким каналом и разделенные с помощью внутренних перегородок.

Вдоль периферийных кромок вблизи гладких каналов могут быть установлены и соединены с теплообменными элементами внешние перегородки.

Внешние перегородки могут быть изготовлены с помощью штамповки металлического листа.

Внутренние перегородки каждого теплообменного элемента могут быть изготовлены методом штамповки и соединены между собой.

По меньше мере одно из соединений может быть осуществлено с помощью сварки.

Соединение гофрированных пластин по меньшей мере одного теплообменного элемента может быть осуществлено с помощью контактной роликовой сваркой.

Изобретение иллюстрируется рисунками.

На фиг. 1 показан вид на патрубок подвода теплоносителя рекуператора Capstone С-30;

на фиг. 2 показан общий вид теплообменника, с частично вскрытым наружным цилиндрическим корпусом;

на фиг. 3 показаны внутренние разделительные кольца с частично установленными теплообменными элементами - конвертами;

на фиг. 4 показан теплообменный элемент - конверт;

на фиг. 5 показаны внешние перегородки;

на фиг. 6 показан теплообменный элемент со схемами движения теплоносителей;

на фиг. 7 показан угол при вершине скрещивания гофр;

на фиг. 8 показан элемент В фиг. 6;

на фиг. 9 показан элемент А фиг. 3;

на фиг. 10 показан элемент Б фиг. 4;

Теплообменник (фиг. 2) состоит из цилиндрического наружного корпуса 1, теплообменных элементов 2, центрального 3 и периферийных 4, 5 разделительных колец (фиг. 3). Теплообменные элементы 2 выполнены из нижней 6 и верхней 7 гофрированных пластин (фиг. 4). Линейчатая поверхность с эвольвентной направляющей пластин 6, 7 имеет штампованный рельеф и состоит из периферийной кромки 8, гофр 9, 10 вихревой матрицы, поперечных перемычек 11 внутренних перегородок, продольных гладких каналов 12 и отбортовок 13, 14, а также коллекторных окон 15, 16.

Разделительные кольца 3, 4, 5 имеют пазы 17, 18, 19 и 20 (фиг. 3). Имеются также коллекторы подвода 21 и отвода внутреннего и наружного 24 теплоносителей теплообменного элемента 2 (фиг. 2), внешние перегородки 25, 26 (фиг. 5) и бандажные кольца 27 (фиг. 2). Показаны направления течения теплоносителей (фиг. 6) и угол скрещивания гофр 9, 10 нижней 6 и верхней 7 пластины (фиг. 7), показаны внешние перегородки 25, 26 (фиг. 5), их места установки 28, 29 (фиг. 3 и 6) и определяющие размеры (фиг. 6, 7, 8, 9).

Нижняя 6 и верхняя 7 гофрированные пластины примыкают друг к другу по огибающим поверхностям гофр 9, 10 (фиг. 4, 7) и жестко скреплены между собой, например, сваркой или пайкой по периферийным кромкам 8 и перемычкам внутренних перегородок 11. При этом, в собираемом теплообменном элементе 2 отбортовки 13, 14 формируют коллекторные окна входа 15 и выхода 16 внутреннего теплоносителя (фиг. 4, 10), а внутри теплообменного элемента 2 вместе с гофрами 9, 10 и продольными гладкими каналами 12 сформированы каналы для протекания внутреннего теплоносителя. Теплообменные элементы 2 располагаются между наружным корпусом 1 и разделительными кольцами 3, 4 и 5 (фиг. 2, 3). При этом, теплообменные элементы 2 торцами периферийных кромок 8 опираются на центральное разделительное кольцо 3, примыкают друг к другу по отбортовкам 13, 14 коллекторных окон 15, 16, которые вместе с примыкающими к ним пазами 17, 18, 19 и 20, периферийными 4, 5 и центральным 3 разделительными кольцами формируют коллекторы подвода 21 и отвода внутреннего теплоносителя (фиг. 2, 3, 4). Между теплообменными элементами 2, в районе периферийных кромок 8 со стороны наружного корпуса 1 и центрального разделительного кольца 3 в местах 28, 29 сформированных продольных гладких каналов 12 установлены внешние перегородки 25, 26. Внутренний теплоноситель подводят к коллектору подвода 21, откуда он через коллекторные окна входа 15 проходит внутрь теплообменного элемента 2, где движется, как показано на фиг. 6, по вихревой матрице, сформированной гофрами 9, 10 нижней 6 и верхней 7 пластин. Для равномерного перетекания внутреннего теплоносителя из одной к другой вихревой матрице, которые сформированы между располагаемыми в шахматном порядке внутренними перегородками 11, в районе перепускных окон, выполненных в виде разрывов между перегородками 11 и периферийной кромкой 8, сформированы штамповкой продольные гладкие каналы 12. Угол α при вершине скрещивания гофр 9, 10 пластин 6, 7, как показано на фиг. 6, составляет от 20° до 90°. После вихревых матриц внутренний теплоноситель, по ходу течения, проходит через коллекторное окно выхода 16 к коллектору отвода внутреннего теплоносителя. Для наружного теплоносителя формируется канал вихревой матрицы между соседними теплообменными элементами 2. При этом коллекторы подвода (не показан) и отвода 24, наружного теплоносителя сформированы наружным корпусом 1 и периферийными разделительными кольцами 5 и 4, соответственно. Для устранения перетекания наружного теплоносителя вдоль периферийных кромок 8 в местах 28 и 29 установлены наружные перегородки 25, 26.

При изготовлении такого пластинчатого теплообменника вначале вырезаются и штампуются пластины 6, 7 с гофрами 9, 10 и периферийными кромками 8, перемычками внутренних перегородок 11 и отбортовками 13, 14 коллекторных окон 15, 16. Изготавливаются цилиндрический наружный корпус 1 с разделительными кольцами 3, 4 и 5. При этом разделительные кольца 3, 4 и 5 изготавливают с разницей наружного и внутреннего диаметра в местах соединения с отбортовкой 13, 14 коллекторных окон 15, 16 δк равной от 2 мм до 2,2 мм (фиг. 9), а торцы отбортовок 13, 14 в пластинах 6, 7 выполняют с выступанием за торец периферийной кромки на величину Δ равную 0,95-1.05 от величины δк (фиг. 8). Сами стыкуемые торцы центрального разделительного кольца 3 и периферийных разделительных колец 4, 5 выполняют фигурными с пазами 17, 18, 19 и 20 (фиг. 3, 9), которые зеркально повторяют профиль периферийной кромки 8 и отбортовок 13, 14, коллекторных окон 15, 16 (фиг. 7).

В процессе изготовления теплообменника путем штамповки изготавливают нижние 6 и верхние 7 гофрированные пластины, которые различаются направлением гофр 9, 10 и линейчатой поверхностью с эвольвентной направляющей.

Нижнюю 6 и верхнюю 7 пластины жестко скрепляют между собой, например, сваркой или пайкой с помощью роликовой контактной сварки по периферийным кромкам 8 и перемычкам внутренних перегородок 11. При этом, так как при использовании роликовой контактной сварки ширина сварного шва составит не менее 6 толщин пластины, то ширина Θ периферийной кромки 8 и перемычки внутренней перегородки 11 должна составлять 20-40 толщин пластины σ. Это делается с целью экономии материала и обеспечения герметичности и прочности пластинчатого теплообменника. Так, в случае использования листа толщиной 0,2 мм, ширина периферийной кромки 8 и перемычки 11 должна быть от 4 до 8 мм.

На верхней пластине 7 теплообменного элемента 2 в районе периферийных кромок 8 со стороны наружного корпуса 1 и центрального разделительного кольца 3, в местах 28, 29 сформированных продольных гладких каналов 12 закрепляются внешние перегородки 25 и 26, по высоте, ширине и толщине равные высоте периферийной кромки, ширине двух высот выштамповки и толщине гофрированной пластины соответственно. Перегородки 25, 26 изготавливаются с помощью штамповки в заданную форму и размер металлического листа, и жестко закрепляются на верхней 7 пластине теплообменного элемента 2, например, с помощью сварки.

Образованные теплообменные элементы 2 располагаются между кольцами 3, 4 и 5, вставляются пазы 17, 18, 19 и 20. При этом теплообменные элементы 2 торцами периферийных кромок 8 опираются на центральное разделительное кольцо 3, а отбортовки 13, 14 с периферийными кромками 8 соединяют с кольцами 3, 4, 5 пазам 17, 18, 19 и 20. Данное соединение также может осуществляться с помощью сварки. Кроме того, сваркой могут соединяться торцы отбортовок 13, 14 соседних теплообменных элементов 2 коллекторных окон 15, 16. После завершения полного набора теплообменных элементов 2 с внешними перегородками 25, 26, на собранный набор надевается цилиндрический наружный корпус 1. Для удобства, перед установкой наружного корпуса 1, снаружи теплообменные элементы 2 охватывается бандажными кольцами 27 (фиг. 2), препятствующими разъединению верхней 7 и нижней 6 пластин.

Теплообменник работает следующим образом. Для примера рассмотрим его в качестве рекуператора газотурбинного двигателя (ГТД), используемого для утилизации тепла выхлопных газов. Нагреваемый теплоноситель, например, воздух из компрессора ГТД, подводится к коллектору 21 подвода внутреннего теплоносителя и через коллекторные окна 15 поступает внутрь теплообменного элемента 2. Где воздух, двигаясь по вихревой матрице, сформированной штампованными гофрами 9, 10 пластин 6, 7 нагревается теплом, передаваемым через пластины 6, 7 выхлопными газами двигателя, которые поступают из турбины к коллектору подвода внешнего теплоносителя (не показан) и перемещаются к коллектору отвода 24 внешнего теплоносителя по вихревой матрице, сформированной гофрами 9, 10 смежных теплообменных элементов 2. Взаимное течение нагреваемого внутреннего теплоносителя - воздуха и отдающих тепло выхлопных газов - перекрестное, как показано на фиг. 4. Причем, направление поперечного перемещение воздуха также чередуется встречным (обратным) течением с разворотом на 180 градусов. Перетекание воздуха из одной вихревой матрицы в другую - обратного течения, происходит через коллекторные окна с примыкающими к ним продольными гладкими каналами 12, сформированными штамповками. Выход воздуха из теплообменного элемента 2 осуществляется через коллекторные окна 16. В дальнейшем, нагретый воздух из теплообменника, через коллектор отвода внутреннего теплоносителя (не показан) подводится к камере сгорания ГТД для дальнейшего нагрева при сжигании топлива.

Применение вихревой матрицы, формируемой гофрами 9, 10 пластин 6, 7 и смежными теплообменными элементами 2 с углами α от 20° до 90° при вершине скрещивания гофр 9, 10, как показано на фиг. 6, позволяет перекачивать в вихревой матрице выхлопные газы и воздух с низкими гидравлическими сопротивлениями и высокой эффективностью теплоотдачи. При этом, формирование между вихревыми матрицами внутреннего теплоносителя перепускных каналов с примыкающими продольными гладкими каналами 12 обеспечивает максимально равномерное заполнение внутренним теплоносителем вихревых матриц, при протекании теплоносителя по схеме «перекрестного противотока». Способ формирования теплообменных элементов 2, их фиксация пазах 17, 18, 19 и 20 центрального 3 и периферийных 4, 5 внутренних разделительных колец и соединение отбортовок 13, 14 соседних теплообменных элементов 2 коллекторных окон 15, 16 между собой сваркой позволяют обеспечить достаточную жесткость конструкции и использовать внутренний теплоноситель с большим давлением. Укладка теплообменных элементов 2 по эвольвенте, совместно с внешними перегородками 25, 26 обеспечивают сохранение течения наружного теплоносителя вдоль теплопередающей поверхности при различных тепловых расширениях элементов конструкции, исключая паразитное течение теплоносителя вдоль периферийных кромок 8. Указанные диапазоны значений обусловлены тем, что при выходе за минимальное значение надежность соединений снижается, а выход за максимальное значение - не оправдан с точки зрения увеличения габаритов.

Размеры внутри диапазонов выбирают, например, исходя из необходимого запаса прочности соединений в зависимости от давлений теплоносителей.


Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Пластинчатый теплообменник и способ изготовления пластинчатого теплообменника
Источник поступления информации: Роспатент

Showing 1-7 of 7 items.
26.08.2017
№217.015.d8f8

Моноимпульсная волноводная антенная решетка с частотным сканированием

Изобретение относится к радиотехнической промышленности и может применяться в радиолокационных системах с частотно-сканирующими антенными решетками, использующих моноимпульсный метод пеленгации для повышения точности измерения угловых координат воздушных объектов. Моноимпульсная волноводная...
Тип: Изобретение
Номер охранного документа: 0002623418
Дата охранного документа: 26.06.2017
20.11.2017
№217.015.ef65

Устройство для экспериментальной проверки качества работы радиолокационных станций

Изобретение относится к области радиолокации, в частности к области испытаний радиолокационных станций (РЛС), в частности к конструкциям калибровочных и эталонных отражателей (ЭО), и может использоваться для оценки характеристик и качества работы РЛС. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002628671
Дата охранного документа: 25.08.2017
20.01.2018
№218.016.1295

Способ испытаний малоразмерных лопаточных турбомашин и испытательный стенд для его реализации

Изобретение относится к испытаниям лопаточных машин - компрессоров и турбин. В способе лопаточные машины изготовляют с помощью аддитивных технологий (или AF-технологий), а работоспособность лопаточных машин обеспечивают уменьшением характерной температуры рабочего процесса в соответствии с...
Тип: Изобретение
Номер охранного документа: 0002634341
Дата охранного документа: 25.10.2017
10.05.2018
№218.016.4ae1

Вращающееся соединение

Изобретение относится к области радиолокационной техники, в частности к устройствам антенно-фидерной системы, используемым для передачи сверхвысокочастотной энергии между неподвижной частью радиолокационной станции (РЛС), например стационарными (неподвижными) передатчиками, приемниками, и...
Тип: Изобретение
Номер охранного документа: 0002651614
Дата охранного документа: 23.04.2018
11.06.2018
№218.016.6141

Плоский широкополосный вибратор

Изобретение относится к радиотехнике технике, в частности к антеннам. Плоский широкополосный вибратор содержит симметрирующее устройство, выполненное в виде U-колена, присоединенное к плечам вибратора с помощью соединительных линий. Плечи вибратора выполнены в виде трапеции, у которой боковые...
Тип: Изобретение
Номер охранного документа: 0002657091
Дата охранного документа: 08.06.2018
09.06.2019
№219.017.764d

Устройство поддержания температурного режима потребителя и способ его работы

Изобретение относится к теплотехнике, а именно к системам регулирования теплового режима различных установок. Устройство поддержания температурного режима потребителя содержит первый и второй контуры циркуляции охлаждающей жидкости, контур холодильной машины. Причем первый контур включает в...
Тип: Изобретение
Номер охранного документа: 0002690996
Дата охранного документа: 07.06.2019
02.08.2019
№219.017.bb77

Лепестковый газостатический подшипник и способ изготовления лепесткового газостатического подшипника

Изобретение относится к деталям машин, а именно к конструкциям радиальных и упорных газостатических подшипников, предназначенных для использования, в частности, в высокоскоростных роторных системах, например компрессорах, турбинах, электрогенераторах. Лепестковый газостатический подшипник...
Тип: Изобретение
Номер охранного документа: 0002696144
Дата охранного документа: 31.07.2019
Showing 1-10 of 33 items.
10.08.2014
№216.012.e8c8

Газотурбинный двигатель

Газотурбинный двигатель содержит компрессор, лопаточные диффузоры, канальный патрубок, кольцевую полость-ресивер, камеру сгорания, турбину. Турбина выполнена с охлаждаемым сопловым аппаратом, лопатки которого вдоль профиля пера от входной кромки имеют первую, вторую, третью и четвертую...
Тип: Изобретение
Номер охранного документа: 0002525385
Дата охранного документа: 10.08.2014
27.11.2015
№216.013.9512

Способ регулирования работы теплофикационной паротурбинной установки с парокомпрессионным тепловым насосом

Изобретение относится к энергетике. Способ регулирования работы теплофикационной паротурбинной установки с парокомпрессионным тепловым насосом на теплофикационном режиме, при заданной температуре подогрева сетевой воды, включает переключение доступа основного пара к подогревателю сетевой воды...
Тип: Изобретение
Номер охранного документа: 0002569781
Дата охранного документа: 27.11.2015
27.01.2016
№216.014.bd62

Способ пуска и газоснабжения электрической экологически чистой газотурбинной установки и устройство для его осуществления

Изобретение относится к области энергетики, а именно к способу регулирования газоснабжения в энергетической газотурбинной установке (ГТУ), и может найти применение в энергетических газотурбинных установках. Раскручивают ротор газогенератора газотурбинного двигателя (ГТД) для подачи воздуха в...
Тип: Изобретение
Номер охранного документа: 0002573857
Дата охранного документа: 27.01.2016
12.01.2017
№217.015.5e81

Система измерения пространственных распределений параметров атмосферы

Изобретение относится к области метеорологии и может быть использовано для измерения пространственных распределений параметров атмосферы. Сущность: система включает летательный аппарат (2) с измерительной аппаратурой (4) на борту, устройство (1) для транспортировки летательного аппарата в виде...
Тип: Изобретение
Номер охранного документа: 0002590229
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.bb5d

Контрольно-проверочный комплекс проверки автопилота

Изобретение относится к измерительной технике, а именно к устройствам для выполнения работ по проверке и регулировке автопилота вертолета, в частности автопилота АП-34Б и составных элементов автопилота. Технический результат решения заключается в создании контрольно-проверочного комплекса для...
Тип: Изобретение
Номер охранного документа: 0002615850
Дата охранного документа: 11.04.2017
19.01.2018
№218.016.0321

Подшипник газостатический

Изобретение относится к деталям машин, а именно, к конструкциям радиальных и упорных газостатических подшипников, предназначенных для использования, в частности, в высокоскоростных роторных системах, например, компрессоров, турбин, электрогенераторов. Подшипник газостатический содержит...
Тип: Изобретение
Номер охранного документа: 0002630271
Дата охранного документа: 06.09.2017
20.01.2018
№218.016.1295

Способ испытаний малоразмерных лопаточных турбомашин и испытательный стенд для его реализации

Изобретение относится к испытаниям лопаточных машин - компрессоров и турбин. В способе лопаточные машины изготовляют с помощью аддитивных технологий (или AF-технологий), а работоспособность лопаточных машин обеспечивают уменьшением характерной температуры рабочего процесса в соответствии с...
Тип: Изобретение
Номер охранного документа: 0002634341
Дата охранного документа: 25.10.2017
13.02.2018
№218.016.2202

Система подогрева установки с тепловым двигателем

Система обеспечивает саморегулируемую утилизацию и аккумулирование тепловой энергии выхлопных газов установки с тепловым двигателем, передачу накопленной теплоты требующим обогрева элементам установки, и состоит из теплообменника-утилизатора теплоты выхлопных газов, замкнутого контура...
Тип: Изобретение
Номер охранного документа: 0002641775
Дата охранного документа: 22.01.2018
17.02.2018
№218.016.2e41

Способ детектирования взрывчатых веществ (вв) в воздухе

Изобретение относится к области обнаружения микроконцентраций веществ в газовой среде, в частности к детектированию молекул взрывчатых веществ (нитросоединений) в воздухе. Способ характеризуется тем, что осуществляют сорбцию молекул ВВ исследуемого образца воздуха на вспомогательном элементе,...
Тип: Изобретение
Номер охранного документа: 0002643926
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.4b8f

Радиальный подшипник скольжения

Изобретение относится к деталям машин, а именно к конструкциям радиальных подшипников скольжения, используемых в высокоскоростных роторных системах, например, компрессоров, турбин, электрогенераторов. Радиальный подшипник скольжения содержит корпус (1), как минимум один сегмент (2),...
Тип: Изобретение
Номер охранного документа: 0002651961
Дата охранного документа: 24.04.2018

Похожие РИД в системе