×
29.04.2019
219.017.4509

Результат интеллектуальной деятельности: СПОСОБ КОНЦЕНТРИРОВАНИЯ УРАНА ИЗ РАЗБАВЛЕННЫХ РАСТВОРОВ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при извлечении урана из бедных по урану растворов, содержащих также макро- и микропримеси. Осуществляют сорбцию урана анионитами, отмывку анионита от примесей, донасыщение анионита ураном путем контакта его с частью уранового десорбата, десорбцию урана кислотно-солевыми растворами и осаждение из товарного десорбата пероксида урана пероксидом водорода. Кислоту предварительно нейтрализуют аммиачным или щелочным раствором до рН 4,0-4,2. Перед операцией донасыщения анионита его обрабатывают щелочным или щелочно-солевым раствором с последующим принудительным разделением фаз. Осаждение пероксида урана ведут в режиме парциальной подачи пероксида водорода при непрерывном перемешивании в течение 2 ч. Значение рН повторно корректируют до величины рН 4,0-4,2 теми же реагентами с последующим перемешиванием в течение 2,5-3 ч. Изобретение позволяет интенсифицировать процесс сорбционного извлечения целевого компонента, сократить расход реагентов на десорбцию и переработку товарного десорбата, повысить качество готового продукта. 1 з.п. ф-лы, 3 табл.

Заявляемый способ относится к гидрометаллургии урана и может быть использован при извлечении урана из бедных по урану растворов, содержащих в качестве примесей: железо, алюминий, кальций, магний, кремний и др.

Известен способ извлечения урана из растворов подземного (ПВ) или кучного (KB) выщелачивания, включающий сорбцию урана из исходного раствора, донасыщение анионита ураном из части товарного десорбата с последующей десорбцией урана и осаждением из товарных десорбатов полиураната аммония, так называемого «желтого кека» /«Справочник по геотехнологии урана». Под ред. Д.И.Скороварова, М.: Энергоатомиздат, 1997 г., с.398÷400/. Недостатками данного способа является невысокая степень донасыщения анионита ураном, недостаточно высокая селективность сорбции урана, а также низкое качество уранового концентрата, что влечет за собой необходимость проведения экстракционной очистки такого концентрата после его транспортировки на соответствующие предприятия и кислотного растворения. Организация экстракционного передела непосредственно на участках ПВ или KB крайне затруднительна из-за высоких требований техники безопасности. Все это приводит к большим капитальным и эксплуатационным затратам.

Кардинально снизить эти затраты возможно путем организации пероксидного осаждения урана из товарного десорбата. Однако данный способ применим лишь для переработки достаточно чистых товарных десорбатов, так как отрицательное влияние на полноту осаждения пероксидов урана оказывает присутствие щелочных, щелочно-земельных металлов. Особенно сильное негативное влияние на полноту осаждения пероксида урана оказывают трехвалентное железо и ванадий, каталитически разлагающие перекись водорода.

Существует способ повышения селективности сорбции урана из растворов и пульп, содержащих также макро- и микропримеси, анионитами гелевой или пористой структуры, включающий насыщение анионита ураном, обработку насыщенного сорбента щелочным или щелочно-солевым раствором и донасыщение анионита ураном при контактировании его с частью товарного десорбата /Патент РФ №2226177/.

Наиболее близким по технической сущности и достигаемому результату к заявляемому способу является способ сорбционного извлечения урана из растворов ПВ, содержащих помимо урана примеси железа, кальция, магния, кремния, натрия, калия и фтора, включающий сорбцию урана анионитами; донасыщение анионита ураном из части товарного десорбата с последующей промывкой анионита с целью селективной десорбции ионов железа, растворами серной кислоты разной процентной концентрации (1.5%, 2.7%, 3.0%,, 4.7%); десорбцию урана нитратно-сульфатным десорбирующим раствором и осаждение урана из десорбатов перекисью водорода. Осаждение из товарного десорбата пероксида урана перекисью водорода ведут с предварительной нейтрализацией кислоты аммиачным или щелочным раствором до установления значения рН раствора 4.0-4.2. /Актуальные проблемы урановой промышленности: III Международная научно-практическая конференция, Сб. докладов Алматы, 2004 г. Дуйсебаев Б.О., Малимбаев М.С., Сайкиева С.Х. и др. "Исследования по получению химического концентрата природного урана сорбционно-осадительной технологией "/.

Недостатками данного способа являются: снижение степени извлечения урана из растворов ПВ или KB вследствие частичной десорбции урана сернокислыми растворами на операции промывки этими растворами донасыщенного анионита, дисбаланс растворов и постепенное накопление железа в продуктивных растворах ПВ (или KB), вызванное оборотом маточных промывных растворов на операцию выщелачивания.

Техническим результатом предлагаемого способа является устранение этих недостатков.

Он достигается за счет того, что в способе концентрирования урана из разбавленных растворов, содержащих также макро- и микропримеси, включающий сорбцию урана анионитами отмывку анионита от примесей, донасыщение анионита ураном путем контакта его с частью уранового десорбата, десорбцию урана кислотно-солевыми растворами и осаждение из товарного десорбата пероксида урана перекисью водорода с предварительной нейтрализацией кислоты аммиачным или щелочным раствором до установления значения рН раствора 4.0-4.2, перед операцией донасыщения анионита его обрабатывают щелочным или щелочно-солевым раствором с последующим принудительным разделением фаз, а осаждение пероксида урана ведут в режиме парциальной подачи перекиси водорода при непрерывном перемешивании в течение 2 ч и повторной корректировкой значения рН до величины рН 4.0-4.2 теми же реагентами с последующим перемешиванием еще в течение 2.5-3 ч.

Операцию донасыщения ведут в две стадии, причем время проведения первой стадии составляет 3 ч, а второй - 5 ч.

Предлагаемый способ осуществляют следующим образом. Уран из растворов ПВ (или KB), содержащих незначительное количество урана на фоне высоких концентраций примесей, извлекают анионитом гелевой или пористой структуры. Насыщенный анионит обрабатывают щелочным или щелочно-солевым раствором по способу, запатентованному нами ранее /Патент РФ №2226177/, с тем отличием, что после такой обработки разделение фаз ведут в принудительном режиме, т.е под вакуумом на фильтре Шотта и донасыщают ураном путем контактирования с частью товарного десорбата. Цикл операций, включающий обработку насыщенного анионита щелочным или щелочно-солевым раствором с последующим донасыщением ураном, может быть повторен несколько раз, причем продолжительность контактирования фаз на данной операции в первом цикле поддерживают равной 3 ч, во втором 5 ч.

В результате проведения подобного цикла операций в фазе сорбента создаются благоприятные условия для полимеризации гидроксокомплексов уранила при одновременном вытеснении из анионита железа, кремния и других металлов-примесей. Повышение селективности сорбции урана при повторном контакте анионита с частью товарного десорбата происходит за счет преимущественной сорбции полиядерных гидроксокомплексов урана освобожденными ионообменными группами.

Оценить эффективность проведения вышеуказанных операций щелочной либо сернокислотной (прототип) обработки сорбента для последующего передела - пероксидного осаждения урана из товарных десорбатов - можно путем сравнения соотношения содержания ионов UO в исходном насыщенном сорбенте до и после проведения данных операций (KU/Fe и соответственно).

Пример 1. Анионит АМП (4% ДВБ), насыщенный из реальных продуктивных растворов ПВ до емкости, мг/г: U-26.9; Fe-0.63; AI-0.25, обрабатывали в статических условиях при соотношении объемов фаз, равном 1:1, и продолжительности контакта 2 ч 1%-ным раствором NaOH, и параллельно - в тех же условиях - 1%-ным раствором NaOH на фоне 1%-ного раствора Na2SO4. После операции обработки сорбент отделяли от раствора на фильтре Шотта под вакуумом и направляли на операцию донасыщения анионита ураном, которую вели, контактируя сорбент с частью товарного десорбата, содержащего, г/л: H2SO4-12; NO3-60; U-16; Fe-0.004; Al-0.005, при соотношении объемов фаз, равном 1:1. Продолжительность контакта фаз на операции донасыщения составляла 6 ч. После чего анионит отмывали водой при соотношении фаз, равном 1:3, десорбировали уран раствором, содержащим 80 г/л NH4NO3 и 10 г/л Н2SO4. Из товарного десорбата получали урановый концентрат путем пероксидного осаждения урана, предварительно нейтрализуя серную и азотную кислоты аммиачной водой до значений рН 4.0-4.2, в режиме парциальной подачи перекиси водорода при непрерывном перемешивании в течение 2 ч и повторной корректировкой значения рН, необходимость проведения которой возникает вследствие выделения азотной кислоты по мере осаждения пероксида урана, причем время проведения данной операции составляло 2.5-3 ч.

Полученные результаты, а также данные по осуществлению процесса по способу-прототипу (с использованием для обработки сорбента, насыщенного до емкости 80 мг/г по урану и 0.8 мг/г по железу, 1.5 - 3.0%-ных растворов Н2SO4, времени проведения операции пероксидного осаждения 6 ч, избытке осадителя 25% при неизменных остальных технологических показателях) приведены в табл.1.

В сравнении с прототипом, который приводит к снижению емкости по урану на 1.2-2.1%, по железу - на 96%, емкость по урану на операции донасыщения, проводимой по заявляемому способу, возрастает на 101 -105%, при этом емкость по железу снижается на 96%. Сравнение соотношений содержания ионов UO2+2 / Fe+3 в исходном насыщенном сорбенте и после проведения данных операций свидетельствует о повышении селективности сорбции урана, осуществляемой по заявляемому способу, по сравнению со способом-прототипом в 1.85 и 2.22 раза, что позволяет улучшить качество осадка и сократить расход перекиси водорода на осаждении на 4- 5%, а степень извлечения урана в осадок повысить не менее чем на 1.2 - 2.0%.

Пример 2. Процесс ведут в условиях примера 1 за исключением того, что в качестве исходного сорбента при проведении эксперимента как по заявляемому способу, так и по способу-прототипу использовали анионит АМП, насыщенный из реальных продуктивных растворов ПВ до емкостей, мг/г: U - 47.2; Fe - 0.49; Al - 0.65; Mg - 0.15. Кроме того, после проведения операции щелочной или щелочно-солевой обработки сорбент отделяли от раствора либо самотеком на сите, либо под вакуумом на фильтре Шотта.

Полученные результаты приведены в табл.2 и свидетельствуют о том, что принудительное разделение фаз (под вакуумом на фильтре Шотта) после проведения операции щелочной или щелочно-солевой обработки насыщенного сорбента позволяет повысить степень изменения соотношения КU/Fe на 10 ÷ 23%.

По сравнению с прототипом проведение процесса в таком режиме позволяет повысить данное соотношение на 40-89% и соответственно сократить расход перекиси водорода на операции пероксидного осаждения урана, а также существенно повысить чистоту конечного продукта.

Пример 3. Анионит АМП, насыщенный из реальных продуктивных растворов ПВ до емкостей, мг/г: U - 47.2; Fe - 0.49; Al - 0.65; Mg - 0.15 обрабатывали в условиях примера 1 раствором 9 г/дм3 NH4OH и параллельно в тех же условиях раствором 9 г/дм3 NH4OH+10 г/дм3 Na2SO4. После операции обработки сорбент отделяли от раствора на фильтре Шотта и направляли на операцию донасыщения ураном из части товарного десорбата того же состава, что использовали в опыте 1. Процесс осуществляли в статических условиях в две стадии, причем для щелочной обработки сорбента на второй стадии использовали раствор, полученный после обработки на первой стадии. Соотношение объемов фаз на обеих стадиях составляло 1:1. Время контакта фаз на операции обработки составляло 2 ч, а на операциях донасыщения - 3 и 5 ч.

Полученные результаты приведены в табл.3 и свидетельствуют о том, что максимальное повышение соотношения K"U/Fe / KU/Fe (где KU/Fe представляет собой отношение содержания U и Fe в исходном насыщенном анионите, a K"U/Fe - после проведения второй стадии донасыщения) достигается в том случае, когда время проведения первой стадии донасыщения составляло 3 ч, второй -5 ч. При этом степень повышения данного соотношения составляет 585÷590%.

По сравнению с прототипом проведение процесса в таком режиме позволяет повысить данное соотношение на 202-204% и соответственно сократить расход перекиси водорода на операции пероксидного осаждения урана, а также существенно повысить чистоту конечного продукта.

Преимущества способа: интенсификация процесса сорбционного извлечения целевого компонента, сокращение расхода реагентов на десорбцию и переработку товарного десорбата, повышение качества готового продукта.

Таблица 1. Пероксидное осаждение урана из товарного десорбата в условиях предварительной щелочной или щелочно-солевой обработки насыщенного сорбента

Способ Исходный сорбент Состав
раствора
обработки
Сорбент,
поступающий на десорбцию
Степень изменения,
KU/Fe, %
Повышение
степени
изменения
KU/Fe по
сравнению с
прототипом
%
Содержание в сухом пероксиде уранила, %
Емкость, мг/г KU/Fe Емкость, мг/г К|U/Fe U Fe Са Mg SiO2
U Fe U Fe
Заявляемый 26.9 0.63 42.7 10 г/л NaOH 54.2 0.026 2085 4883 185 67.9 0.015 0.01 0.01 <0.05
-"- -"- -"- -"- 10 г/л NaOH+10 г/л Na2SO4 55.3 0.022 2493 5837 222 68.5 0.008 0.01 <0.0 1
1
<0.05
Прототип 80.0 0.8 100 30 г/л H2SO4 79.1 0.030 2637 2637 - 68.3 0.083 <0.0 1
1
<0.0 1
1
<0.05

Примечание: Расход перекиси водорода по заявляемому способу составил 120%, а по способу-прототипу 125% от стехиометрии.

Таблица 2. Пероксидное осаждение урана из товарного десорбата в условиях предварительной щелочной или щелочно-солевой обработки насыщенного сорбента в зависимости от способа разделения фаз

Способ Исходный сорбент Условия подготовки сорбента к операции донасыщения Сорбент, поступающий на десорбцию Степень изменения,
KU/Fe, %
Повышение
степени
изменения
KU/Fe, по
сравнению с прототипом,
%
Емкость, мг/г KU/Fe Состав
раствора
обработки
Способ разделения фаз Емкость, мг/г К|U/Fe
U Fe U Fe
Заявляемый 47.2 0.49 96.3 10 г/л NaOH на сите 72.2 0.26 227.7 288 22
под вакуумом 74.7 0.25 298.8 318 35
-"- -"- -"- -"- 10 г/л NaOH+10 г/л Na2S04 на сите 72.7 0.22 330.4 343 45
под вакуумом 77.3 0.19 406.8 422 79
Прототип -"- -"- -"- 30 г/л H2SO4 на сите 61.3 0.27 227 236 -

Примечание: Расход перекиси водорода по заявляемому способу составил 120%, а по способу-прототипу 125% от стехиометрии.

Таблица 3. Пероксидное осаждение урана в условиях двустадийного донасыщения

Исходный сорбент 1 стадия донасыщения 2 стадия донасыщения
Способ Емкость, мг/г Состав раствора обработки Время τ,ч Емкость, мг/г Время Емкость, мг/г К"U/Fe/KU/Fe, % Изменение соотношения
К"U/Fe/KU/Feк прототипу, %
U Fe KU/Fe U Fe τ, ч U Fe К"
U/Fe
47.2 0.49 96.3 3 70.4 0.23 306 3 72.7 0.15 484 503 122
9 г/дм3 5 79.2 0.12 660 685 202
- -"- -"- -"- NH4OH 5 71.3 0.16 445 3 71.9 0.14 513 533 135
Заявляемый 5 76.8 0.12 640 664 192
9 г/дм3 3 70.0 0.22 318 3 75.3 0.16 605 628 177
NH4OH+ 5 79.8 0.12 665 690 204
10 г/дм3 5 62.8 0.14 448 3 73.8 0.23 330 343 151
Na2SO4 5 72.5 0.16 453 470 107
Прототип -"- -"- -"- 30 г/л H2SO4 5 61.3 0.27 227

Примечание: Расход перекиси водорода по заявляемому способу составил 120%, а по способу-прототипу 25% от стехиометрии.

Источник поступления информации: Роспатент

Showing 61-70 of 555 items.
27.12.2013
№216.012.9259

Способ зондовой диагностики плазмы и устройство для его осуществления

Заявленная группа изобретений относятся к области электрофизики, в частности к технике диагностики плазмы, и может быть использована для измерения электронной концентрации и температуры нестационарной плазмы в широком диапазоне исследуемых параметров. Заявленный способ включает установку зонда...
Тип: Изобретение
Номер охранного документа: 0002503158
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.95bf

Способ изготовления таблетки ядерного керамического топлива

Изобретение относится к ядерной технике, в частности к технологии изготовления оксидного ядерного топлива для тепловыделяющих элементов, и может быть использовано для изготовления таблетированного ядерного топлива на основе диоксида урана для АЭС. Таблетку ядерного топлива из диоксида урана с...
Тип: Изобретение
Номер охранного документа: 0002504029
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.98fb

Способ определения стойкости электронных компонентов и блоков радиоэлектронной аппаратуры к воздействию ионизирующих излучений

Изобретение относится к области испытаний сложно-функциональной аппаратуры. Сущность изобретения заключается в том, что используют трехпараметрическое распределение Вейбулла или доверительный интервал, внутренние границы которого (U - нижняя и V - верхняя) получают на основе обработки...
Тип: Изобретение
Номер охранного документа: 0002504862
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9919

Генератор

Изобретение относится к области электронной техники и может быть использовано для генерации электрических сигналов, стабилизированных электромеханическими резонаторами, в частности в пьезорезонансных датчиках. Достигаемый технический результат - исключение постоянной составляющей...
Тип: Изобретение
Номер охранного документа: 0002504892
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9941

Ленточный транспортер зарядов для электростатических ускорителей

Изобретение относится к высоковольтной ускорительной технике и, в частности, к ленточным транспортерам зарядов электростатических ускорителей. В качестве многослойной тканевой основы транспортировочной ленты используют полиэфирно-хлопковую ткань, слои которой соединяют между собой клеем с...
Тип: Изобретение
Номер охранного документа: 0002504932
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9fba

Пиковый детектор

Изобретение относится к импульсной технике и может быть использовано в устройствах автоматики и силовой техники для детектирования, а также для определения канала с экстремальным напряжением и его полярности. Техническим результатом заявленного изобретения выступает расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002506598
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fdd

Устройство хранения данных (варианты)

Изобретение относится к вычислительной технике, в частности к средствам защиты от несанкционированного доступа к информации. Технический результат заключается в повышении надежности устройства хранения данных и обеспечении более высокой степени безопасности хранения информации. Устройство...
Тип: Изобретение
Номер охранного документа: 0002506633
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.a021

Способ обнаружения несанкционированных отводов сигнала с одномодовых оптических волокон

Изобретение относится к способам контроля волоконно-оптических линий передачи на основе одномодовых оптических волокон и может быть использовано в качестве способа отделения локальных дефектов, образованных несанкционированными отводами, от локальных дефектов, вызванных неразъемными оптическими...
Тип: Изобретение
Номер охранного документа: 0002506701
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a31d

Взрывозащитная камера

Изобретение относится к области техники взрывных работ. Взрывозащитная камера содержит наружный и съемный внутренний контуры, каждый из которых выполнен разъемным и образован цилиндрической частью и плоскими днищами. Цилиндрические части обоих контуров установлены коаксиально и с зазором друг...
Тип: Изобретение
Номер охранного документа: 0002507472
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3ae

Ядерная энергетическая установка космического аппарата

Изобретение относится к источникам электроснабжения космического аппарата. Пары балок, стыкующихся крайними балками с космическим аппаратом, размещены по трем продольным плоскостям вокруг космического аппарата. При этом одна из пары балок стыкуется космическим аппаратом в плоскости, обращенной...
Тип: Изобретение
Номер охранного документа: 0002507617
Дата охранного документа: 20.02.2014
Showing 11-15 of 15 items.
29.05.2019
№219.017.664c

Пиридиниевый ионит для сорбции урана из растворов и пульп

Настоящее изобретение относится к сорбционной гидрометаллургии урана. Описан пиридиниевый ионит на основе сополимера стирола и дивинилбензола для сорбции урана из растворов и пульп, отличающийся тем, что в состав исходной полимерной матрицы ионита дополнительно вводят метакриловую кислоту в...
Тип: Изобретение
Номер охранного документа: 0002385885
Дата охранного документа: 10.04.2010
09.06.2019
№219.017.7c0d

Способ сорбционного извлечения урана из сернокислотных растворов и пульп

Изобретение относится к гидрометаллургии и может быть использовано в сорбционной технологии извлечения урана из растворов и пульп, полученных в результате сернокислотного выщелачивания. Способ включает сорбционное извлечение урана из сернокислотных растворов и пульп контактированием со...
Тип: Изобретение
Номер охранного документа: 0002364642
Дата охранного документа: 20.08.2009
13.06.2019
№219.017.8273

Способ получения смешанного фтористого сорбента для очистки гексафторида вольфрама, урана, молибдена и рения от фтористого водорода

Изобретение относится к технологии переработки отходов, образующихся при использовании высших фторидов металлов: WF, UF, МоF, ReF и содержащих фтористый водород, в частности к получению сорбента для очистки упомянутых гексафторидов. Способ получения сорбента осуществляют путем смешения...
Тип: Изобретение
Номер охранного документа: 0002408421
Дата охранного документа: 10.01.2011
29.06.2019
№219.017.9ea7

Способ получения уранового концентрата

Изобретение относится к гидрометаллургии урана и может быть использовано в технологии получения урановых концентратов. Способ получения уранового концентрата из десорбата, образующегося при десорбции урана с насыщенного анионита подкисленными растворами солей аммония, включает обработку...
Тип: Изобретение
Номер охранного документа: 0002323037
Дата охранного документа: 27.04.2008
06.07.2019
№219.017.a895

Способ получения арсина и устройство для его осуществления

Изобретение относится к области химической технологии и может быть использовано в микроэлектронике, волоконной оптике, солнечной энергетике. Арсин получают электролизом водного раствора оксида мышьяка с рН 2-6 в ячейке, в которой катодное и анодное пространство разделены мембраной из асбестовой...
Тип: Изобретение
Номер охранного документа: 0002369666
Дата охранного документа: 10.10.2009
+ добавить свой РИД