×
29.04.2019
219.017.421b

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ КОМАНД УПРАВЛЕНИЯ ВРАЩАЮЩЕЙСЯ ВОКРУГ ПРОДОЛЬНОЙ ОСИ ДВУХКАНАЛЬНОЙ РАКЕТОЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области наведения ракет и может быть использовано в комплексах танкового и противотанкового вооружения, а также в малогабаритных зенитных комплексах. Технический результат - повышение точности наведения ракеты. Способ включает формирование сигналов управления первого и второго каналов, пропорциональных линейным отклонениям ракеты относительно линии прицеливания соответственно в горизонтальной и вертикальной плоскостях, формирование периодических сигналов несущей частоты, пропорциональных синусу и косинусу угла крена у ракеты. Осуществляют демодуляцию сигналов, пропорциональных углам отклонения рулей первого и второго рулевых приводов, сигналами несущей частоты, вычитание полученных в результате демодуляции сигналов в первом и втором каналах из соответствующих сигналов управления и формирование сигналов управления первым и вторым рулевыми приводами посредством модуляции полученных сигналов разности в первом и втором каналах управления сигналами несущей частоты. Дополнительно после демодуляции сигналы отклонения рулей первого и второго рулевых приводов пропускают через фильтры нижних частот с определенной передаточной функцией. 2 н.. и 1 з.п. ф-лы, 4 ил.

Предлагаемая группа изобретений относится к области разработки систем телеуправления вращающихся вокруг продольной оси ракет и может быть использована в комплексах танкового и противотанкового вооружения, а также в малогабаритных зенитных комплексах.

Одной из задач, решаемых при разработке систем телеуправления ракетами, связанных с обеспечением точности систем автоматического управления ракетами, является задача обеспечения пропорциональности ускорения, развиваемого ракетой в вертикальной и горизонтальной плоскостях наведения, измеренным отклонениям ракеты относительно оси луча (в системах управления по лучу) или оси пеленгатора ракеты (в системах командного управления) соответственно в вертикальной и горизонтальной плоскостях. В идеальном случае вектор ускорения, развиваемого ракетой, и вектор отклонения ракеты от линии прицеливания лежат в одной плоскости и направлены в противоположные стороны (Н.Т.Кузовков. Системы стабилизации летательных аппаратов, М., Высшая школа, 1976 г. , с.226) [1].

Эту задачу решает способ формирования команд, основанный на охвате двухканального рулевого привода отрицательными обратными связями по огибающим выходных сигналов, заявленный в патенте РФ №2282816, МПК8 F41G 7/00 [2] и являющийся наиболее близким по технической сущности к предлагаемому изобретению. Способ включает формирование сигналов управления U1, U2 первого и второго каналов, пропорциональных линейным отклонениям ракеты относительно линии прицеливания соответственно в горизонтальной и вертикальной плоскостях, формирование периодических сигналов несущей частоты s(γ), с(γ), пропорциональных синусу и косинусу угла крена γ ракеты, формирование сигналов управления Up1, Up2 первым и вторым рулевыми приводами путем амплитудной модуляции несущей частоты сигналами управления первого и второго каналов и последующего их суммирования, одновременное с формированием сигналов управления первого и второго каналов формирование сигналов Uδ1, Uδ2, пропорциональных углам отклонения первого и второго рулевых приводов, демодуляцию путем умножения на сигналы несущей частоты и последующее усиление, вычитание из сигналов управления первого и второго каналов в соответствии с зависимостями:

UΣ1=U1-Ky·[Uδ1·c(γ)-Uδ2·s(γ)];

UΣ2=U2-Ky·[Uδ1·s(γ)+Uδ2·c(γ)],

где UΣ1, UΣ2 - сигналы разности в первом и втором каналах,

Ky - коэффициент усиления,

модуляцию сигналов несущей частоты, осуществляемую полученными сигналами разности в первом и втором каналах управления, а также суммирование, осуществляемое в соответствии с зависимостями:

Up1=UΣ1·c(γ)+UΣ2·s(γ);

Up2=-UΣ1·s(γ)+UΣ2·c(γ).

На фиг.1 приведена структурная схема, отражающая динамические процессы формирования сигналов управления рулевыми приводами.

В патенте РФ №2235969, МПК8 F41G 7/00 [3] представлено устройство формирования команд управления, реализующее этот способ. Схема устройства приведена на фиг.2. Устройство включает приемник излучения ПИ 1, бортовую аппаратуру электронную БАЭ 2, первый рулевой привод 12, содержащий первый сумматор 13, первое триггерное устройство 17, первый и второй усилители мощности 19, 20, первую и вторую рулевые машинки 23, 24, первый потенциометр обратной связи 27, второй рулевой привод, содержащий второй сумматор 16, второе триггерное устройство 18, третий и четвертый усилители мощности 21, 22, третью и четвертую рулевые машинки 25, 26, второй потенциометр обратной связи 28, кроме этого устройство включает первый и второй блоки вычитания 3, 4, модуляторы 5, 6, 7, 8, 29, 30, 31, 32, третий сумматор 9, третий блок вычитания 11, четвертый блок вычитания 33, четвертый сумматор 34, первый и второй усилители 35, 36, источник стабилизированного напряжения 10, датчик угла крена гироскопического координатора 14.

В устройстве производится сравнение входных сигналов - команд управления U1, U2 в измерительной невращающейся системе координат с сигналами, полученными путем разложения выходного вектора команд управления на составляющие Uδ1', Uδ2' в невращающейся системе координат и представляющими собой результат отработки сигналов управления рулевым приводом, который внес в них соответствующие искажения по фазе и амплитуде.

Результат сравнения используется для такого изменения входных сигналов рулевых приводов, которое обеспечивало бы минимальное рассогласование между входным вектором команд управления и выходным вектором управляющего воздействия .

Как показано в описании способа и устройства формирования команд управления, основанных на охвате двухканального рулевого привода отрицательными обратными связями по огибающей выходного сигнала и принятых за прототип, в них между вектором управляющего воздействия и вектором отклонения ракеты от линии прицеливания имеет место соотношение

,

что указывает на то, что при реализации указанного способа и устройства формирования команд управления ракетой вектор управляющего воздействия и вектор отклонения ракеты от линии прицеливания лежат в одной плоскости и направлены в противоположные стороны, т.е. реализуется так называемая радиальная коррекция траектории ракеты, при которой ликвидация отклонения происходит по кратчайшему пути - в плоскости, в которой лежит вектор .

Однако последовательность операций в способе формирования команд управления и устройство формирования команд управления, представленные в [2] и [3], не обеспечивают требуемую устойчивость контура управления ракетой, поскольку входящие в контур управления кроме формирователя команд управления динамические звенья "ракета" и "кинематическое звено", связывающее нормальные ускорения, развиваемые ракетой в вертикальной и горизонтальной плоскостях, и ее отклонения от линии прицеливания в соответствующей плоскости, представляют собой слабодемпфированное колебательное и двойное интегрирующее звенья, вследствие чего система автоматического управления ракетой является структурно неустойчивой.

В этом случае процесс ликвидации отклонения ракеты от линии прицеливания будет носить колебательный характер, что существенно снизит точность наведения ракеты на цель.

Для обеспечения устойчивости системы автоматического управления ракетой вектор управляющего воздействия должен быть пропорционален не только вектору отклонения ракеты от линии прицеливания, но и скорости изменения этого отклонения.

Требуемое соотношение между векторами и выражает зависимость, записанную в операторной форме:

где WКУ(p) - передаточная функция так называемого корректирующего устройства, обеспечивающего стабилизацию системы теленаведения (с.234, [1]).

Задачей предлагаемой группы изобретений является повышение точности наведения ракеты с формирователем команд управления на основе охвата рулевого привода обратными связями по огибающей выходного сигнала за счет повышения запасов устойчивости системы управления ракетой.

Поставленная задача решается посредством того, что в известном способе формирования команд управления вращающейся вокруг продольной оси двухканальной ракетой, включающем формирование сигналов управления U1, U2 первого и второго каналов, пропорциональных линейным отклонениям ракеты относительно линии прицеливания соответственно в горизонтальной и вертикальной плоскостях, формирование периодических сигналов несущей частоты s(γ), с(γ), пропорциональных синусу и косинусу угла крена γ ракеты, демодуляцию сигналов, пропорциональных углам отклонения рулей первого и второго рулевых приводов, сигналами несущей частоты, вычитание полученных в результате демодуляции сигналов в первом и втором каналах из соответствующих сигналов управления и формирование сигналов управления первым и вторым рулевыми приводами посредством модуляции полученных сигналов разности в первом и втором каналах управления сигналами несущей частоты, дополнительно после демодуляции сигналы отклонения рулей первого и второго рулевых приводов пропускают через фильтры нижних частот с передаточной функцией

,

где ;

TФ=4·ξПЛ·TПЛ·nЭ, c; n=2·nЭ+3·ξПЛ;

, , c,

kРП, kДУ - коэффициенты передачи соответственно рулевого привода, датчика углового отклонения;

φЗЖ - желаемое значение запаса по фазе системы автоматического управления ракетой, … °,

ξпл - относительный коэффициент демпфирования планера ракеты,

fпл - собственная частота планера ракеты, Гц,

а перед модуляцией сигналы разности первого и второго каналов пропускают через фазовращатель на угол фазирования

γф0·τрп,

где ω0 - круговая частота вращения ракеты по крену, 1/с,

τрп - эквивалентная постоянная времени рулевого привода, с.

Предлагаемый способ может быть реализован устройством формирования команд управления вращающейся вокруг продольной оси ракетой, содержащим последовательно соединенные приемник излучения и блок аппаратуры электронной, первый и второй выходы которого соединены с первыми входами соответственно первого и второго блоков вычитания, первый и второй усилители, первый, второй, третий и четвертый модуляторы, последовательно соединенные третий сумматор, первый рулевой привод с последовательно соединенными первым сумматором и первым триггерным устройством, а также с первым потенциометром обратной связи, последовательно соединенные третий блок вычитания и второй рулевой привод с последовательно соединенным вторым сумматором и вторым триггерным устройством, а также со вторым потенциометром обратной связи, причем первый и второй входы третьего сумматора соединены с выходами соответственно первого и второго модуляторов, а первый и второй входы третьего блока вычитания соединены с выходами соответственно третьего и четвертого модуляторов, выходы первого и второго потенциометров обратной связи соединены со вторыми входами соответственно первого и второго сумматоров, пятый и шестой модуляторы, первые входы которых соединены с выходом первого потенциометра обратной связи, седьмой и восьмой модуляторы, первые входы которых соединены с выходом второго потенциометра обратной связи, а также четвертый блок вычитания и четвертый сумматор, подключенные своими первыми входами соответственно к выходам пятого и шестого модуляторов, а вторыми входами - к выходам соответственно седьмого и восьмого модуляторов, последовательно соединенные источник стабилизированного напряжения и датчик угла крена гироскопического координатора, первый выход которого соединен со вторыми входами первого, четвертого, пятого и восьмого модуляторов, а второй выход - со вторыми входами второго, третьего, шестого и седьмого модуляторов, в которое введены третий и четвертый усилители, пятый сумматор, пятый блок вычитания и два фильтра нижних частот, при этом входы первого и второго усилителей соединены с выходом первого блока вычитания, входы третьего и четвертого усилителей соединены с выходом второго блока вычитания, а выходы первого и третьего усилителей соединены соответственно с первым и вторым входами пятого сумматора, выход которого соединен с первыми входами первого и третьего модуляторов, выходы второго и четвертого усилителей соединены соответственно с первым и вторым входами пятого блока вычитания, выход которого соединен с первыми входами второго и четвертого модуляторов, входы первого и второго фильтров нижних частот соединены с выходами соответственно четвертого блока вычитания и четвертого сумматора, а выходы - со вторыми входами соответственно первого и второго блоков вычитания, при этом отношение коэффициентов усиления второго и первого усилителей и отношение коэффициентов усиления третьего и четвертого усилителей составляет ω0·τрп.

Схема устройства представлена на фиг.4.

Устройство включает приемник излучения ПИ 1, бортовую аппаратуру электронную БАЭ 2, первый рулевой привод (РП1) 12, содержащий первый сумматор 13, первое триггерное устройство 17, первый и второй усилители мощности 19, 20, первую и вторую рулевые машинки 23, 24, первый потенциометр обратной связи 27, второй рулевой привод (РП2) 15, содержащий второй сумматор 16, второе триггерное устройство 18, третий и четвертый усилители мощности 21, 22, третью и четвертую рулевые машинки 25, 26, второй потенциометр обратной связи 28, первый и второй блоки вычитания 3, 4, модуляторы 5, 6, 7, 8, 29, 30, 31, 32, третий сумматор 9, третий блок вычитания 11, четвертый блок вычитания 33, четвертый сумматор 34, первый усилитель 35, второй усилитель 36, источник стабилизированного напряжения 10, датчик угла крена гироскопического координатора 14, к которым добавлены фазовращатель, выполненный на четырех усилителях 35, 36, 37, 38, пятом сумматоре 39, пятом блоке вычитания 40, и два фильтра нижних частот (ФНЧ) 41, 42.

Поступающий в ПИ оптический сигнал, содержащий информацию об отклонении ракеты от оси информационного поля, преобразуется в электрические сигналы, которые поступают на входы БАЭ.

БАЭ осуществляет преобразование сигналов с целью выделения постоянных составляющих напряжений, пропорциональных величинам отклонений ракеты от центра поля по каждому каналу управления.

Фазовращатель осуществляет поворот управляющего вектора команды на угол фазирования γф:

UФ1=UΣ1·k1+UΣ2·k2;

UФ2=UΣ2·k1-UΣ1·k2,

где k1=cosγф, k2=sinγф.

Далее осуществляется преобразование команд управления из системы координат наземной аппаратуры управления во вращающуюся с ракетой систему координат посредством модуляторов вместе с третьим сумматором 9 и третьим блоком вычитания 11 в соответствии с формулами:

UР1=UФ1·с(γ)+UФ2·s(γ);

UР2=UФ2·с(γ)-UФ1·s(γ).

С выходов сумматора 9 и блока вычитания 11 и сигналы UР1 и UР2 поступают на входы двух РП, которые отрабатывают их и формируют вектор управляющих сил, под действием которых ракета изменяет свое угловое положение на траектории и в результате движется в сторону уменьшения отклонений от оси поля управления. На выходах потенциометров обратной связи 27, 28 формируется информация об отклонениях рулей, используемая не только для получения автоколебаний в контуре каждого РП, но и для организации обратной связи по огибающей выходных сигналов РП.

Модуляторы 29, 30, 31, 32 вместе с четвертым блоком вычитания 33 и четвертым сумматором 34 осуществляют преобразование огибающей выходного сигнала РП из вращающейся связанной с ракетой системы координат в невращающуюся систему координат, связанную с наземной аппаратурой управления в соответствии с формулами:

Uδ'1=Uδ1·c(γ)-Uδ2·s(γ);

Uδ'2=Uδ2·c(γ)+Uδ1·s(γ),

где Uδ1, Uδ2 - сигналы с выходов потенциометров обратной связи соответственно первого и второго РП.

Эти сигналы далее подают на ФНЧ 41, 42, которые осуществляют фильтрацию высокочастотных составляющих и выделяют низкочастотные составляющие сигналов отклонений рулей.

На первом и втором блоках вычитания 3, 4 осуществляется сравнение сигналов координат ракеты с сигналами с выходов ФНЧ.

В структурно-динамическом отношении предлагаемое устройство формирования команд управления представляет собой двухканальную систему управления, структурная схема которой приведена на фиг.3. Используя аппарат комплексных переменных и комплексных передаточных функций (А.А.Казамаров, A.M.Палатник, Л.О.Роднянский. Динамика двумерных систем автоматического регулирования. М., Наука, 1967 г., [4]), передаточную функцию предлагаемого устройства формирования команд можно представить в виде:

При решении задач синтеза систем телеуправления ракетами и анализа их устойчивости динамические характеристики РП обычно описываются передаточной функцией

WРП=KРП·expt[-τРП·р]

(В.И.Морозов, С.В.Алехин "Коррекция одноканальных систем телеуправления малогабаритными ракетами". Известия Тульского государственного университета. Серия "Проблемы специального машиностроения", выпуск 3 (ч.1). Материалы региональной научно-технической конференции, г.Тула, 2000, с.302-305, [5]).

С учетом этого:

Учитывая, что в полосе частот пропускания системы телеуправления ракетой ω=0…ωс, где ωс - круговая частота среза (частота пересечения логарифмической амплитудной частотной характеристикой разомкнутой системы оси абсцисс, обычно ωс≤6.28 1/с)

exp[jτРПω]≅1,

а угол фазирования γф выбираем равным ω0·τрп, вследствие чего

exp[jγФ]·exp[-jτРПω0]≡1,

зависимость (3) можно переписать в виде:

или:

где n=1+KРП·KДУ·KФ;

Анализ зависимости (5) показывает, что передаточная функция предлагаемого устройства формирования команд управления идентична передаточной функции широко используемого для коррекции систем управления (в том числе систем телеуправления ракетами) дифференцирующего фильтра (Н.Т.Кузовков. Теория автоматического регулирования, основанная на частотных методах. М., Оборонгиз, 1960 г., с.343-345, [6]), что указывает на то, что в динамическом отношении предлагаемое устройство формирования команд управления обладает свойствами корректирующего устройства и соответствующим выбором его параметров можно обеспечить устойчивость и точность системы управления ракетой.

Как показано в [5], для обеспечения устойчивости и точности систем телеуправления ракетами параметры дифференцирующего фильтра должны быть связаны с параметрами планера ракеты (собственной частотой fпл и относительным коэффициентом демпфирования ξпл) зависимостями:

где

φзж - желаемое значение запаса по фазе системы автоматического управления ракетой,

TS=2·ξПЛ·TПЛ.

С учетом (8) зависимости (7) можно переписать в виде

Для обеспечения требуемого в соответствии с зависимостью (9) значения n коэффициент передачи сглаживающего фильтра Kф при заданных КРП и КДУ в соответствии с зависимостью (6) должен составлять:

.

Устройство, реализующее предлагаемый способ, может быть выполнено следующим образом. ПИ состоит из следующих структурных единиц: линзы, светофильтра, фотодиода, усилителя (Выстрел ЗУБК10 с управляемым снарядом 9М117. Техническое описание и инструкция по эксплуатации ЗУБК10.00.00.000 ТО, М., Военное издательство, 1987 г., с.41, [7]). БАЭ состоит из усилителя-ограничителя со схемой автоматической регулировки усиления, порогового устройства, четырех избирательных фильтров, четырех компараторов, четырех нормирующих устройств, двух схем выделения координат, двух корректирующих фильтров, двух усилителей. Связи между структурными единицами БАЭ показаны на рис.11, с.18 [7].

Каждый РП состоит из усилителя, двух рулевых машинок и датчика углового отклонения руля. В свою очередь усилитель состоит из двух идентичных каналов, в состав которых входят суммирующее устройство или сумматор, корректирующий фильтр, триггерное устройство и два противофазных усилителя мощности, нагрузками которых являются обмотки управляющих электромагнитов рулевых машинок. Каждая из рулевых машинок состоит из управляющего электромагнита, распределительного устройства и цилиндра (см. с.20-24, [7]). Принципиальная электрическая схема датчика угла крена гироскопического координатора приведена на рис.12, с.19 [7].

Сумматоры и блоки вычитания выполнены по схеме рис.11.1 (У.Титце, К.Шенк. Полупроводниковая схемотехника. М., Мир, 1982 г., с.137, [8]). Модуляторы выполнены по схеме четырехквадратного умножения (рис.11.41, с.162, [8]). Усилители выполнены по схеме на рис.13.11, с.202, [8]. Источник стабилизированного напряжения выполнен по схеме на рис.3.12, с.102, [8]. Фильтр нижних частот может быть реализован по схеме на рис.13.11, с.202, [8].

Эффективность предлагаемых способа формирования команд управления и устройства для его осуществления подтверждена в процессе разработки комплекса управляемого вооружения "Вихрь".

Источники информации

1. Н.Т.Кузовков. Системы стабилизации летательных аппаратов. М., Высшая школа, 1976 г., с.226.

2. Патент 2282816, ближайший аналог.

3. Патент 2235969, ближайший аналог.

4. А.А.Казамаров, A.M.Палатник, Л.О.Роднянский. Динамика двумерных систем автоматического регулирования. М., Наука, 1967 г.

5. Н.Т.Кузовков. Теория автоматического регулирования, основанная на частотных методах. М., Оборонгиз, 1960 г., с.343-345.

6. В.И.Морозов, С.В.Алехин. "Коррекция одноканальных систем телеуправления малогабаритными ракетами". Известия Тульского государственного университета. Серия "Проблемы специального машиностроения", выпуск 3 (ч.1). Материалы региональной научно-технической конференции, г.Тула, 2000, с.302-305.

7. Выстрел ЗУБК10 с управляемым снарядом 9М117. Техническое описание и инструкция по эксплуатации ЗУБК10.00.00.000 ТО. М., Военное издательство, 1987 г., с.18, 19, 20-24, 41.

8. У.Титце, К.Шенк. Полупроводниковая схемотехника. М., Мир, 1982 г, с.102, 137, 162, 202.

Источник поступления информации: Роспатент

Showing 31-40 of 438 items.
20.03.2019
№219.016.eaa2

Генератор прямоугольных импульсов

Изобретение относится к импульсной технике и может быть использовано в системах автоматического управления и контрольно-измерительных устройствах. Генератор прямоугольных импульсов содержит генератор опорной частоты (ГОЧ)(1), выход которого соединен с первым входом элемента И (3), второй вход...
Тип: Изобретение
Номер охранного документа: 02150783
Дата охранного документа: 10.06.2000
23.03.2019
№219.016.eca4

Способ и стенд для исследования разрушения порохового заряда импульсного рдтт в полете

Способ исследования разрушения порохового заряда импульсного ракетного двигателя твердого топлива в полете включает запуск из трубы весового имитатора ракеты с работающим двигателем, гашение и анализ частиц пороховых элементов. Частицы пороховых элементов отбирают и улавливают непосредственно...
Тип: Изобретение
Номер охранного документа: 02243404
Дата охранного документа: 27.12.2004
23.03.2019
№219.016.ecac

Способ защиты электрических цепей прибора от воздействия электромагнитных полей

Изобретение относится к области защиты аппаратуры от воздействия электромагнитных полей. Техническим результатом изобретения является упрощение конструкции и снижение массогабаритных характеристик прибора, а также уменьшение трудоемкости его изготовления. При реализации способа защиты...
Тип: Изобретение
Номер охранного документа: 02219598
Дата охранного документа: 20.12.2003
29.03.2019
№219.016.eec5

Способ контроля герметичности автопилотного блока управляемых артиллерийских снарядов и устройство для его осуществления

Изобретение относится к управляемым снарядам и ракетам, в частности к контролю герметичности их автопилотных блоков. В способе контроля герметичности автопилотный блок в выключенном состоянии со сложенными внутрь его корпуса рулями предварительно устанавливают на установочном столе, покрытом...
Тип: Изобретение
Номер охранного документа: 0002269740
Дата охранного документа: 10.02.2006
29.03.2019
№219.016.eee5

Резьбовое соединение отсеков корпуса летательного аппарата

Изобретение относится к ракетной технике и артиллерии. Резьбовое соединение отсеков корпуса летательного аппарата содержит один отсек с внутренней резьбой и второй отсек. Второй отсек снабжен кольцевым пазом с расположенным в нем разрезным резьбовым кольцом, выполненным с наружной резьбой,...
Тип: Изобретение
Номер охранного документа: 0002268405
Дата охранного документа: 20.01.2006
29.03.2019
№219.016.eefe

Система электропитания подвижных объектов на два уровня напряжения

Изобретение относится к электротехнике и может быть использовано в системах электропитания подвижных объектов, требующих два уровня напряжения при одном источнике питания. Технический результат заключается в повышении надежности системы электропитания на два уровня напряжения при ее установке в...
Тип: Изобретение
Номер охранного документа: 0002261512
Дата охранного документа: 27.09.2005
29.03.2019
№219.016.ef41

Управляемый снаряд

Изобретение относится к области вооружения. Управляемый снаряд, вращающийся по крену, выполненный по схеме "утка" содержит цилиндрический корпус, маршевый двигатель, аэродинамические органы управления и стабилизатор в виде складывающихся на боковую поверхность хвостовой части корпуса снаряда...
Тип: Изобретение
Номер охранного документа: 0002288436
Дата охранного документа: 27.11.2006
29.03.2019
№219.016.ef43

Управляемая ракета в транспортно-пусковом контейнере

Изобретение относится к области вооружения. Управляемая ракета в транспортно-пусковом контейнере содержит боевую часть с лидирующим кумулятивным зарядом и бортовую аппаратуру, у которой электрические цепи пуска и управления соединены через контейнер с наземной аппаратурой управления....
Тип: Изобретение
Номер охранного документа: 0002288423
Дата охранного документа: 27.11.2006
29.03.2019
№219.016.ef4d

Управляемая ракета

Изобретение относится к области вооружения. Управляемая ракета содержит отсек управления, разгонный двигатель, боевую часть, стартовый двигатель и хвостовой отсек с катушкой проводной линии связи и консолями стабилизатора. Разгонный двигатель размещен между отсеком управления и боевой частью,...
Тип: Изобретение
Номер охранного документа: 0002288437
Дата охранного документа: 27.11.2006
29.03.2019
№219.016.ef54

Упаковка для изделий с оптической системой

Изобретение относится к оборонной технике, в частности к упаковке изделий с оптической системой, предпочтительно к оптико-механическим блокам для прицел-приборов наведения к управляемым аппаратам в луче лазера, которые транспортируются с неоднократной погрузкой и выгрузкой всеми видами...
Тип: Изобретение
Номер охранного документа: 0002287469
Дата охранного документа: 20.11.2006
Showing 31-40 of 68 items.
10.05.2016
№216.015.3bb0

Способ вывода дальнобойной ракеты в зону захвата цели головкой самонаведения и система наведения дальнобойной ракеты

Предлагаемая группа изобретений относится к области управляемых самонаводящихся ракет с аэродинамическим автоколебательным рулевым приводом. Повышение точности вывода ракет в зону захвата головкой самонаведения излучения от целей, расположенных на больших дальностях, и, следовательно, повышение...
Тип: Изобретение
Номер охранного документа: 0002583347
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3df4

Способ инерциального наведения вращающегося по крену снаряда

Изобретение относится к способам наведения вращающегося по крену снаряда. Для инерциального наведения вращающегося по крену снаряда измеряют рассогласование между положением продольной оси снаряда и положением оси инерциального гироскопа, измеряют угловые скорости снаряда в связанной со...
Тип: Изобретение
Номер охранного документа: 0002584403
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3e53

Турбокомпрессорная энергетическая установка

Изобретение относится к энергетическому машиностроению и может быть использовано в конструкциях турбокомпрессорных установок с замкнутым термодинамическим циклом Брайтона. Турбокомпрессорная энергетическая установка включает турбокомпрессор, нагреватель рабочего тела и...
Тип: Изобретение
Номер охранного документа: 0002584749
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.41b0

Способ определения угла крена бесплатформенной инерциальной навигационной системы вращающегося по крену артиллерийского снаряда

Заявленное изобретение относится к способам определения угла крена бесплатформенной инерциальной навигационной системы вращающегося по крену артиллерийского снаряда. Для определения угла крена измеряют угловые скорости снаряда в связанной со снарядом вращающейся по крену системе координат,...
Тип: Изобретение
Номер охранного документа: 0002584400
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.44b8

Космическая энергетическая установка с машинным преобразованием энергии

Изобретение относится к объектам энергетического машиностроения. В космической энергетической установке в трубопровод между источником тепла и турбиной устанавливается смеситель, сообщенный дополнительным трубопроводом, включающим управляемый посредством электропривода дроссель, с...
Тип: Изобретение
Номер охранного документа: 0002586797
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.897b

Вакуумный стенд для огневых испытаний жидкостного ракетного двигателя космического назначения

Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ). На вакуумном стенде для тепловых испытаний ЖРД,...
Тип: Изобретение
Номер охранного документа: 0002602464
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b188

Способ вывода ракеты в зону захвата цели головкой самонаведения и устройство для его осуществления

Предлагаемая группа изобретений относится к военной технике, в частности к системам управляемого оружия и ракетной, артиллерийской технике с головками самонаведения. Технический результат - повышение вероятности поражения целей за счет обеспечения требуемого угла подхода ракеты к плоскости...
Тип: Изобретение
Номер охранного документа: 0002613016
Дата охранного документа: 14.03.2017
09.06.2018
№218.016.5cc5

Способ дросселирования тяги жидкостного ракетного двигателя

Изобретение относится к ракетной технике. Способ дросселирования тяги ЖРД, основанный на снижении массовых расходов компонентов топлива в камеру с нерегулируемыми форсунками, при котором после уменьшения массовых расходов ниже заданных значений подают газ в полости магистралей питания камеры на...
Тип: Изобретение
Номер охранного документа: 0002656073
Дата охранного документа: 30.05.2018
04.07.2018
№218.016.6a4e

Способ вывода вращающейся по углу крена ракеты с гироскопом направления в зону захвата цели головкой самонаведения и система для его осуществления

Изобретение относится к системам управления, в частности к ракетной технике с головками самонаведения, и может использоваться в комплексах управляемого вооружения, расположенных на воздушных носителях. Технический результат – повышение надежности на основе повышения вероятности поражения целей...
Тип: Изобретение
Номер охранного документа: 0002659622
Дата охранного документа: 03.07.2018
15.10.2018
№218.016.924e

Космическая энергетическая установка с машинным преобразованием энергии

Изобретение относится к области энергетического машиностроения. Космическая энергетическая установка с машинным преобразованием энергии в замкнутом контуре с газообразным рабочим телом содержит трубопроводы, образующие замкнутый контур, с включенными в него турбокомпрессором, источником тепла,...
Тип: Изобретение
Номер охранного документа: 0002669609
Дата охранного документа: 12.10.2018
+ добавить свой РИД