×
09.05.2019
219.017.4aaa

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЭЛЕМЕНТА РАБОЧЕГО КОЛЕСА ТУРБИНЫ И РАБОЧЕГО КОЛЕСА ТУРБИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при получении отливок с направленной и монокристаллической структурой из никелевых жаропрочных сплавов. Изготавливают модель элемента колеса турбины, состоящего из дисковой и лопаточной частей. Дисковую часть модели изготавливают в виде двух пластин, имеющих форму секторов круга. Центральные углы секторов соединяют в одной точке, а дуги соединяют с лопаточной частью элемента. По модели изготавливают керамическую форму, нагревают ее и заливают расплав. Для получения лопаточной части элемента заливают литейный жаропрочный сплав на никелевой основе и начинают процесс направленной кристаллизации. Для получения дисковой части элемента заливают литейный и деформируемый жаропрочный сплав на никелевой основе и завершают процесс направленной кристаллизации. Способ позволяет получать сборные рабочие колеса турбины с достаточной механической прочностью, в которых диск с лопатками имеют монокристаллическую структуру заданной кристаллографической ориентации. Обеспечивается возможность замены части диска с лопатками при ремонте. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к области металлургии и может быть использовано при получении отливок с направленной и монокристаллической структурой из никелевых жаропрочных сплавов, в частности рабочих колес и колес сопловых аппаратов турбин авиационных двигателей и двигателей наземных установок.

Известны способы получения рабочих колес турбин, в которых отдельно изготавливают элементы колеса: диски турбин и рабочие лопатки. Турбинные лопатки, изготовленные штамповкой или литьем, подвергают механической обработке и с помощью замковых соединений (в виде "елочного" замка или в виде "ласточкина хвоста") крепят к диску, полученному методом термомеханической обработки заготовки жаропрочного сплава ("Авиационные газотурбинные двигатели" Г.С. Скубачевский, "Машиностроение", 1969, с.117-135).

При таком способе изготовления рабочего колеса турбины возможна легкая замена поврежденных лопаток во время ремонта. Однако при эксплуатации двигателя возникает большая концентрация напряжений в зубьях замка лопатки и в диске, что может приводить к появлению усталостных трещин.

Известен способ получения рабочего колеса турбины, в котором диски, лопатки и ступицу получают одновременно методом порошковой металлургии (патенты США №4329175, 4323394).

Такие способы производства, включающие получение жаропрочного сплава в виде гранул, их сепарацию, горячее изостатическое прессование (ГИП) и т.д., весьма трудоемки и для их осуществления требуется специальное оборудование. Кроме того, гранульная технология обеспечивает меньший ресурс и надежность турбинных колес при повышенных температурах.

Известны способы получения интегральных литых колес турбины методом радиально направленного затвердевания, согласно которым получают литые колеса с равноосной структурой в дисковой и ступичной частях и за счет создания градиента температур в радиальном направлении колеса с направленной структурой в лопаточной части колеса (Патенты США №3283377, 4195683, 4240495, 4436485, 4850419, 5680895 и др.).

Такие способы литья характеризуются низким выходом годного по структуре из-за сложности контроля температурных параметров процесса в переходной части от лопаток к диску и являются экономически нецелесообразными из-за невозможности замены одной или нескольких лопаток в процессе эксплуатации.

Наиболее близким по технической сущности к заявляемому, принятым за прототип является способ производства рабочих колес турбины методом контролируемого радиального затвердевания, обеспечивающего получение мелкозернистой равноосной структуры в дисковой части и ступице и направленной или монокристаллической структуры в лопатках за счет применения прилегающих к лопаткам по внешнему контуру колеса холодильников и управляемых нагревательных элементов, расположенных выше и ниже формы (патент США №4813470).

Согласно прототипу сначала получают модель элемента рабочего колеса турбины, состоящего из дисковой и лопаточной частей, изготавливают форму, удаляют модель, размещают керамическую форму в вакуумной установке, нагревают до температуры выше температуры ликвидус сплава и заливают форму расплавом жаропрочного сплава. Совместным действием холодильника, экранов и управляемых нагревателей создается радиально направленный от периферии отливки к центру температурный градиент, в результате которого осуществляется направленная кристаллизация лопаток с получением в них столбчатой или монокристаллической структуры. При получении рабочего колеса турбины после окончания кристаллизации лопаток начинается кристаллизация центральной части отливки - диска и ступицы. Для этого отключают нагрев, а включают вибратор, чтобы диск и особенно его центральная часть - ступица имели мелкозернистую равноосную структуру.

Недостатками прототипа являются низкий выход годного по структуре, связанный с трудностью контроля перехода от направленной структуры лопаток к равноосной структуре диска; невозможность получения монокристаллической структуры и внутренних охлаждающих полостей в дисковой части. Поэтому наблюдается повышенный расход жаропрочного сплава на одно колесо турбины, трудно контролируемый уровень свойств в областях перехода направленной или монокристаллической структуры лопаток к равноосной структуре дисковой части. В такой цельнолитой конструкции невозможна замена одной или нескольких лопаток в колесе в случае необходимости.

Технической задачей настоящего изобретения является получение элементов рабочего колеса турбины и рабочего колеса турбины, обладающего повышенными эксплуатационными свойствами, пониженным весом, что обеспечит снижение рабочих температур материала элементов турбины за счет наличия охлаждаемых полостей в дисковой части и лопатках, а также повышение выхода годного по структуре и возможность замены лопаток в колесе в процессе ремонта.

Для реализации технической задачи предлагается способ получения элемента рабочего колеса турбины, состоящего из дисковой и лопаточной частей, включающий изготовление модели элемента колеса турбины, получение керамической формы, удаление модели, размещение керамической формы в литейной установке для направленной кристаллизации, нагрев керамической формы до температуры, превышающей температуру ликвидус жаропрочного сплава на никелевой основе, заливку жаропрочного сплава на никелевой основе в керамическую форму и проведение направленной кристаллизации, отличающийся тем, что дисковую часть модели элемента рабочего колеса турбины выполняют в виде двух пластин, имеющих форму секторов круга, центральные углы которых соединены между собой в одной точке, а дуги секторов соединены с лопаточной частью элемента рабочего колеса турбины, при этом для получения лопаточной части элемента рабочего колеса турбины используют литейный жаропрочный сплав на никелевой основе, а для получения дисковой части - литейный или деформируемый жаропрочные сплавы на никелевой основе. Центральный угол сектора составляет 30-60 градусов.

Для получения элемента рабочего колеса турбины из жаропрочного сплава с монокристаллической структурой в керамической форме размещают монокристаллическую затравку.

В случае получения элемента рабочего колеса турбины из деформируемого и литейного жаропрочных сплавов на никелевой основе его заливку жаропрочного сплава на никелевой основе в керамическую форму осуществляют порционно: сначала заполняют дисковую часть элемента рабочего колеса турбины деформируемым жаропрочным сплавом, начинают процесс направленной кристаллизации, а затем заполняют лопаточную часть элемента рабочего колеса турбины литейным жаропрочным сплавом и завершают процесс направленной кристаллизации.

Дисковую и лопаточную части рабочего колеса турбины получают только из литейного жаропрочного сплава в случае литья рабочих колес газотурбинных двигателей, работающих при повышенных температурах и напряжениях с небольшим ресурсом. Для двигателей с длительным ресурсом эксплуатации (до 100000 часов), но работающих при более низких температурах и напряжениях, дисковую часть рабочих колес необходимо выполнять из деформируемого жаропрочного сплава, а лопаточную - из литейного жаропрочного сплава на никелевой основе.

Центральный угол сектора дисковой части элемента рабочего колеса турбины определяет количество лопаток в элементе рабочего колеса турбины и выход годного по структуре. Центральный угол сектора менее 30 градусов увеличивает количество элементов и соединений, из которых будет состоять колесо, что нежелательно. Угол сектора более 60 градусов нецелесообразен из-за отклонения основной оси крайних лопаток в элементе от направления кристаллизации и технологической трудности получения элементов с лопатками полностью с монокристаллической структурой.

Ступицу изготовляют путем направленной кристаллизации заготовки из жаропрочного никелевого сплава с последующей ее деформацией. Рабочее колесо турбины получают путем сборки элементов рабочего колеса турбины между собой и со ступицей.

На фиг.1 представлен элемент рабочего колеса турбины, а на фиг.2 - рабочее колесо турбины и сечение рабочего колеса турбины, где

1 - лопаточная часть элемента рабочего колеса турбины с охлаждаемыми монокристаллическими лопатками, полученными за одну литейную операцию,

2 - дисковая часть элемента рабочего колеса турбины,

3 - ступица рабочего колеса турбины,

4 - соединение 2-х частей рабочего колеса (болтовое),

5 - монокристаллическая затравка.

Пример 1. Были изготовлены модели рабочих лопаток с керамическими стержнями, формирующими впоследствии охлаждаемую полость лопаток. Затем изготовляли модель дисковой части, выполненной в виде двух пластин, имеющих форму секторов круга, центральные углы которых соединяли между собой в одной точке, где устанавливали модель затравки. Угол сектора был равен 30 градусам. Затем модели лопаток устанавливали в соответствующие пазы модели дисковой части и получали модель элемента колеса турбины. На модель наносили огнеупорное керамическое покрытие, удаляли модельную массу и получали керамическую форму, в стартовую часть которой после прокалки устанавливали тугоплавкую монокристаллическую затравку ориентации [001] в осевом и [010] в азимутальном направлении.

Форму с помощью специальной подвески размещали внутри печи подогрева форм вакуумной установки УВНК и осуществляли нагрев формы до температуры на 100-150°С выше температуры плавления заливаемого в форму сплава. После достижения температуры формы 1540+20°С в индукционной печи расплавляли литейный жаропрочный сплав на никелевой основе ЖС32 и заливали его в форму. С помощью привода вертикального перемещения форму с расплавом перемещали из зоны нагрева в зону охлаждения с заданной скоростью, обеспечивая направленную кристаллизацию расплава снизу вверх. При этом кристаллографическая ориентация затравки передается всей отливке, включая охлаждаемые лопатки. После окончания кристаллизации печь подогрева форм выключали, форму с отливкой поднимали в верхнее исходное положение. После полного охлаждения отливки установку развакуумировали и форму с отливкой извлекали из печи. Полученную отливку освобождали от керамической оболочки, а затем керамику удаляли из внутренних полостей отливки в расплаве бифторида калия. Получали элемент рабочего колеса турбины с полым диском и охлаждаемыми лопатками полностью с монокристаллической структурой. Выход годного по структуре при отливке секторов лопаток из сплава ЖС32 - более 70%.

Пример 2. Изготовляли модели рабочих лопаток с керамическими стержнями и получали керамическую форму как в примере 1. Вершину стартовой части формы заделывали керамической суспензией без установки затравки, помещали форму в печи подогрева форм и проводили плавку, заливку и кристаллизацию сплава ЖС32, как описано в примере 1. Получена отливка полностью с направленной структурой, включая дисковую и лопаточные части элемента колеса турбины. Выход годного по структуре ≥80%.

Пример 3. При указанной в примере 1 сборке для обеспечения максимальных служебных характеристик рабочего колеса операцию литья осуществляли в 2 этапа. Сначала в индукционной печи расплавляли деформируемый жаропрочный сплав на никелевой основе ЭК-151, заливали в форму высотой 400 мм, заполняя только дисковую часть элемента колеса, и начинали процесс направленной кристаллизации. Одновременно с кристаллизацией залитого в форму расплава в индукторе расплавляли жаропрочный литейный сплав ЖС32 и после кристаллизации 2/3-3/4 высоты дисковой части заливали расплав литейного жаропрочного сплава в ту же форму, заполняя лопаточную часть полости керамической формы, не останавливая процесс кристаллизации. Далее проводили технологические операции, аналогично примеру 1. Выход годного по структуре при отливке элементов колеса турбины секторов из 2-х сплавов составлял около 60%.

Ступицу рабочего колеса турбины ⊘300 мм изготовляли из деформируемого сплава ЭК-151 деформацией заготовки ⊘100 мм, предварительно полученную методом направленной кристаллизации.

После удаления керамики и проведения контрольных операций проводилась мехобработка отливок элементов колеса турбины для точного сопряжения полученных секторов с монокристаллической структурой между собой с помощью специальных приливов, а со ступицей диска - с помощью болтового соединения.

После закрепления на ступице всех элементов колеса турбины получали полноразмерное рабочее колесо турбины с составным диском и монокристаллическими лопатками без елочных замковых соединений.

Пример 4. Было получено рабочее колесо турбины по способу, принятому за прототип.

При исследовании структуры полученных отливок было установлено, что в рабочем колесе турбины, отлитом полностью из сплава ЖС-32, только часть лопаток имели монокристаллическую структуру (˜30%), а остальные - направленную. Дисковая часть колеса имеет равноосную структуру. Выход годного составил 40%.

Как видно из примеров, предложенный способ получения элементов рабочего колеса турбины позволяет получать сборные рабочие колеса турбины с достаточной механической прочностью, в которых диск с лопатками имеют монокристаллическую структуру заданной кристаллографической ориентации и охлаждаемую полость для снижения рабочих температур материала и веса колеса. Кроме того, предложенный способ получения сборных колес позволяет производить замену части диска с лопатками во время ремонта.

1.Способполученияэлементарабочегоколесатурбины,состоящегоиздисковойилопаточнойчастей,включающийизготовлениемоделиэлементаколесатурбины,получениекерамическойформы,удалениемодели,размещениекерамическойформывлитейнойустановкедлянаправленнойкристаллизации,нагревкерамическойформыдотемпературы,превышающейтемпературуликвидусжаропрочногосплавананикелевойоснове,заливкужаропрочногосплавананикелевойосновевкерамическуюформуипроведениенаправленнойкристаллизации,отличающийсятем,чтодисковуючастьмоделиэлементарабочегоколесатурбинывыполняютввидедвухпластин,имеющихформусекторовкруга,центральныеуглыкоторыхсоединенымеждусобойводнойточке,адугисекторовсоединеныслопаточнойчастьюэлементарабочегоколесатурбины,приэтомдляполучениялопаточнойчастиэлементарабочегоколесатурбиныиспользуютлитейныйжаропрочныйсплавнаникелевойоснове,адляполучениядисковойчасти-литейныйилидеформируемыйжаропрочныесплавынаникелевойоснове.12.Способполученияэлементарабочегоколесатурбиныпоп.1,отличающийсятем,чтозаливкужаропрочногосплавананикелевойосновевкерамическуюформуосуществляютпорционно:сначалазаполняютдисковуючастьэлементарабочегоколесатурбиныдеформируемымжаропрочнымсплавом,начинаютпроцесснаправленнойкристаллизации,азатемзаполняютлопаточнуючастьэлементарабочегоколесатурбинылитейнымжаропрочнымсплавомизавершаютпроцесснаправленнойкристаллизации.23.Способполученияэлементарабочегоколесатурбиныпоп.1,отличающийсятем,чтоцентральныйуголсекторасоставляет30-60°.34.Способполученияэлементарабочегоколесатурбиныпоп.1,отличающийсятем,чтодляполученияэлементарабочегоколесатурбинысмонокристаллическойструктуройвкерамическойформеразмещаютмонокристаллическуюзатравку.45.Способполучениярабочегоколесатурбины,состоящегоизэлементоврабочегоколесатурбиныиступицы,отличающийсятем,чтополучениеэлементарабочегоколесатурбиныосуществляютспособомполюбомуизпп.1-4,аступицуизготовляютпутемнаправленнойкристаллизациизаготовкиизжаропрочногоникелевогосплаваспоследующейеедеформацией,азатемосуществляютсборкуэлементоврабочегоколесатурбинымеждусобойисоступицей.5
Источник поступления информации: Роспатент

Showing 11-20 of 354 items.
27.09.2013
№216.012.6f40

Полимерная полиуретановая композиция и многослойный материал на ее основе

Изобретение относится к области полимерных композиций для получения многослойных материалов, предназначенных для изготовления надувных средств спасения, в том числе надувных оболочек пассажирских трапов летательных судов. Полимерная полиуретановая композиция включает полиуретановый полимер,...
Тип: Изобретение
Номер охранного документа: 0002494131
Дата охранного документа: 27.09.2013
20.02.2014
№216.012.a266

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству титановых сплавов, и может быть использовано для высоконагруженных деталей и узлов, работающих при температурах до 550°C длительно и при 600°C кратковременно. Сплав на основе титана содержит, мас.%: Al 5,0-6,6, Mo 1,5-2,5, Zr...
Тип: Изобретение
Номер охранного документа: 0002507289
Дата охранного документа: 20.02.2014
27.03.2014
№216.012.ae95

Полимерное связующее и препрег на его основе

Изобретение относится к области высокомолекулярной химии, а именно к получению связующих для полимерных композиционных материалов (ПКМ), применяемых для изготовления конструкций на основе волокнистых углеродных наполнителей с рабочей температурой 200-400°C, и могут быть использованы в...
Тип: Изобретение
Номер охранного документа: 0002510408
Дата охранного документа: 27.03.2014
27.03.2014
№216.012.aea6

Волокнистый композиционный материал

Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными волокнами оксида алюминия, и может быть использовано в качестве конструкционного материала в авиационной технике. Волокнистый композиционный материал представляет собой...
Тип: Изобретение
Номер охранного документа: 0002510425
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.afc9

Способ нанесения защитного покрытия на стальные детали

Изобретение относится к химической поверхностной обработке стальных деталей, используемой при изготовлении изделий в авиастроении, судостроении и других отраслях. Способ включает нанесение на стальные детали первого слоя, его тепловую обработку, нанесение второго слоя, его тепловую обработку,...
Тип: Изобретение
Номер охранного документа: 0002510716
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c100

Лента из порошкового высокотемпературного припоя на органической связке

Изобретение может быть использовано при изготовлении пайкой радиаторов, соединений трубопроводов, уплотнительных материалов, сопловых и рабочих лопаток турбин. Лента из порошкового высокотемпературного припоя на органической связке содержит полимер акриловой смолы и дибутилфталат, при следующем...
Тип: Изобретение
Номер охранного документа: 0002515157
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c518

Сплав на основе интерметаллида nial с монокристаллической структурой и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к сплавам на основе интерметаллида NiAl с монокристаллической структурой и выполненным из них изделиям, получаемым методом точного литья по выплавляемым моделям, таким как рабочие и сопловые лопатки, блоки сопловых лопаток и другие детали...
Тип: Изобретение
Номер охранного документа: 0002516215
Дата охранного документа: 20.05.2014
27.06.2014
№216.012.d5ed

Эпоксидное связующее, препрег на его основе и изделие, выполненное из него

Изобретение относится к области создания эпоксидных связующих для полимерных композиционных материалов (ПКМ) конструкционного назначения на основе волокнистых углеродных наполнителей, которые могут быть использованы в авиационной, космической промышленности, радиоэлектронике и других областях...
Тип: Изобретение
Номер охранного документа: 0002520543
Дата охранного документа: 27.06.2014
10.10.2014
№216.012.fdbc

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении деталей и узлов неохлаждаемых конструкций нового поколения авиационных газотурбинных двигателей с повышенными характеристиками удельной мощности и топливной экономичности, работающих при...
Тип: Изобретение
Номер охранного документа: 0002530802
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe34

Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан -...
Тип: Изобретение
Номер охранного документа: 0002530932
Дата охранного документа: 20.10.2014
Showing 11-20 of 58 items.
20.03.2019
№219.016.e4dd

Способ термомеханической обработки титановых сплавов

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в авиационной технике. Предложен способ, включающий многократный нагрев титановых сплавов до температуры выше и ниже температуры полиморфного превращения и...
Тип: Изобретение
Номер охранного документа: 02219280
Дата охранного документа: 20.12.2003
20.03.2019
№219.016.e4f1

Многослойное молниезащитное покрытие

Изобретение относится к средствам защиты от поражения молнией, в том числе на летательных аппаратах, и касается многослойного молниезащитного покрытия, состоящего из диэлектрического слоя, выполненного из полимерной отвержденной матрицы, и токопроводящего слоя на основе высокопрочных углеродных...
Тип: Изобретение
Номер охранного документа: 02217320
Дата охранного документа: 27.11.2003
10.04.2019
№219.017.0a5f

Способ обработки поверхности металлических изделий

Изобретение может быть использовано в авиационном и энергетическом турбиностроении для ионного травления с целью контроля макроструктуры, прецизионного удаления поверхностных слоев или повышения служебных характеристик материалов. Способ включает предварительную очистку поверхности, размещение...
Тип: Изобретение
Номер охранного документа: 0002165474
Дата охранного документа: 20.04.2001
10.04.2019
№219.017.0a60

Способ защиты стальных деталей машин от солевой коррозии

Способ защиты стальных деталей машин от солевой коррозии включает последовательное осаждение в вакууме на поверхность пера первого слоя конденсированного покрытия толщиной 6-25 мкм из сплава на основе никеля, содержащего, мас.%: 16-28 хрома, 16-30 кобальта, 8 -13,5 алюминия, 0,05 - 0,6 иттрия,...
Тип: Изобретение
Номер охранного документа: 0002165475
Дата охранного документа: 20.04.2001
10.04.2019
№219.017.0a7c

Способ испарения и конденсации токопроводящих материалов

Изобретение может быть использовано в авиационном и энергетическом газотурбиностроении. Способ включает вакуумно-дуговое испарение токопроводящего материала при наложении на поверхность испарения магнитного поля и при радиационном охлаждении испаряемого материала при температуре его нагрева на...
Тип: Изобретение
Номер охранного документа: 0002164549
Дата охранного документа: 27.03.2001
10.04.2019
№219.017.0a7d

Способ получения диффузионного алюминидного покрытия на изделии

Способ получения диффузионного алюминидного покрытия на изделии включает накопление на поверхности изделия элементов, легирующих покрытие, причем удельный прирост массы ΔМ каждого из элементов на единицу поверхности изделия выбирают из соотношения ΔM = δρh, гдe δ - мaccoвaя доля i-го...
Тип: Изобретение
Номер охранного документа: 02164965
Дата охранного документа: 10.04.2001
10.04.2019
№219.017.0afb

Никелевый жаропрочный сплав для монокристального литья

Никелевый жаропрочный сплав для монокристального литья содержит следующие компоненты, мас.%: хром 2,0-3,0, кобальт 9,5-12,0, алюминий 5,5-6,2, вольфрам 0,1-1,8, молибден 1,6-2,4, тантал 7,8-10,0, рений 7,8-10,0, церий 0,002-0,02, лантан 0,002-0,02, неодим 0,0005-0,01, иттрий 0,002-0,02, углерод...
Тип: Изобретение
Номер охранного документа: 02153021
Дата охранного документа: 20.07.2000
10.04.2019
№219.017.0b02

Литейный жаропрочный сплав на основе никеля

Литейный жаропрочный сплав на основе никеля содержит следующие компоненты, мас. %: хром 6,5-10,5, кобальт 6,0-10,0, молибден 2,7-4,0, алюминий 4,8-5,7, титан 4,2-4,7, углерод 0,06-0,20, бор 0,005-0,015, цирконий 0,01-0,02, вольфрам 1,0-1,8, ниобий 0,5-1,0, церий 0,002-0,015, один элемент из...
Тип: Изобретение
Номер охранного документа: 02153020
Дата охранного документа: 20.07.2000
10.04.2019
№219.017.0b13

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение относится к литейному производству и может быть использовано при получении отливок с направленной и монокристаллической структурой, в частности лопаток ГТД и ГТУ. Устройство содержит вакуумную камеру, внутри которой размещены индукционная печь, печь подогрева форм с наружной...
Тип: Изобретение
Номер охранного документа: 02152844
Дата охранного документа: 20.07.2000
10.04.2019
№219.017.0b15

Высокопрочная конструкционная сталь

Изобретение относится к металлургии, в частности к созданию высокопрочных конструкционных сталей, которые могут быть использованы для изготовления крупногабаритных высоконагруженных деталей в различных областях машиностроения, например в авиа- и космической технике. Предложенная высокопрочная...
Тип: Изобретение
Номер охранного документа: 02155820
Дата охранного документа: 10.09.2000
+ добавить свой РИД