×
19.04.2019
219.017.33f4

Результат интеллектуальной деятельности: ДАТЧИК ДАВЛЕНИЯ ТЕНЗОРЕЗИСТИВНОГО ТИПА С ТОНКОПЛЕНОЧНОЙ НАНО- И МИКРОЭЛЕКТРОМЕХАНИЧЕСКОЙ СИСТЕМОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности к датчикам давления с тонкопленочной нано- и микроэлектромеханической системой (НиМЭМС), предназначенным для использования при воздействии нестационарных температур и повышенных виброускорений. Технический результат: уменьшение погрешности измерения. Сущность: датчик содержит корпус (1), установленную в нем НиМЭМС, состоящую из мембраны (2), выполненной за одно целое с основанием (3). На мембране сформирована гетерогенная структура (4) из тонких пленок. В структуре (4) образованы тензорезисторы, расположенные по окружности на периферии мембраны. На основании со стороны подачи измеряемой среды симметрично продольной оси датчика закреплена и размещена внутри основания с зазором относительно мембраны и периферийного основания в области, прилегающей к мембране, цилиндрическая втулка (7) с отверстием (8). Элементы первой и второй измерительной цепи, расположенные вне корпуса, размещены в общем экране (9) из материала с высокой теплопроводностью. Характеристики элементов конструкции датчика связаны соответствующим соотношением. 1 ил.

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия нестационарных температур и повышенных виброускорений.

Известна конструкция датчика давления тензорезистивного типа с тонкопленочной нано- и микроэлектромеханической системой (НиМЭМС) [1], который предназначен для измерения давления в условиях воздействия нестационарной температуры измеряемой среды, содержащий корпус, тонкопленочную нано- и микроэлектромеханическую систему, состоящую из упругого элемента в виде круглой жесткозащемленной мембраны, выполненной за одно целое с основанием, на которой расположены соединенные в мостовую схему окружные и радиальные тензорезисторы, выполненные в виде соединенных тонкопленочными перемычками одинакового количества имеющих одинаковую форму тензоэлементов, расположенных по окружности на периферии мембраны, выводные проводники, соединяющие тензорезисторы с гермовыводами.

Недостатком известной конструкции является сравнительно большая погрешность при воздействии нестационарной температуры измеряемой среды. Одной из причин является взаимодействие множества последовательно и встречно включенных термоэдс, возникающих на границах разделов тензоэлементов и перемычек вследствие случайным образом распределенных по поверхности чувствительного элемента неоднородностей структуры и неидентичности физических характеристик тензоэлементов и перемычек, находящихся в нестационарном температурном поле. Недостатком известной конструкции является сравнительно большая погрешность при воздействии повышенных (более 10000 мс-2) виброускорений, которые вызывают несимметричное и неравномерное нестационарное температурное поле и, соответственно, аналогичные явления, описанные при воздействии нестационарных температур.

Известен датчик давления тензорезистивного типа с тонкопленочной нано- и микроэлектромеханической системой (НиМЭМС) [2], выбранный в качестве прототипа, содержащий корпус, установленную в нем НиМЭМС, состоящую из упругого элемента - круглой мембраны, выполненной за одно целое с периферийным основанием, сформированной на ней гетерогенной структуры из тонких пленок материалов, в которой образованы включенные соответственно в противоположные плечи измерительного моста воспринимающие деформацию разного знака от измеряемого давления тензорезисторы, выполненные в виде соединенных тонкопленочными перемычками одинакового количества, имеющих одинаковую форму тензоэлементов, расположенных по окружности на периферии мембраны, измерительные и питающие электрические цепи, соединяющие тонкопленочную НиМЭМС с выходом датчика, а характеристики элементов конструкции датчика связаны соотношением.

Недостатком известной конструкции является сравнительно большая погрешность при воздействии нестационарной температуры измеряемой среды и повышенных (более 10000 мс-2) виброускорений, которые вызывают несимметричные и неравномерные нестационарные температурные поля, которые вследствие неоптимальности и невозможности учета соотношений характеристик всех элементов конструкции датчиков давления тензорезистивного типа с тонкопленочными НиМЭМС для экстремальных условий эксплуатации приводят к появлению нескомпенсированной термоэдс.

Целью предлагаемого изобретения является уменьшение погрешности измерения датчиков давления тензорезистивного типа с тонкопленочными НиМЭМС для экстремальных условий эксплуатации в условиях воздействия нестационарной температуры измеряемой среды и повышенных виброускорений за счет уменьшения суммарной интегральной термоэдс путем оптимизации и возможности учета соотношений характеристик всех элементов конструкции датчиков давления.

Поставленная цель достигается тем, что в датчике давления тензорезистивного типа с тонкопленочной нано- и микроэлектромеханической системой (НиМЭМС), содержащем корпус, установленную в нем НиМЭМС, состоящую из упругого элемента - круглой мембраны, выполненной за одно целое с периферийным основанием, сформированной на ней гетерогенной структуры из тонких пленок материалов, в которой образованы включенные соответственно в противоположные плечи измерительного моста воспринимающие деформацию разного знака от измеряемого давления тензорезисторы, выполненные в виде соединенных тонкопленочными перемычками одинакового количества, имеющих одинаковую форму тензоэлементов, расположенных по окружности на периферии мембраны, измерительные и питающие электрические цепи, соединяющие тонкопленочную НиМЭМС с выходом датчика в соответствии с предлагаемым изобретением, на периферийном основании со стороны подачи измеряемой среды симметрично продольной оси датчика плотно закреплена и размещена внутри периферийного основания с зазором относительно мембраны и периферийного основания в области, прилегающей к мембране, цилиндрическая втулка с цилиндрическим отверстием вдоль ее оси, при этом корпус, элементы НиМЭМС, а также расположенные внутри корпуса и вне корпуса в области, прилегающей к нему, элементы первой и второй измерительной цепи, соединяющей НиМЭМС с выходом датчика, размещены симметрично продольной оси датчика, причем элементы первой и второй измерительной цепи, расположенные вне корпуса, размещены в общем экране из материала с высокой теплопроводностью и характеристики элементов конструкции датчика связаны соотношением

где 4 - количество тензорезисторов в мостовой измерительной схеме НиМЭМС; I - количество тензоэлементов в тензорезисторе; M - количество термоэлектрических структур в тензоэлементе; Sjim - коэффициент термоэдс контактирующих материалов m-й термоэлектрической структуры i-го тензоэлемента j-го тензорезистора; Tjim - температура контактирующих материалов m-й термоэлектрической структуры i-го тензоэлемента j-го тензорезистора; σαji(T) - коэффициент Томсона для материала i-го тензоэлемента j-го тензорезистора; TjiH, TjiK - температура соответственно в начале и конце i-го тензоэлемента j-го тензорезистора; - сопротивление j-го тензорезистора; Rj0 - сопротивление j-го тензорезистора при начальной среднеинтегральной температуре j-го тензорезистора; αj - температурный коэффициент сопротивления j-го тензорезистора; ΔTj - изменение среднеинтегральной температуры j-го тензорезистора; TAnH, TAnK, TBnH, TBnK - температура в начале и конце n-й термоэлектрической неоднородности соответственно первой и второй измерительной цепи, соединяющей НиМЭМС с выходом датчика; SAn, SBn - коэффициент термоэдс контактирующих материалов n-й термоэлектрической неоднородности соответственно первой и второй измерительной цепи, соединяющей НиМЭМС с выходом датчика; σαAn(T), σαBn(T) - коэффициент Томсона материала n-й термоэлектрической неоднородности соответственно первой и второй измерительной цепи, соединяющей НиМЭМС с выходом датчика; ΔU - допустимая абсолютная погрешность при воздействии нестационарной температуры и повышенных виброускорений.

Заявляемая конструкция датчика давления тензорезистивного типа с тонкопленочной НиМЭМС представлена на фиг.1. Она содержит корпус 1, установленную в нем НиМЭМС, состоящую из упругого элемента - круглой мембраны 2, выполненной за одно целое с периферийным основанием 3, сформированной на ней гетерогенной структуры 4 из тонких пленок материалов, в которой образованы включенные соответственно в противоположные плечи измерительного моста воспринимающие деформацию разного знака от измеряемого давления тензорезисторы, выполненные в виде соединенных тонкопленочными перемычками одинакового количества, имеющих одинаковую форму тензоэлементов, расположенных по окружности на периферии мембраны. Измерительные 5 и питающие 6 электрические цепи соединяют тонкопленочную НиМЭМС с выходом датчика. На периферийном основании со стороны подачи измеряемой среды симметрично продольной оси датчика плотно закреплена и размещена внутри периферийного основания с зазором относительно мембраны и периферийного основания в области, прилегающей к мембране, цилиндрическая втулка 7 с цилиндрическим отверстием 8 вдоль ее оси. При этом корпус, элементы НиМЭМС, а также расположенные внутри корпуса и вне корпуса в области, прилегающей к нему, элементы первой и второй измерительной цепи, соединяющей НиМЭМС с выходом датчика, размещены симметрично продольной оси датчика, причем элементы первой и второй измерительной цепи, расположенные вне корпуса, размещены в общем экране 9 из материала с высокой теплопроводностью и характеристики элементов конструкции датчика связаны заявляемым соотношением.

Для обоснования наличия причинно-следственной связи между совокупностью признаков и достигаемым техническим результатом рассмотрим более подробно конструкцию датчика давления тензорезистивного типа с тонкопленочной НиМЭМС в условиях воздействия нестационарной температуры измеряемой среды, направленной под углом к оси датчика, и повышенных виброускорений.

Плотное закрепление на периферийном основании со стороны подачи измеряемой среды симметрично продольной оси датчика и размещение внутри периферийного основания цилиндрической втулки с цилиндрическим отверстием вдоль ее оси обеспечивает осесимметрирование тепловых потоков, а следовательно, идентичность температур, имеющих одинаковую форму тензоэлементов, расположенных по окружности на периферии мембраны, и минимизацию влияния нестационарной температуры измеряемой среды. Наличие зазора втулки относительно мембраны и периферийного основания в области, прилегающей к мембране, устраняет возможное в противном случае негативное влияние несимметричных термодеформаций на тензоэлементы. Размещение симметрично продольной оси датчика корпуса элементов НиМЭМС, а также расположенных внутри корпуса и вне корпуса в области, прилегающей к нему элементов первой и второй измерительной цепи, соединяющей НиМЭМС с выходом датчика, обеспечивает минимальную погрешность при воздействии нестационарной температуры измеряемой и окружающей среды, а также повышенных виброускорений за счет взаимной компенсации встречно включенных термоэдс, возникающих в том числе в кабельной перемычке датчика. Размещение расположенных вне корпуса элементов первой и второй измерительной цепи в общем экране из материала с высокой теплопроводностью выравнивает температуры этих элементов, возникающих в результате воздействия повышенных виброускорений.

При всем многообразии конструктивно-технологических решений, применяемых при создании датчиков давления тензорезистивного типа с тонкопленочными НиМЭМС для экстремальных условий эксплуатации, в их структуре можно выделить общие подсистемы и элементы, определяющие характер термоэлектрических явлений при воздействии нестационарных температур и виброускорений. К ним, в самом общем виде, можно отнести: чувствительный элемент в виде НиМЭМС, питающие и измерительные электрические цепи, соединяющие НиМЭМС с выходом датчика. В датчиках давления тензорезистивного типа с тонкопленочными НиМЭМС, как правило, две питающие и две измерительные электрические цепи. Кроме того, в датчиках, предназначенных для экстремальных условий эксплуатации, с целью исключения влияния жестких воздействующих факторов на разъем датчика эти цепи частично выполняются в виде гибкой кабельной перемычки, соединяющей корпус датчика и разъем.

После проведения дополнительного анализа, синтеза и обобщения приведенного в прототипе выражения для математической модели неинформативного преобразования термоэдс в выходной сигнал ТТДД при воздействии нестационарных температур и виброускорений получим

где T=f(Tни, Tно, W); Tни - нестационарная температура измеряемой среды; Tно - нестационарная температура окружающей среды; W - амплитуда виброускорений; 4 - количество тензорезисторов в мостовой измерительной схеме НиМЭМС; I - количество тензоэлементов в тензорезисторе; M - количество термоэлектрических структур в тензоэлементе; Ejim(T) - m-я термоэдс i-го тензоэлемента j-го тензорезистора; TjiH - температура в начале i-го тензоэлемента j-го тензорезистора; TjiK - температура в конце i-го тензоэлемента j-го тензорезистора; σαji(T) - коэффициент Томсона для материала i-го тензоэлемента j-го тензорезистора; - сопротивление j-го тензорезистора; EAn(T), EBn(T) - термоэдс n-й термоэлектрической неоднородности соответственно первой и второй измерительной цепи, соединяющей тонкопленочную НиМЭМС-структуру с выходом датчика, TAnH, TAnK, TBnH, TBnK - температура в начале и конце n-й термоэлектрической неоднородности соответственно первой и второй измерительной цепи, соединяющей тонкопленочную НиМЭМС-структуру с выходом датчика; σαAn(T), σαBn(T) - коэффициент Томсона материала n-й термоэлектрической неоднородности соответственно первой и второй измерительной цепи, соединяющей тонкопленочную НиМЭМС-структуру с выходом датчика.

Выражение (2) при Uвых(T)=0 является общим условием минимизации нескомпенсированной термоэдс ТТДД при воздействии нестационарных температур и виброускорений. Для проведения качественного анализа влияния нестационарных температур и виброускорений рассмотрим полученную модель при достаточно малых различиях температур элементов. В этом случае, условно пренебрегая нелинейным характером распределения температур в пределах конкретных элементов, можно представить выражение для упрощенной математической модели неинформативного преобразования термоэдс в выходной сигнал ТТДД в виде

где Sjim - коэффициент термоэдс контактирующих материалов m-й термоэлектрической структуры i-го тензоэлемента j-го тензорезистора; Tjim - температура контактирующих материалов m-й термоэлектрической структуры i-го тензоэлемента j-го тензорезистора; Rj0 - сопротивление j-го тензорезистора при начальной среднеинтегральной температуре j-го тензорезистора; αj - температурный коэффициент сопротивления j-го тензорезистора; ΔTj - изменение среднеинтегральной температуры j-го тензорезистора; SAn, SBn - коэффициент термоэдс контактирующих материалов n-й термоэлектрической неоднородности соответственно первой и второй измерительной цепи, соединяющей тонкопленочную НиМЭМС-структуру с выходом датчика; TAn, TBn - температура n-й термоэлектрической неоднородности соответственно первой и второй измерительной цепи, соединяющей тонкопленочную НиМЭМС-структуру с выходом датчика.

В выражении (3) Uвых(T) показывает величину нескомпенсированной термоэдс, возникающей при воздействии нестационарной температуры и повышенных виброускорений, и характеризует абсолютное значение погрешности Uвых(T)=ΔU. После преобразования выражения (3) ΔU получим заявляемое соотношение. Таким образом, техническим результатом заявляемого решения является уменьшение погрешности измерения при воздействии нестационарных температур и повышенных виброускорений за счет минимизации напряжения нескомпенсированной термоэдс путем оптимизации и возможности учета соотношений характеристик всех элементов конструкции датчиков давления тензорезистивного типа с тонкопленочными НиМЭМС для экстремальных условий эксплуатации.

Источники известности

1. RU Патент №2312319, МПК G01L 9/04. Бюл. №34. 10.12.2007.

2. RU Патент №2391641, МПК G01L 9/04. Бюл. №16. 10.06.2010.

Датчик давления с тонкопленочной нано- и микроэлектромеханической системой (НиМЭМС), содержащий корпус, установленную в нем НиМЭМС, состоящую из упругого элемента - круглой мембраны, выполненной за одно целое с периферийным основанием, сформированной на ней гетерогенной структуры из тонких пленок материалов, в которой образованы включенные соответственно в противоположные плечи измерительного моста воспринимающие деформацию разного знака от измеряемого давления тензорезисторы, выполненные в виде соединенных тонкопленочными перемычками одинакового количества имеющих одинаковую форму тензоэлементов, расположенных по окружности на периферии мембраны, измерительные и питающие электрические цепи, соединяющие тонкопленочную НиМЭМС с выходом датчика, отличающийся тем, что на периферийном основании со стороны подачи измеряемой среды, симметрично продольной оси датчика плотно закреплена и размещена внутри периферийного основания с зазором относительно мембраны и периферийного основания в области, прилегающей к мембране, цилиндрическая втулка с цилиндрическим отверстием вдоль ее оси, при этом корпус, элементы НиМЭМС, а также расположенные внутри корпуса и вне корпуса в области, прилегающей к нему, элементы первой и второй измерительных цепей, соединяющие НиМЭМС с выходом датчика, размещены симметрично продольной оси датчика, причем элементы первой и второй измерительных цепей, расположенные вне корпуса, размещены в общем экране из материала с высокой теплопроводностью и характеристики элементов конструкции датчика связаны соотношением где 4 - количество тензорезисторов в мостовой измерительной схеме НиМЭМС; I - количество тензоэлементов в тензорезисторе; М - количество термоэлектрических структур в тензоэлементе; S - коэффициент термоэдс контактирующих материалов m-й термоэлектрической структуры i-го тензоэлемента j-го тензорезистора; T - температура контактирующих материалов m-й термоэлектрической структуры i-го тензоэлемента j-го тензорезистора; σ(T) - коэффициент Томсона для материала i-го тензоэлемента j-го тензорезистора; T, T - температура соответственно в начале и конце i-го тензоэлемента j-го тензорезистора; - сопротивление j-го тензорезистора; R - сопротивление j-го тензорезистора при начальной среднеинтегральной температуре j-го тензорезистора; α - температурный коэффициент сопротивления j-го тензорезистора; ΔT - изменение среднеинтегральной температуры j-го тензорезистора; Т, Т, Т, N - температура в начале и конце n-й термоэлектрической неоднородности соответственно первой и второй измерительных цепей, соединяющих НиМЭМС с выходом датчика; A, S - коэффициент термоэдс контактирующих материалов n-й термоэлектрической неоднородности соответственно первой и второй измерительных цепей, соединяющих НиМЭМС с выходом датчика; σ(T), σ(T) - температура в начале и конце n-й термоэлектрической σ(T) - температура в начале и конце n-й термоэлектрической неоднородности соответственно первой и второй измерительных цепей, соединяющих НиМЭМС с выходом датчика; S, S - коэффициент термоэдс контактирующих материалов n-й термоэлектрической неоднородности соответственно первой и второй измерительной цепи, соединяющей НиМЭМС с выходом датчика; σ(T), σ(T) - коэффициент Томсона материала n-й термоэлектрической неоднородности соответственно первой и второй измерительных цепей, соединяющих НиМЭМС с выходом датчика; ΔU - абсолютная погрешность при воздействии нестационарной температуры и повышенных виброускорений.
Источник поступления информации: Роспатент

Showing 11-20 of 48 items.
10.11.2013
№216.012.7f40

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС) с мостовой измерительной пенью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002498249
Дата охранного документа: 10.11.2013
20.01.2014
№216.012.98ff

Интегральный тензопреобразователь ускорения

Изобретение относится к измерительной технике и может быть использовано при конструировании микромеханических тензорезисторных акселерометров, работоспособных при повышенных температурах. Интегральный тензопреобразователь ускорения содержит выполненные из единого монокристалла кремния два...
Тип: Изобретение
Номер охранного документа: 0002504866
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9c95

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002505791
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9cb4

Индукционный датчик частоты вращения

Изобретение относится к области контрольно-измерительной техники и может быть использовано для бесконтактного измерения частоты вращения валов двигателей в условиях широкого изменения рабочих температур. Технический результат заключается в повышении чувствительности преобразования, точности...
Тип: Изобретение
Номер охранного документа: 0002505822
Дата охранного документа: 27.01.2014
10.04.2014
№216.012.b552

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС), предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002512142
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c13b

Устройство формирования выходного сигнала индуктивного дифференциального измерительного преобразователя

Изобретение относится к измерительной технике и может быть применено в устройствах, использующих в качестве первичного преобразователя индуктивные дифференциальные измерительные преобразователи, применяемые для измерения перемещений, вибраций и биений валов и объектов, работающих в широком...
Тип: Изобретение
Номер охранного документа: 0002515216
Дата охранного документа: 10.05.2014
27.05.2014
№216.012.cb40

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы. Датчик давления предназначен для использования при воздействии повышенных виброускорений и широкого диапазона нестационарных температур окружающей и измеряемой среды. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002517798
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.de98

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002522770
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.dfd9

Пьезоэлектрический датчик давления

Изобретение относится к точному приборостроению, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением динамических давлений. Пьезоэлектрический датчик давления содержит корпус с мембраной, в котором расположен чувствительный...
Тип: Изобретение
Номер охранного документа: 0002523091
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e024

Способ формирования импульсов из сигналов индукционных датчиков частоты вращения

Изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят датчики, вырабатывающие двухполярные сигналы, в частности индукционные датчики частоты вращения и расхода. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002523166
Дата охранного документа: 20.07.2014
Showing 11-20 of 32 items.
10.04.2014
№216.012.b552

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к датчикам давления на основе тонкопленочных нано- и микроэлектрических систем (НиМЭМС), предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002512142
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0b2

Способ измерения давления и интеллектуальный датчик давления на его основе

Предлагаемое изобретение относится к измерительной технике и может быть использовано при измерении давления жидких и газообразных сред. Заявленная группа изобретений включает способ измерения давления с использованием тензорезисторного датчика давления на основе нано- и микроэлектромеханической...
Тип: Изобретение
Номер охранного документа: 0002515079
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c5b8

Датчик давления на основе нано- и микроэлектромеханической системы для прецизионных измерений

Изобретение относится к измерительной технике и может быть использовано для прецизионных измерений давления жидких и газообразных сред. Сущность: датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента в виде мембраны с...
Тип: Изобретение
Номер охранного документа: 0002516375
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.cb40

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы. Датчик давления предназначен для использования при воздействии повышенных виброускорений и широкого диапазона нестационарных температур окружающей и измеряемой среды. Технический результат:...
Тип: Изобретение
Номер охранного документа: 0002517798
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.de98

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов...
Тип: Изобретение
Номер охранного документа: 0002522770
Дата охранного документа: 20.07.2014
20.09.2014
№216.012.f4f4

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью. Технический результат: повышение временной стабильности, ресурса, срока службы, уменьшение...
Тип: Изобретение
Номер охранного документа: 0002528541
Дата охранного документа: 20.09.2014
10.11.2014
№216.013.0516

Способ изготовления высокоответственных изделий из трехкомпонентного титанового сплава

Изобретение относится к области обработки металлов давлением и может быть использовано при изготовлении изделий из трехкомпонентного сплава на основе титана, содержащего алюминий в количестве 2-6 вес.% и ванадий или цирконий в количестве не более 4 вес.%. Производят равноканальное угловое...
Тип: Изобретение
Номер охранного документа: 0002532700
Дата охранного документа: 10.11.2014
10.01.2015
№216.013.179a

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы

Датчик давления предназначен для использования при воздействии повышенных виброускорений и широкого диапазона нестационарных температур окружающей и измеряемой среды. Техническим результатом изобретения является уменьшение погрешности датчика давления при воздействии повышенных виброускорений и...
Тип: Изобретение
Номер охранного документа: 0002537470
Дата охранного документа: 10.01.2015
27.03.2015
№216.013.3606

Способ изготовления тензорезисторного датчика давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью. Техническим результатом изобретения является повышение временной стабильности, ресурса, срока...
Тип: Изобретение
Номер охранного документа: 0002545314
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.400e

Тензорезисторный датчик давления на основе тонкопленочной нано- и микроэлектромеханической системы

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС). Техническим результатом изобретения является повышение временной и температурной стабильности, ресурса, срока службы и...
Тип: Изобретение
Номер охранного документа: 0002547886
Дата охранного документа: 10.04.2015
+ добавить свой РИД