×
19.04.2019
219.017.343b

Результат интеллектуальной деятельности: МЕТАЛЛИЧЕСКАЯ КОМПОЗИТНАЯ ПАНЕЛЬ

Вид РИД

Изобретение

№ охранного документа
0002464393
Дата охранного документа
20.10.2012
Аннотация: Изобретение относится к конструкциям многослойных панелей, а именно к металлическим композитным панелям, которые могут применяться в современном промышленном и гражданском строительстве. Технический результат: снижение стоимости производства панели с сохранением эксплуатационных качеств, в частности высокой огнестойкости. Металлическая композитная панель включает два поверхностных слоя из металла и внутренний полимерный композиционный слой. Полимерный композиционный слой представляет собой нанокомпозит, полученный в результате модификации полимера бентонитовыми глинами, используемыми в виде глинопорошка фракции менее 0,07 мм, высушенного до остаточной влажности менее 2%, с подачей его в расплав полимера в количестве 5-20 об.%. 1 ил., 1 табл.

Настоящее изобретение относится к конструкциям панелей типа сэндвич, а именно к металлическим композитным панелям, которые могут применяться в современном промышленном и гражданском строительстве, в частности, для изготовления наружных ограждающих конструкций, противопожарных перегородок, теплоизоляционных и ненесущих конструкций зданий и сооружений (стены, панели, внутренние и внешние перегородки), кровельных покрытий, а также в железнодорожном транспорте и кораблестроении, изготовлении рекламных конструкций и пр.

Известна сэндвич-панель, включающая два поверхностных слоя из металла и центральную часть, набранную из кусков минеральной ваты, составляющих продольные полосы, продольные оси кусков параллельны продольной оси панели, а ориентация волокон в кусках перпендикулярна плоскости поверхностных слоев, торцы кусков смещены продольно по отношению друг к другу, между полосами из кусков минеральной ваты дополнительно введены продольные полосы из заливочного пенопласта, причем они введены последовательно между группами полос минеральной ваты, количество полос минеральной ваты в группе составляет от 1 до 4, при этом крайние полосы панели составлены из кусков минеральной ваты, а ширина полосы заливочного пенопласта составляет (1÷4) от ширины куска минеральной ваты, а длина полос составляет длину панели (RU 2280132 C1, E04C 2/292, 20.07.2006).

Недостатком известной панели является недостаточная технологичность и трудоемкость в изготовлении, поскольку на некоторых этапах изготовления применяется ручной труд, в частности вручную подаются куски минеральной ваты заданной толщины до подающих валков; известная панель не обладает достаточной огнестойкостью.

Известна огнестойкая композитная панель, включающая металлическую (железную) пластину, зажатую с двух сторон основным огнестойким материалом, в качестве которого может быть использована полиэтиленовая композиция, облицованная, в свою очередь, металлическими пластинами (JP 10030290 A, E04B 1/94, 03.02.1998).

К недостаткам данной панели относятся её недостаточная огнестойкость, достаточно большой вес панели, вследствие присутствия дополнительной металлической пластины, что усложняет ее применение в качестве облицовочной. Технология изготовления известной панели из-за наличия в ней многослойности также усложнена.

Наиболее близкой по технической сущности (техническому назначению) является огнестойкая композитная панель (RU 2008149670 A, E04C 2/00, дата публикации заявки: 27.06.2010), включающая два поверхностных слоя из металла и соединяющий центральный слой, представляющий гомогенную фазу на основе полиэтиленовой композиции, наполненной полыми микросферами золы-уноса, полученными от сжигания углей, отличающаяся тем, что внутренние полости микросфер заполнены антипиреном.

Данная панель обладает достаточно высокой огнестойкостью, но при этом производство таких панелей связано со значительными затратами, в частности, на выделение из золы-уноса фракции полых микросфер, что существенно сказывается и на стоимости панели.

Задачей настоящего изобретения является снижение стоимости производства металлической композитной панели, с сохранением при этом ее потребительских и эксплуатационных качеств, в частности высокой огнестойкости.

Настоящая задача решается тем, что в металлической композитной панели, включающей два поверхностных слоя из металла и внутренний полимерный композиционный слой, согласно заявляемому изобретению полимерный композиционный слой представляет собой нанокомпозит, полученный в результате модификации полимера бентонитовыми глинами, используемыми в виде глинопорошка фракции менее 0.07 мм, высушенного до остаточной влажности менее 2%, с подачей его в расплав полимера в количестве 5-20 об.%.

Бентонитовые глины могут быть модифицированы антипиренами, в частности полифосфатом аммония и/или пентаэритритом.

Поверхностные металлические слои могут быть представлены алюминиевыми листами.

Поверхностные металлические слои могут быть представлены стальными листами.

Наружная поверхность одного из металлических слоев, являющегося наружным, может содержать грунтовый слой и полимерное покрытие (PVDF).

Наружная поверхность одного из металлических слоев, являющегося наружным, может содержать грунтовый слой и полимерное покрытие Nano PVDF.

Наружная поверхность одного из металлических слоев, являющегося наружным, может содержать грунтовый слой и полимерное покрытие РЕ.

Наружная поверхность тыльной стороны панели может быть выполнена со слоем антикоррозийного покрытия.

Металлическая композитная панель может быть выполнена плоской формы.

Металлическая композитная панель может быть выполнена с отгибами в форме кассеты.

Отличительными от ближайшего аналога признаками являются следующие:

- внутренний полимерный композиционный слой металлической композитной панели представляет собой нанокомпозит;

- нанокомпозит внутреннего полимерного композиционного слоя металлической композитной панели представляет собой модифицированный бентонитовыми глинами полимер;

- использование бентонитовых глин в виде глинопорошка фракции менее 0.07 мм, высушенного до остаточной влажности менее 2%, с подачей его в расплав полимера в количестве 5-20 об.%.

Технический результат, достигаемый при реализации заявленного изобретения и заключающийся в снижении стоимости изготовления металлических композитных панелей, при сохранении их высоких потребительских и эксплуатационных характеристик, в частности огнестойкости, достигается за счет того, что используемые во внутреннем полимерном композиционном слое слоистые силикаты, а именно бентонитовые глины, представляющие собой природные материалы с толщиной слоев около 1 нм, длина и ширина которых варьируется от 30 нм до нескольких микрон, имеют широкое распространение и большие объемы залежей, вследствие чего исходный материал, используемый в конструктивных элементах панелей, является достаточно легкодоступным и сравнительно недорогим.

Изобретение поясняется чертежом, на фигуре показан фрагмент структуры металлической композитной панели, с отображением возможных составляющих панель слоев.

Позициями на чертеже отмечены: 1 - защитная пленка, 2 - эмаль PVDF; 3 - грунтовка PVDF; 4 - металлический лист; 5 - термополимерный клей: 6 - полимерный композиционный слой; 7 - термополимерный клей; 8 - металлический лист; 9 - антикоррозийное покрытие.

Металлическая композитная панель состоит из двух металлических (алюминиевых или стальных листов 4, между которыми расположен композиционный полимерный слой 6, соединенный с металлическими листами термополимерным клеем 5. Наружная поверхность одного из металлических листов, являющегося наружным, может быть выполнена с грунтовкой PVDF 3, покрытой эмалью PVDF 2. Наружный слой окрашенного металлического листа может быть снабжен защитной пленкой 1. Тыльная сторона панели покрыта грунтом или антикоррозийным покрытием 7.

Панель может быть выполнена плоской формы или с отгибами по периметру кассетного типа.

Особую роль в долговечности и прочности фасадов играет эмаль, используемая при окраске композитных панелей - покрытия PVDF и Nano PVDF обладают не только повышенной стойкостью к внешним воздействиям (к кислотам и щелочам, к воздействию климатических факторов, к истиранию), но и способностью к самоочищению.

Металлические композитные панели в производственных условиях изготавливают на автоматизированных линиях по экструзионной технологии.

Для получения полимерного композиционного слоя используют преимущественно метод интеркалирования в расплаве, основанный на смешении расплавленного полимера со слоистыми силикатами, в частности бентонитовыми глинами. При этом полимеры проникают в межполостные пространства силикатного материала, образуя интеркалированный нанокомпозит.

При разработке технологических решений производства металлических композитных панелей фирмой-заявителем для изготовления внутреннего нанокомпозитного слоя в качестве слоистых силикатов были выбраны и использовались бентонитовые глины производства ОАО «Хакасский бентонит», имеющие следующие минеральный состав: монтмориллонит - 70-72; гидрослюда - 1-2; каолинит - 7-8; кварц - 7-8; щелочной полевой шпат - 6-7; слюда - 4-5; кальцит - 1-2 и химический состав, мас.%: SiO2 - 60.5; TiO2 - 0.11; Al2O3 - 16.25; Fe2O3 - 1.70; FeO - 0.75; MgO - 2.38, MnO - 0.03; CaO - 1.75; Na2O - 0.77; K2O - 1.01. Использовали глинопорошок фракции менее 0.07 мм, высушенный до остаточной влажности менее 2%.

Опытные образцы полимерного композита, модифицированного бентонитовыми глинами с различным содержанием модификатора, изготавливали следующим образом. Смешивание проводили в обогреваемом экструдере объемом 250 см3. Экструдер разогревали до температуры 200°C, после чего засыпали в него гранулы полимера и перемешивали. После полного расплавления полимерного материала в него добавляли глинопорошок в количестве 5-20 об.%. Смесь интенсивно перемешивали при температуре расплава 210-225°C. Затем открывали выходное отверстие экструдера, выдавливали полученную смесь, из которой на ручном прессе формовали пластины (толщина 3 мм, ширина 24 мм, длина до 100 мм). Результаты электронной микроскопии показали равномерное распределение глины в полученном композите.

При изготовлении использовалась как исходная бентонитовая глина, так и глина, модифицированная антипиренами (полифосфат аммония, пентаэритрит). Содержание антипирена составляло от 3 до 10%.

С использованием полученных, модифицированных полимерных нанокомпозитов была изготовлена опытная партия металлических композитных панелей (алюминиевых и стальных). Для изготовления использовалась эксплуатируемая в настоящее время промышленная линия производства фирмы-заявителя - компании «Краспан».

Предварительная оценка горючести, определяемая по времени воспламенения и скорости горения, показала следующее.

Воспламенение образцов, модифицированных бентонитовой глиной в количестве от 5 до 15%, происходило с задержкой на 5-7 секунд по сравнению с контрольным образцом (результаты приведены в таблице). Образование горящих капель не наблюдалось.

В образцах с добавлением антипиренов (полифосфат аммония, пентаэритрит) наблюдалось снижение времени воспламеняемости по сравнению с образцами, имеющими в составе нанокомпозита только бентонитовую глину (сравнение образцов №1 и №5)

Результаты термогравиметрического анализа показали, что добавление бентонитовой глины приводит к смещению кривой потери массы в высокотемпературную область.

Образование полимерных нанокомпозитов при введении слоистых силикатов в полимеры приводит к увеличению термостабильности и снижению горючести.

Механизм снижения горючести при введении слоистых силикатов в полимер состоит в следующем: добавки слоистых силикатов способствуют окислительной карбонизации при пиролизе и горении полимера, при этом формируются углерод-силикатные слои в его структуре. Такие слои изолируют полимер от источника тепла и образуют барьер, уменьшающий выделение летучих продуктов разложения полимера в зону горения.

Высокая огнестойкость металлических композитных панелей обусловлена как за счет присутствия в конструкции панели наружных металлических слоев, так и за счет внутреннего полимерного нанокомпозитного слоя, имеющего низкую горючесть.

Таким образом, заявленные металлические композитные панели с использованием в качестве полимерного композиционного слоя, нанокомпозита, полученного в результате модификации полимера бентонитовыми глинами, являющимися широкодоступным природным материалом, являются менее дорогими, чем панели по прототипу, при этом обладают высокой огнестойкостью.

Таблица
Сравнительная горючесть нанокомпозита
Образец Время воспламенения, секунд
Контрольный (полимер без глины) 11
М1 (5% бентонитовой глины) 15
М2 (7% бентонитовой глины) 16
М3 (10% бентонитовой глины) 18
М4 (15% бентонитовой глины) 18
М5 (5% бентонитовой глины + 5% полифосфата аммония) 17

Металлическая композитная панель, включающая два поверхностных слоя из металла и внутренний полимерный композиционный слой, отличающаяся тем, что полимерный композиционный слой представляет собой нанокомпозит, полученный в результате модификации полимера бентонитовыми глинами, используемыми в виде глинопорошка фракции менее 0,07 мм, высушенного до остаточной влажности менее 2%, с подачей его в расплав полимера в количестве 5-20 об.%.
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
19.04.2019
№219.017.341f

Огнестойкий полимерный композит для панелей

Изобретение относится к огнестойким полимерным композитам для панелей, используемых в качестве материала для сердечника композитных строительных панелей и, в частности, панелей, применяемых в системах вентилируемых фасадов. Полимерный композит имеет слоистую структуру, образованную прослойками...
Тип: Изобретение
Номер охранного документа: 0002465290
Дата охранного документа: 27.10.2012
Showing 11-20 of 49 items.
20.08.2015
№216.013.71d4

Способ получения производных 3-ацетата-28-сульфата бетулина

Изобретение относится к фармацевтической промышленности, а именно к способу получения производных 3-ацетата-28-сульфата бетулина. Способ получения заключается в том, что проводят сульфатирование 3-ацетата бетулина смесью сульфаминовой кислоты и мочевины в 1,4-диоксане при определенных условиях....
Тип: Изобретение
Номер охранного документа: 0002560710
Дата охранного документа: 20.08.2015
20.11.2015
№216.013.90a3

Способ получения производных 3-пропионата-28-сульфата бетулина

Изобретение относится к способу получения производных 3-пропионата-28-сульфата бетулина формулы I, заключающийся в сульфатировании 3-пропионата бетулина в 1,4-диоксане смесью сульфаминовой кислоты и мочевины при температуре 30-40°C в течение 3,0-3,5 часов, выделении продукта охлаждением...
Тип: Изобретение
Номер охранного документа: 0002568643
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9377

Способ сульфатирования 3-ацетата бетулина

Изобретение относится к способу получения производных 3-ацетата-28-сульфата бетулина формулы I, который заключается в сульфатировании 3-ацетата бетулина в N,N-диметилформамиде смесью сульфаминовой кислоты и мочевины при температуре 30-40°C в течение 2,0-2,5 часов, выделении продукта путем...
Тип: Изобретение
Номер охранного документа: 0002569370
Дата охранного документа: 27.11.2015
20.12.2015
№216.013.9a34

Способ сульфатирования 3-пропионата бетулина

Изобретение относится к способу получения производных 3-пропионата-28-сульфата бетулина формулы (I). Сульфатирование 3-пропионата бетулина проводят в N,N-диметилформамиде смесью сульфаминовой кислоты и мочевины при температуре 30-40°C в течение 2,0-3,0 часов, а выделение продукта проводят...
Тип: Изобретение
Номер охранного документа: 0002571101
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9bfa

Антитромботическое средство из целлюлозы пихты сибирской

Изобретение относится к химико-фармацевтической промышленности, а именно к антитромботическому средству. Антитромботическое средство на основе сульфатированного целлюлозного материала представляет собой сульфат целлюлозы, полученный из частично гидролизованной древесины пихты сульфатированием...
Тип: Изобретение
Номер охранного документа: 0002571555
Дата охранного документа: 20.12.2015
10.04.2016
№216.015.2dc9

Способ получения дипропионата бетулинола

Изобретение относится к получению дипропионата бетулинола - биологически активного вещества, проявляющего противоопухолевую активность. Дипропионат бетулинола получают в одну стадию кипячением бетулинола с пропионовой кислотой в присутствии каталитических количеств ортофосфорной кислоты в среде...
Тип: Изобретение
Номер охранного документа: 0002579519
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e8d

Способ получения бетулоновой кислоты

Изобретение относится к способу получения бетулоновой кислоты из наружного слоя коры березы (бересты), которая является промежуточным продуктом для получения бетулиновой кислоты и других биологически активных веществ. Способ заключается в том, что измельченную бересту окисляют при интенсивном...
Тип: Изобретение
Номер охранного документа: 0002580106
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3324

Способ получения активного угля

Изобретение относится к области химической переработки древесины, в частности к способу получения микропористых углеродных сорбентов. Способ получения активного угля включает смешивание измельченной исходной или предварительно термообработанной при 280-350°C бересты с гидроксидом калия, взятым...
Тип: Изобретение
Номер охранного документа: 0002582132
Дата охранного документа: 20.04.2016
12.01.2017
№217.015.60d5

Способ получения целлюлозы

Изобретение относится к переработке отходов древесины, в частности к способу получения целлюлозы, которая может быть использована в целлюлозно-бумажной и химико-фармацевтической областях промышленности как сорбент и фильтрационный материал в технике, а также как сырье для получения биотоплив....
Тип: Изобретение
Номер охранного документа: 0002590882
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7baf

Способ получения глюкозного гидролизата из древесины березы

Способ получения глюкозного гидролизата из древесины березы включает предобработку опилок березы водным раствором, содержащим 30 мас.% уксусной кислоты и 4-5 мас.% пероксида водорода, при нагревании. Затем проводят гидролиз концентрированной серной кислотой, разбавление водой и инверсию при...
Тип: Изобретение
Номер охранного документа: 0002600134
Дата охранного документа: 20.10.2016
+ добавить свой РИД