×
27.04.2019
219.017.3d45

Результат интеллектуальной деятельности: Способ синтеза нанокомпозитов Ag/C

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии и нанотехнологии. Способ синтеза нанокомпозитов Ag/C включает приготовление совместного раствора полиакрилонитрила (ПАН) и нитрата серебра в диметилформамиде (ДМФА), выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагрев полученного твердого остатка. Приготовление совместного раствора полиакрилонитрила и AgNO в диметилформамиде осуществляют при температуре 30-70°С при следующем соотношении компонентов: полиакрилонитрил 4,7%, диметилформамид 93,8-94,6%, AgNO 0,7-1,5%. Выпаривание диметилформамида проводят при 60-80°С. Осуществляют поэтапный инфракрасный нагрев полученного твердого остатка при давлении 10-10 мм рт.ст. Сначала проводят предварительный нагрев в течение 5-15 минут при 80-200°С со скоростью нагрева не более 50°С/мин. Финальный нагрев проводят в течение 5-15 минут при 80-700°С со скоростью нагрева не более 50°С/мин. Изобретение позволяет упростить получение нанокомпозитов, включающих наночастицы серебра Ag с размером 19-28 нм в углеродной матрице, без использования дополнительных внешних восстановительных агентов. 1 ил., 1 табл., 4 пр.

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла в составе нанокомпозитов Ag/C на основе полиакрилонитрила.

Известно в настоящее время несколько способов синтеза наночастиц Ag/C. В работе (Khanna P., Singh N., Charan S., Subbarao V.Synthesis and char-acterization of Ag/PVA nanocomposite by chemical reduction method.// Materials Chemistry and Physics. 2005. V. 93. P. 117) синтез углеродной матрицы и наночастиц Ag выполнены отдельно, а затем углеродную матрицу и наночастицы Ag механически смешивают с образованием нанокомпозита.

Однако диспергирование наночастиц Ag в углеродную матрицу не обеспечивает равномерное распределение в связи с агломерацией наночастиц и высокой вязкостью прекурсора углеродной матрицы.

По методике (Viazmitinov, Dmitry & Matyushkin, Lev & Maksimov, Alexander. (2014). Synthesis of core-shell Ag/SiO2 nanoparticles for SPASER structures. Journal of Physics: Conference Series. 541. 012015) был получен водный раствор на основе солей нитрата серебра и боргидрида натрия, содержащий частицы серебра с размерами от 10 до 80 нм. На поверхности наночастиц получали оболочку из SiO2. Процесс создания оболочки проводили следующим образом: Золь металлических наночастиц разбавляли изопропиловым спиртом в объемном соотношении 1/200 в ультразвуковой ванне; Полученный раствор перемешивали в ультразвуковой ванне при 40°С в течение 1 часа; К раствору добавляли водный раствор аммиака; После температурной стабилизации вводили тетраэтоксисилан. Данная методика требует длительной выдержки на этапе создания наночастиц Ag, при этом полученные наночастицы не стабильны во времени до процесса создания оболочек.

Основным недостатком большинства методов синтеза наночастиц Ag является необходимость в отдельной стадии стабилизации наночастиц.

Техническим результатом является упрощенная технология получения нанокомпозита Ag/C в системе AgNO3, полиакрилонитрил (ПАН), происходящая в одном процессе инфракрасного (ИК) нагрева без использования дополнительных внешних восстановителей и сочетающая в себе одновременный синтеза наночастиц Ag размером от 19 до 28 нм и углеродной матрицы, защищающей наночастицы Ag от коалесценции и сохраняющей их свойства на воздухе.

Технический результат достигается следующим образом:

Способ синтеза нанокомпозитов Ag/C, включающий приготовление совместного раствора полиакрилонитрила и AgNo3 в диметилформамиде, выдержку до полного растворения всех компонентов, удаление диметилформамида путем выпаривания и нагрев полученного твердого остатка, отличающийся тем, что приготовление совместного раствора полиакрилонитрил и AgNo3 в диметилформамиде осуществляют при температуре 30-70°С, при следующем соотношении компонентов

Полиакрилонитрил - 4,7%,

Диметилформамида - 93,8-94,6%,

AgNO3 - 0,7-1,5%.

При этом выпаривание диметилформамида проводят при температуре 60-80°С и осуществляют поэтапный инфракрасный нагрев полученного твердого остатка при давлении 10-2-10-3 мм.рт.ст., при котором проводят предварительный нагрев в течение 5-15 минут при температуре 80-200°С со скоростью нагрева не более 50°С/мин, и финальный нагрев в течение 5-15 минут при температуре 80-700°С со скоростью нагрева не более 50°С/мин.

Изобретение поясняется чертежом где на фигуре 1 показаны результаты рентгенофазового анализа образцов нанокомпозитов Ag/C, синтезированных при различных температурах ИК-нагрева 1-80°С, 2-300°С, 3-450°С, 4-700°С.

Использование выбранных определенных исходных компонентов (полиакрилонитрила (ПАН), соединений металла (AgNO3)), условий проведения процесса растворения компонентов и процесса удаления растворителя, ИК-нагрева полученного твердого остатка AgNO3, ПАН при давлении в реакционной камере Р=10-2÷10-3 мм. рт.ст. Режим температурной обработки можно, условно, разделить на несколько этапов: 1) при температуре Т=80÷200°С, в течение 5÷15 минут, процесс проводится при давлении Р=10-2÷10-3 мм. рт.ст., скорость нагрева до 50°С/мин; 2) при финальной температуре 80÷700°С в течение 5÷15 минут, процесс проводится при давлении Р=10-2÷10-3 мм. рт.ст., скорость нагрева до 50°С/мин, в результате чего формируется металлоуглеродный нанокомпозит Ag/C, содержащий наночастицы Ag с размером от 19 до 28 нм.

Для анализа фазового состава нанокомпозита и определения размера наночастиц Ag использован рентгеновский дифрактометр ДРОН-1,5, излучение Cu, графитовый монохроматор, а также Дифрей 401 с Cu-излучением. Средний размер наночастиц Ag рассчитан по результатам РФА из дифрактограмм по уравнению Дебая-Шерера:

где k - константа, равная 0,89; В - полуширина дифракционного угла, соответственного дифракционного максимума; λ=1,54056 - длина волны рентгеновского Cu - излучения, Θ - дифракционный угол, град.

Концентрация полиакрилонитрила в прекурсоре нанокомпозита составляет 4,7%, что определяется вязкостью получаемого раствора, увеличение доли ПАН приводит к росту вязкости и неравномерному распределению AgNO3 в прекурсоре. Концентрация AgNO3 может варьироваться в диапазоне 0,7÷1,5%, увеличение концентрации AgNO3 приводит к росту размеров наночастиц Ag более 100 нм. Концентрация диметилформамида (ДМФА) определяет вязкость раствора, увеличение доли ДМФА приводит к увеличению времени сушки прекурсора, а уменьшение его концентрации - к неравномерному распределению AgNO3 в прекурсоре.

Пример 1. Готовится 20 мл совместного раствора ПАН, AgNO3 в ДМФА с концентрациями (Ag)=10 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mAgNO3=0,16 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески AgNO3. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=50°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (m тв. ост.≈const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева при температуре 80°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм. рт.ст., скорость нагрева v=50°С/мин.

В процессе ИК-нагрева твердого остатка AgNO3/ПАН в результате деструкции ПАН происходит выделение водорода и др. газообразных продуктов, которые восстанавливают Ag из соединения, а за счет дальнейшего взаимодействия формируются наночастицы Ag. При этом в ПАН протекают процессы карбонизации, приводящие к формированию углеродной графитоподобной матрицы нанокомпозита, в которой распределяются сформировавшиеся наночастицы. В результате получается нанокомпозит Ag/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц Ag. Средний размер наночастиц составил 19±1 нм. На фиг. 1.1 приведена дифрактограмма нанокомпозита и результаты фазового анализа нанокомпозита Ag/C полученного при Т=80°С.

Пример 2. Готовится 20 мл совместного раствора ПАН, AgNO3 в ДМФА с концентрациями (Ag)=10 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mAgNO3=0,16 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески AgNO3. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=50°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв..ост≈const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм. рт.ст.) при температуре Т=200°С в течение 15 минут, скорость нагрева v=50°С/мин; 2) при финальной температуре 300°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм. рт.ст., скорость нагрева v=50°С/мин.

В процессе ИК-нагрева твердого остатка AgNO3/ПАН в результате деструкции ПАН происходит выделение водорода и др. газообразных продуктов, которые восстанавливают Ag из соединения, а за счет дальнейшего взаимодействия формируются наночастицы Ag. При этом в ПАН протекают процессы карбонизации, приводящие к формированию углеродной графитоподобной матрицы нанокомпозита, в которой распределяются сформировавшиеся наночастицы. В результате получается нанокомпозит Ag/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц Ag. Средний размер наночастиц составил 21±1 нм. На фиг. 1.2 приведена дифрактограмма нанокомпозита и результаты фазового анализа нанокомпозита Ag/C полученного при Т=300°С.

Пример 3. Готовится 20 мл совместного раствора ПАН, AgNO3 в ДМФА с концентрациями (Ag)=10 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всехтвердых компонентов: mAgNO3=0,16 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески AgNO3. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=50°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания (mтв..ост≈const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм. рт.ст.) при температуре Т=200°С в течение 15 минут, скорость нагрева v=50°С/мин; 2) при финальной температуре 450°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм. рт.ст., скорость нагрева v=50°С/мин.

В процессе ИК-нагрева твердого остатка AgNO3/ПАН в результате деструкции ПАН происходит выделение водорода и др. газообразных продуктов, которые восстанавливают Ag из соединения, а за счет дальнейшего взаимодействия формируются наночастицы Ag. При этом в ПАН протекают процессы карбонизации, приводящие к формированию углеродной графито-подобной матрицы нанокомпозита, в которой распределяются сформировавшиеся наночастицы. В результате получается нанокомпозит Ag/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц Ag. Средний размер наночастиц составил 25±1 нм. На фиг. 1.3 приведена дифрактограмма нанокомпозита и результаты фазового анализа нанокомпозита Ag/C полученного при Т=450°С.

Пример 4. Готовится 20 мл совместного раствора ПАН, AgNO3 в ДМФА с концентрациями (Ag)=10 масс. % от массы полимера и (ПАН)=5 масс. % от массы растворителя. Для этого подготавливаются навески всех твердых компонентов: mAgNO3=0,16 г, mПАН=1 г; а также в коническую колбу (V=50 мл) наливается 20 мл ДМФА. Затем в колбу добавляется ПАН и навески AgNO3. После интенсивного перемешивания полученной смеси с помощью стеклянной палочки в течение 5 минут колба закрывается крышкой и помещается в лабораторный сушильный шкаф, нагретый до температуры Т=50°С. В результате выдержки смеси в течение 8 часов в сушильном шкафу до полного растворения соединений металла и ПАН в ДМФА получается вязкий раствор. Полученный раствор заливается в чашку Петри, помещается в сушильный шкаф, нагретый до температуры Т≤70°С, и выдерживается в нем до завершения процесса выпаривания mтв.ост≈const). Полученный твердый остаток подвергается температурной обработке в установке ИК-нагрева. Процесс проводится в несколько стадий: 1) в вакууме (давлении в реакционной камере установки Р=10-2÷10-3 мм. рт.ст.) при температуре Т=200°С в течение 15 минут, скорость нагрева v=50С/мин; 2) при финальной температуре 700°С в течение 15 минут, процесс проводится при давлении Р=10-2÷10-3 мм. рт.ст., скорость нагрева v=50°С/мин.

В процессе ИК-нагрева твердого остатка AgNO3/ПАН в результате деструкции ПАН происходит выделение водорода и др. газообразных продуктов, которые восстанавливают Ag из соединения, а за счет дальнейшего взаимодействия формируются наночастицы Ag. При этом в ПАН протекают процессы карбонизации, приводящие к формированию углеродной графитоподобной матрицы нанокомпозита, в которой распределяются сформировавшиеся наночастицы. В результате получается нанокомпозит Ag/C в виде черного порошка. По данным РФА определен фазовый состав нанокомпозита, рассчитан средний размер наночастиц Ag. Средний размер наночастиц составил 26±1 нм. На фиг. 1.4 приведена дифрактограмма нанокомпозита и результаты фазового анализа нанокомпозита Ag/C полученного при Т=700°С.

Таким образом, установлено, что уже при 80°С происходит образования наночастиц Ag, а также, что с увеличением температуры финального нагрева происходит увеличение размера наночастиц Ag. По результатам РФА с использованием формулы Дебая-Шерера рассчитаны средние размеры наночастиц Ag в зависимости от условий проведения процесса синтеза (температура финальной стадии ИК-нагрева) (таблица 1).


Способ синтеза нанокомпозитов Ag/C
Источник поступления информации: Роспатент

Showing 81-90 of 326 items.
25.08.2017
№217.015.b964

Устройство для измерения отношения напряжения мостовых датчиков

Предлагаемое изобретение относится к измерительной технике, в частности к мостовым схемам измерения. Устройство измерения отношения напряжения мостовых датчиков содержит рабочий (измерительный) мост 1, измерительная диагональ которого через последовательно соединенные усилитель 2, селектируемый...
Тип: Изобретение
Номер охранного документа: 0002615167
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.ba00

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов в производстве гексаферрита бария, обеспечивающей снижение...
Тип: Изобретение
Номер охранного документа: 0002615565
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.ba4a

Способ измельчения смеси карбоната бария и оксида железа в производстве гексаферритов бария

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов бария. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита бария больше 230 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002615562
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bb9b

Способ двухлучевых термолинзовых измерений с обратной синхронизацией сигнала

Изобретение относится к области спектроскопии и касается способа проведения лазерноиндуцированных двухлучевых термолинзовых измерений. Способ включает в себя не менее двух циклов измерений, каждый из которых состоит из полуцикла нагрева исследуемого объекта индуцирующим лазерным лучом и...
Тип: Изобретение
Номер охранного документа: 0002615912
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bbd3

Способ нанесения покрытий на твердые сплавы

Изобретение относится к области металлообработки и может быть использовано для нанесения износостойких покрытий на режущий инструмент. Способ включает нанесение покрытия на поверхность пластины из твердого сплава в камере установки PVD, при этом на поверхность пластины наносят защитный слой из...
Тип: Изобретение
Номер охранного документа: 0002615941
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.c1bb

Способ получения нетканых материалов с антибактериальными свойствами

Изобретение относится к технологии отделки волокнистых материалов и касается способа получения нетканых материалов с антибактериальными свойствами. Способ включает обработку материала раствором, содержащим наноструктурные частицы металла или оксида при температуре 20±5°С, и последующее...
Тип: Изобретение
Номер охранного документа: 0002617744
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.c284

Интегральная схема быстродействующего матричного приемника оптических излучений

Изобретение может быть использовано в современных системах дальнометрии, управления неподвижными и движущимися объектами, зондирования облачности, контроля рельефа местности и т.д. Интегральная схема быстродействующего матричного приемника оптических излучений содержит электрическую схему,...
Тип: Изобретение
Номер охранного документа: 0002617881
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c356

Способ управления процессом жидкофазного восстановления ромелт для переработки железосодержащих материалов высокой степени окисленности

Изобретение относится к производству жидкого чугуна процессом жидкофазного восстановления Ромелт при переработке железосодержащих материалов высокой степени окисленности. В шлаковую ванну печи Ромелт подают предварительно подготовленный в дополнительной печи расплав железосодержащих материалов...
Тип: Изобретение
Номер охранного документа: 0002618030
Дата охранного документа: 02.05.2017
25.08.2017
№217.015.c475

Способ производства чугуна процессом жидкофазного восстановления ромелт

Изобретение относится к производству жидкого углеродистого полупродукта и чугуна. В жидкую шлаковую ванну печи Ромелт через верхнее загрузочное отверстие одновременно загружают железосодержащие материалы, флюсы и фракции угля более 5 мм. Барботаж жидкой шлаковой ванны и инициирование неполного...
Тип: Изобретение
Номер охранного документа: 0002618297
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c4a5

Способ получения слитков из бор-содержащего материала на основе алюминия

Изобретение относится к области металлургии, в частности к борсодержащим материалам на основе алюминия, получаемым в виде слитков и предназначено для получения листового проката, в том числе толщиной менее 0,3 мм, к которому предъявляются требования низкого удельного веса и повышенной прочности...
Тип: Изобретение
Номер охранного документа: 0002618300
Дата охранного документа: 03.05.2017
Showing 11-19 of 19 items.
13.01.2017
№217.015.7420

Способ определения состава твердого раствора

Использование: для оценки состава двухкомпонентных твердых растворов в нанодисперсных материалах, включающих, в частности, наноразмерные частицы: Pt-Ru, Pt-Rh, Fe-Co, Pd-Ru, Pd-Rh, Pd-H, Hf-O. Сущность изобретения заключается в том, что предложенный способ определения состава двухкомпонентного...
Тип: Изобретение
Номер охранного документа: 0002597935
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.a8ad

Способ получения наноразмерных частиц гексаферрита бария

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002611442
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.b4d9

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение коэрцитивной силы по намагниченности гексаферрита стронция больше 235 кА/м и повышение активности при измельчении смеси исходных...
Тип: Изобретение
Номер охранного документа: 0002614171
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.c650

Способ получения мелкодисперсной шихты серебро-оксид меди

Изобретение относится к области порошковой металлургии и может быть использовано при изготовлении электроконтактов на основе серебра. Описан способ получения мелкодисперсной шихты серебро-оксид меди(II), включающий химическое осаждение карбонатов серебра и меди из раствора, содержащего нитраты...
Тип: Изобретение
Номер охранного документа: 0002618700
Дата охранного документа: 11.05.2017
10.05.2018
№218.016.4637

Способ извлечения серебра из кислого раствора нитрата серебра методом электроэкстракции

Изобретение относится к области металлургии благородных металлов, в частности к извлечению серебра из кислых растворов нитрата серебра методом электроэкстракции с использованием нерастворимых термообработанных титановых анодов. Перед процессом электроэкстракции проводят подготовку титановых...
Тип: Изобретение
Номер охранного документа: 0002650372
Дата охранного документа: 11.04.2018
20.02.2019
№219.016.c03a

Способ получения термостабильного нанокомпозита cu/полиакрилонитрил

Изобретение относится к нанотехнологии изготовления термостабильного нанокомпозита Cu/полиакрилонитрил (ПАН). Описан способ получения термостабильного нанокомпозита Cu/ПАН, включающий приготовление смеси CuCl, HNO (С=37%) и ПАН (М=1×10), выдерживание до растворения CuCl и ПАН в HNO, выпаривание...
Тип: Изобретение
Номер охранного документа: 0002330864
Дата охранного документа: 10.08.2008
29.03.2019
№219.016.f785

Безэховая камера

Изобретение относится к области радиотехники и звукотехники и может использоваться при строительстве и оборудовании безэховых камер (помещений с радио- и звукоизоляцией), которым предъявляются повышенные требования, и которые могут найти применение при проверке и сертификации...
Тип: Изобретение
Номер охранного документа: 0002447551
Дата охранного документа: 10.04.2012
19.06.2019
№219.017.89e3

Способ получения нанокомпозита feni/пиролизованный полиакрилонитрил

Изобретение относится к нанотехнологии изготовления нанокомпозита FeNi/пиролизованный полиакрилонитрил (ППАН). Способ получения нанокомпозита включает приготовление раствора FeCl·6НО, NiCl·6НО и ПАН (М=1·10) в диметилформамиде (ДМФА), выдерживание до растворения FеCl·6НO, NiCl·6HO и ПАН в ДМФА,...
Тип: Изобретение
Номер охранного документа: 0002455225
Дата охранного документа: 10.07.2012
15.05.2023
№223.018.5739

Способ синтеза нанокомпозитов nicocu/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре...
Тип: Изобретение
Номер охранного документа: 0002770599
Дата охранного документа: 18.04.2022
+ добавить свой РИД