×
29.04.2019
219.017.44cf

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТРЕХОСНОЙ ОРИЕНТАЦИИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к управлению ориентацией космического аппарата (КА), оснащенного магнитометром для определения вектора напряженности магнитного поля Земли (МПЗ). Способ включает измерение напряженности МПЗ и параметров орбиты КА. При этом стабилизируют КА в инерциальном пространстве, фиксируют направление вектора напряженности МПЗ на момент стабилизации, измеряют угол между фиксированным и текущим направлениями вектора напряженности МПЗ. Фиксируют и запоминают момент достижения острым измеряемым углом максимального значения и измеряют модуль напряженности МПЗ на фиксированный момент. Рассчитывают по положению КА на орбите модуль напряженности магнитного поля Земли на тот же момент. Сравнивают данные значения модуля напряженности МПЗ и определяют значение магнитной помехи от КА. Определяют ориентацию КА по фиксированным значениям вектора напряженности МПЗ в момент стабилизации КА и на момент достижения острым измеряемым углом максимального значения с учетом определенного значения магнитной помехи по формуле Техническим результатом изобретения является возможность определения трехосной ориентации КА на любых участках полета, вне зависимости от освещенности КА Солнцем, а также повышение точности определения ориентации.

Изобретение относится к космической технике и может быть использовано в системах определения ориентации КА, оснащенных магнетометром для определения направления и модуля вектора напряженности МПЗ. Одновременно с определением ориентации КА предложенный метод позволяет определить величину магнитной помехи, создаваемую магнитомягкими и магнитотвердыми материалами, находящимися на борту космического аппарата.

Известны различные способы определения ориентации КА. Для определения ориентации могут использоваться измерения инфракрасных датчиков, солнечных датчиков, звездных датчиков, магнитометров [1].

Все существующие способы определения ориентации КА имеют определенные ограничения и недостатки. Системы определения ориентации, основанные на инфракрасном датчике, имеют большую массу и невысокую точность. Системы, основанные на солнечном датчике, не позволяют определять ориентацию КА в моменты времени, когда он находится на неосвещенной стороне Земли. Звездные датчики имеют большую точность, но могут пострадать от засветки Солнцем, являющимся более мощным источником излучения в оптическом диапазоне, чем любая из звезд.

Наиболее часто для определения трехосной ориентации используются способы, основанные на измерении вектора напряженности МПЗ и вектора направления на Солнце [2]. Данный способ, выбранный авторами за прототип, включает измерение напряженности МПЗ, измерение параметров орбиты и измерение направления на Солнце. Этот способ позволяет надежно определять трехосную ориентацию КА на участках полета по освещенной Солнцем орбите.

Однако при полете КА в тени Земли, где отсутствуют измерения солнечного датчика, данный способ, очевидно, не может быть применен, т.е. способ-прототип не является универсальным. Это является основным недостатком способа-прототипа. Кроме того, точность определения трехосной ориентации КА способом-прототипом оказывается низкой при малых значениях угла между измеряемыми направлениями и при наличии погрешностей в измерениях.

Задачами, решаемыми предлагаемым способом, являются обеспечение возможности определения трехосной ориентации на любых участках полета, вне зависимости от освещенности Солнцем КА, и повышение точности определения ориентации.

Технический результат достигается тем, что в способе определения трехосной ориентации КА, основанном на измерении напряженности МПЗ и измерении параметров орбиты, в отличие от известного стабилизируют КА в инерциальном пространстве, фиксируют направление вектора напряженности МПЗ на момент стабилизации аппарата, измеряют угол между фиксированным и текущим направлениями вектора напряженности МПЗ, фиксируют и запоминают момент достижения острым измеряемым углом максимального значения, измеряют модуль напряженности МПЗ на фиксированный момент, рассчитывают по положению КА на орбите модуль напряженности магнитного поля Земли на тот же момент, сравнивают измеренное и рассчитанное значения модуля напряженности МПЗ и определяют значение магнитной помехи от КА, определяют ориентацию КА по фиксированным значениям вектора напряженности МПЗ в момент стабилизации КА и на момент достижения острым измеряемым углом максимального значения с учетом определенного значения магнитной помехи по формуле

Магнитная помеха на КА определяется следующим образом.

Пусть - вектор напряженности МПЗ, рассчитанный теоретически;

- измеренный вектор напряженности МПЗ;

- вектор напряженности МПЗ;

- вектор магнитной помехи:

где , , - компоненты вектора магнитной помехи в связанной системе координат.

Используем очевидное соотношение:

Для удобства математических расчетов возведем его в квадрат:

Считая, что проводимые измерения независимые, равноточные и что ошибка измерений распределена по нормальному закону с известной дисперсией и нулевым математическим ожиданием, из соотношения (4) с учетом введенных обозначений (2) получим:

где n - количество проведенных измерений, а i - номер измерения.

В соответствии с методом наименьших квадратов составим выражение для невязки i-го измерения:

Введем для удобства дополнительное обозначение:

Характерной величиной наилучшего подбора величин является сумма квадратов невязок всех проведенных измерений:

Раскроем внутренние скобки в выражении (8) получим:

Так как величины , , являются малыми, то можно пренебречь членами второго порядка малости в выражении (9), т.е. членами , , . Тогда получим следующее выражение для G:

Раскроем скобки в выражении (10):

В рамках метода наименьших квадратов компоненты вектора магнитных помех , , определяются из условия минимума суммы квадратов невязок (11). Минимум величины G находится из условия равенства нулю первых производных величины G по переменным , , :

Преобразуем систему уравнений (12) к следующему виду:

. Очевидно, что для n≥2 матрица всегда обратима.

Для расчета величины напряженности МПЗ, входящего в соотношение (3), обычно используется его аналитическое представление, основанное на разработанной Гауссом теории разложения магнитного потенциала Земли в ряд по сферическим функциям [3]:

где a - средний радиус Земли (6371.2 км), r, ϕ, θ - сферические координаты точки наблюдения, - квазинормированный по Шмидту присоединенный полином Лежандра первого рода n-й степени и m-го порядка, - коэффициенты, заданные используемой моделью МПЗ, N - количество гармоник разложения скалярного потенциала МПЗ.

Напряженность МПЗ определяется формулой:

Проекции вектора определяются по формулам:

где X', Y', Z' - проекции вектора напряженности МПЗ на оси географической системы координат.

Квазинормированные по Шмидту функции обозначены волнистой линией. Они связаны с ненормированными функциями следующими соотношениями:

Явный вид функций Лежандра известен, и они могут быть легко вычислены по прямым формулам:

Коэффициент нормировки сферических функций вычисляется по формуле:

где - наибольшее целое положительное число, содержащееся в .

Вековой ход МПЗ может быть учтен пересчетом коэффициентов по формулам:

где t - момент времени, для которого ищутся коэффициенты; (t-2005) - время, исчисляемое в годах, начиная с начала 2005 г. до момента t. Международная аналитическая модель МПЗ позволяет определять компоненты вектора напряженности с точностью порядка 20-50γ.

Определение трехосной ориентации КА по фиксированным значениям вектора напряженности МПЗ в момент стабилизации КА и на момент достижения острым углом максимального значения с учетом определенного значения магнитной помехи осуществляется следующим образом:

где A - матрица перехода от абсолютной к связанной системе координат.

Введем в рассмотрение орты:

Матрицы перехода M1 и M2 от вспомогательной системы координат Opqr соответственно к осям связанной и абсолютной систем имеют вид

Используя матрицы M1 и М2, найдем матрицу перехода от абсолютной системы координат к связанной. Получим

Матрица перехода между орбитальной и связанной системами координат получается аналогичным образом.

Углы ϑ, φ, ψ находятся с помощью матриц A1 и A по формулам

Здесь aij - элементы матрицы A.

Ориентация осей КА относительно орбитальной системы координат задается с помощью матрицы перехода А2 (от системы координат Ox0y0z0 к системе Oξηζ):

где Ψ, Θ, Ф - углы рыскания, тангажа и крена, причем

-π/2≤Θ≤π/2; 0≤Ψ≤2π; 0≤Ф≤2π

Вычислив матрицу по компонентам векторов и , рассчитанным в орбитальной системе координат, с учетом (29), углы тангажа, рыскания и крена находят по формулам:

В настоящее время технически все готово для реализации предложенного способа. Для измерения напряженности МПЗ может использоваться магнитометр СМ-8М, установленный на МКС. Для измерения орбиты КА могут использоваться штатные средства радиоконтроля орбиты или приемники спутниковой навигации GPS и ГЛОНАСС, так же установленные на МКС. Для стабилизации КА в инерциальном пространстве могут использоваться гиродины или двигатели ориентации и штатные ДУС.

Имеющиеся в настоящее время измерительные и вычислительные средства позволяют измерять угол между фиксированным и текущим направлениями вектора напряженности МПЗ, фиксировать и запоминать момент достижения острым измеряемым углом максимального значения, измерять модуль напряженности МПЗ в фиксированный момент, рассчитывать модуль напряженности МПЗ на тот же момент.

Предлагаемый способ позволяет определять трехосную ориентацию КА на всех участках орбиты, т.е. является универсальным для всех участков полета. Кроме того, за счет определения трехосной ориентации в определенный момент времени и учета магнитной помехи в измерениях магнитометра он позволяет повысить точность определения ориентации КА.

Список литературы

1. Алексеев К.Б., Бебенин Г.Г. Управление космическими летательными аппаратами. М.: Машиностроение, 1974.

2. Барышев В.А., Крылов Г.Н. Контроль ориентации, метеорологических спутников. Л.: Гидрометеоиздат, 1968.

3. ГОСТ 25645.126-85. ПОЛЕ ГЕОМАГНИТНОЕ. Модель поля внутриземных источников. Москва, Государственный комитет СССР по управлению качеством продукции и стандартам.

Способ определения трехосной ориентации космического аппарата, включающий измерение напряженности магнитного поля Земли и измерение параметров орбиты космического аппарата, отличающийся тем, что стабилизируют космический аппарат в инерциальном пространстве, фиксируют направление вектора напряженности магнитного поля Земли на момент стабилизации аппарата, измеряют угол между фиксированным и текущим направлением вектора напряженности магнитного поля Земли, фиксируют и запоминают момент достижения острым измеряемым углом максимального значения, измеряют модуль напряженности магнитного поля Земли на фиксированный момент, рассчитывают по положению космического аппарата на орбите модуль напряженности магнитного поля Земли на тот же момент, сравнивают измеренное и рассчитанное значение модуля напряженности магнитного поля Земли, по результатам сравнения определяют значение магнитной помехи от космического аппарата, и определяют ориентацию космического аппарата по фиксированным значениям вектора напряженности магнитного поля Земли на момент стабилизации космического аппарата и на момент достижения указанным острым измеряемым углом максимального значения с учетом определенного значения магнитной помехи по формуле
Источник поступления информации: Роспатент

Showing 41-50 of 370 items.
20.11.2013
№216.012.8314

Устройство для измерения уровня диэлектрического вещества

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в системах измерения уровня заправки ракетно-космической техники. Устройство содержит эталон, который подключен к блоку переключения и к первому измерительному...
Тип: Изобретение
Номер охранного документа: 0002499232
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8338

Способ определения амплитудно-фазовой частотной характеристики динамического объекта

Способ относится к области испытаний и исследований динамических систем. Способ определения амплитудно-фазовых частотных характеристик динамического объекта предполагает проведение анализа завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания...
Тип: Изобретение
Номер охранного документа: 0002499268
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.8373

Приемник-преобразователь концентрированного электромагнитного излучения

Изобретение относится к области беспроводной передачи энергии с потоком концентрированного электромагнитного излучения оптического диапазона, в частности монохроматического электромагнитного излучения лазера, на приемник-преобразователь на основе фотоэлектрического преобразователя и может найти...
Тип: Изобретение
Номер охранного документа: 0002499327
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.8518

Спутниковая система связи и наблюдения

Изобретение относится к космической технике и может быть использовано в спутниковых системах связи и наблюдения. Спутниковая система связи и наблюдения содержит от 1 до 7 спутников с аппаратурой связи и наблюдения. Спутники размещены на эллиптических орбитах с критическим наклонением и апогеем...
Тип: Изобретение
Номер охранного документа: 0002499750
Дата охранного документа: 27.11.2013
27.12.2013
№216.012.9059

Устройство герметизации люков космических объектов и способ его эксплуатации

Изобретения относятся к устройству герметизации люков космических объектов и к способу его эксплуатации. Устройство герметизации люков космических объектов содержит средство герметизации, выполненное в виде герметичного рукава из эластичного газонепроницаемого материала. Рукав герметично...
Тип: Изобретение
Номер охранного документа: 0002502646
Дата охранного документа: 27.12.2013
20.01.2014
№216.012.993e

Плавильная печь установки для плазменно-дуговой плавки

Изобретение относится к области вакуумных установок для плазменной дуговой плавки металлов и сплавов в космосе и предназначено для проведения экспериментов преимущественно по плавке наиболее перспективных металлов (вольфрам, ниобий) и композитов на металлической основе в условиях...
Тип: Изобретение
Номер охранного документа: 0002504929
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9a8e

Механизм коленного шарнира

Изобретение относится к протезированию нижних конечностей. Механизм коленного шарнира содержит верхнюю опорную головку с креплением гильзы бедра, нижний опорный кронштейн с креплением трубки голени, переходное кинематическое звено, по меньшей мере две оси вращения, а также голенно-откидное...
Тип: Изобретение
Номер охранного документа: 0002505272
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b4d

Космическое зубило (варианты)

Изобретение относится к космической технике, в частности к ручным инструментам, используемым космонавтом, снаряженным в скафандр, в условиях невесомости при выполнении технологических операций в процессе внекорабельной деятельности. Зубило для обработки материала в условиях космического...
Тип: Изобретение
Номер охранного документа: 0002505463
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9f37

Узел крепления двух объектов

Изобретение относится к узлам крепления компонентов конструкции, преимущественно для крепления космических объектов при внекорабельной деятельности, и направлено на обеспечение исключения потерь крепежных элементов, а также обеспечение стопорения крепежного элемента при динамических нагрузках и...
Тип: Изобретение
Номер охранного документа: 0002506467
Дата охранного документа: 10.02.2014
27.02.2014
№216.012.a6d0

Установка для электролиза воды под давлением и способ ее эксплуатации

Изобретение относится к установке для электролиза воды под давлением, состоящей из электролизера с линией подачи воды, подключенного к блоку питания, который электрически связан с блоком управления, подключенных к электролизеру по линиям водорода и кислорода ресиверов для накопления водорода и...
Тип: Изобретение
Номер охранного документа: 0002508419
Дата охранного документа: 27.02.2014
Showing 41-50 of 57 items.
29.04.2019
№219.017.44c6

Способ определения магнитной помехи на космическом аппарате в полете

Изобретение относится к управлению полетом космических аппаратов с использованием данных о магнитном поле Земли (МПЗ). Способ включает измерение векторов напряженности МПЗ и направления на выбранную звезду (в оптическом диапазоне). Последний вектор должен быть отклонен от нормали к плоскости...
Тип: Изобретение
Номер охранного документа: 0002408507
Дата охранного документа: 10.01.2011
09.05.2019
№219.017.4bfc

Способ поддержания трехосной ориентации космического аппарата с силовыми гироскопами и целевой нагрузкой

Изобретение относится к управлению ориентацией космического аппарата (КА). Предлагаемый способ включает математическое моделирование орбиты КА, измерение кинетического момента силовых гироскопов и - на определенных полетных интервалах - параметров углового движения КА. По этим измерениям...
Тип: Изобретение
Номер охранного документа: 0002341419
Дата охранного документа: 20.12.2008
20.06.2019
№219.017.8ce6

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к способам технологического контроля технических средств. Способ определения деформации корпуса объекта, преимущественно космического аппарата, включает измерение острого угла α между направлением от ориентира на поверхности объекта к источнику освещения и нормалью к...
Тип: Изобретение
Номер охранного документа: 0002691776
Дата охранного документа: 18.06.2019
06.07.2019
№219.017.a6d0

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к технологическому контролю, преимущественно космических объектов (КО). Способ включает измерение угла (α) между направлением от ориентира на КО к источнику освещения (Солнцу) и нормалью к поверхности КО в точке ориентира. Измеряют также угол (β) между оптической осью...
Тип: Изобретение
Номер охранного документа: 0002693750
Дата охранного документа: 04.07.2019
24.12.2019
№219.017.f156

Способ определения орбиты космического аппарата с аппаратурой для съемки подстилающей поверхности

Изобретение относится к аэрокосмической технике. Способ включает измерение исходных значений параметров орбиты и прогнозирование по ним значений времени и координат местоположений КА. В течение заданного интервала времени выполняют съемку с КА подстилающей поверхности при различных значениях...
Тип: Изобретение
Номер охранного документа: 0002709978
Дата охранного документа: 23.12.2019
24.01.2020
№220.017.f919

Способ определения орбиты космического аппарата с аппаратурой для съёмки подстилающей поверхности

Изобретение относится к способам слежения за полётом космических аппаратов (КА). Способ включает определение по ортотрансформированным снимкам подстилающей поверхности (ПП) географических координат точек областей этой ПП, над которыми находится КА. Снимки делают при последовательно меняющих...
Тип: Изобретение
Номер охранного документа: 0002711834
Дата охранного документа: 22.01.2020
24.01.2020
№220.017.f98f

Способ привязки выполненных с космического аппарата снимков земной поверхности

Изобретение относится, главным образом, к спутникам для наблюдения Земли. Привязка включает измерение параметров орбиты спутника, ортотрансформирование снимка и определение по нему точки, из которой выполнялась съемка. Через заданное время после первого снимка выполняют второй снимок...
Тип: Изобретение
Номер охранного документа: 0002711775
Дата охранного документа: 22.01.2020
04.02.2020
№220.017.fd29

Способ привязки выполненных с орбитального космического аппарата снимков подстилающей поверхности

Изобретение относится к аэрокосмической технике. Способ привязки выполненных с орбитального космического аппарата (КА) снимков подстилающей поверхности включает ортотрансформирование снимка и определение по нему точки, из которой выполнялась съемка. Дополнительно в течение заданного интервала...
Тип: Изобретение
Номер охранного документа: 0002712781
Дата охранного документа: 31.01.2020
26.03.2020
№220.018.1039

Способ управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к эксплуатации оборудования космического корабля (КК). Способ включает определение относительного положения объекта наблюдения на подстилающей поверхности, КК и аппаратуры наблюдения (АН). Дополнительно по определяемым параметрам движения и ориентации КК определяют, у...
Тип: Изобретение
Номер охранного документа: 0002717614
Дата охранного документа: 24.03.2020
26.03.2020
№220.018.103d

Устройство управления размещенной на космическом корабле переносной аппаратурой наблюдения

Изобретение относится к оборудованию космического корабля (КК). Устройство управления размещенной на космическом корабле (КК) переносной аппаратурой наблюдения (АН) (1) содержит корпус (4), двухстепенной подвес с датчиками (12, 15) угла и приводами (13, 16) на его осях, а также вычислительное...
Тип: Изобретение
Номер охранного документа: 0002717603
Дата охранного документа: 24.03.2020
+ добавить свой РИД