×
19.04.2019
219.017.2dcf

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области прокатного производства, в частности к получению штрипсов, используемых при изготовлении сварных труб для магистральных нефтегазопроводов. Для снижения себестоимости и повышения эксплуатациионных свойств штрипсов способ включает выплавку стали, непрерывную разливку стали в слябы, нагрев слябов до 1190-1250°С, горячую прокатку с температурой окончания 820-870°С, охлаждение водой до 500-580°С, смотку штрипсов в рулоны, охлаждение рулонов со скоростью 5-20°С/ч до температуры не выше 100°С. Для получения слябов выплавляют сталь, содержащую, мас.%: 0,08-0,13 С, 0,50-0,70 Mn, 0,40-0,65 Si, 0,05-0,09 V, 0,015-0,040 Nb, 0,01-0,03 Ti, 0,02-0,05 Al, не более 0,008 N, не более 0,3 Cr, не более 0,3 Ni, не более 0,2 Cu, не более 0,005 S, не более 0,015 Р, остальное - Fe, при выполнении соотношений: C=C+Mn/6+(Cr+V+Ti)/5+(Cu+Ni)/15≤0,39%, Р=C+(Mn+Cr+Cu)/20+Si/30+Ni/15+V/10≤0,24%, где С - углеродный эквивалент; Р - параметр трещиностойкости. 2 з.п. ф-лы, 2 табл.

Изобретение относится к прокатному производству, конкретнее к режимам прокатки и охлаждения штрипсов из низколегированной стали, используемых для изготовления сварных труб для магистральных нефтегазопроводов.

Известен способ производства полос из низколегированной стали, включающий нагрев слябов до температуры 1050-1220°С, выдержку, многопроходную черновую и чистовую прокатку с температурой окончания 800-900°С, охлаждение полос водой на отводящем рольганге до температуры 350-500°С и смотку в рулоны [1].

Недостатки известного способа состоят в том, что горячекатаные полосы имеют низкие и нестабильные механические свойства. Это приводит к увеличению отбраковки и повышению себестоимости производства полос.

Известен также способ производства высокопрочных полос из низколегированной стали, включающий нагрев слябов до температуры не выше 1100°С, выдержку при температуре нагрева, многопроходную черновую и чистовую прокатку с температурой окончания 680-850°С, охлаждение полос водой до температуры 300-500°С и смотку в рулоны [2].

Известный способ также не обеспечивает высоких и стабильных по длине полос механических свойств, что увеличивает их отбраковку и себестоимость производства.

Наиболее близким аналогом по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ горячей прокатки полос из сталей с карбонитридным упрочнением. Способ включает нагрев слябов из стали следующего химического состава, масс.%: С 0,09; Si 0,59; Mn 0,66; P 0,007; S 0,003; Nb 0,036; Ti 0,016; V 0,075; N 0,06.

Слябы нагревают до температуры аустенитизации 1100-1250°С, производят черновую горячую прокатку, чистовую горячую прокатку с температурой окончания 820-870°С. Прокатанные полосы охлаждают водой до температуры 550-620°С и сматывают в рулоны [3].

Недостатки известного способа состоят в том, что горячекатаные полосы имеют низкие эксплуатационные свойства, а именно при неблагоприятном сочетании содержаний химических элементов полосы имеют неудовлетворительную свариваемость и коррозионную стойкость. Кроме того, сталь известного состава требует вакуумирования перед разливкой и в ее химическом составе не допускается присутствия хрома, никеля и меди, что исключает возможность использования металлолома при выплавке. Все это повышает себестоимость производства полос.

Техническая задача, решаемая изобретением, состоит в снижении себестоимости производства и повышении эксплуатационных свойств штрипсов.

Для решения поставленной технической задачи в известном способе производства штрипсов, включающем выплавку стали, непрерывную разливку в слябы, нагрев слябов до температуры 1190-1250°С, горячую прокатку с температурой окончания 820-870°С, охлаждение водой до температуры 500-580°С и смотку штрипсов в рулоны, согласно предложению смотанные рулоны охлаждают со скоростью 5-20°С/ч до температуры не выше 100°С, слябы разливают из стали следующего химического состава, мас.%:

Углерод0,08-0,13;
Марганец0,50-0,70;
Кремний0,40-0,65;
Ванадий0,05-0,09;
Ниобий0,015-0,040;
Титан0,01-0,03;
Алюминий0,02-0,05;
Азотне более 0,008;
Хромне более 0,3;
Никельне более 0,3;
Медьне более 0,2;
Серане более 0,005;
Фосфорне более 0,015;
Железоостальное,

причем суммарное содержание в стали углерода С, марганца Mn, хрома Cr, ванадия V, ниобия Nb, титана Ti, меди Cu, никеля Ni должно удовлетворять соотношениям: Сэ=C+Mn/6+(Cr+V+Ti)/5+(Cu+Ni)15≤0,39%, а также Рсм=C+(Mn+Cr+Cu)/20+Si/30+Ni/15+V/10≤0,24%.

Сущность предлагаемого изобретения состоит в следующем. Высокий комплекс эксплуатационных свойств штрипсов для газонефтепроводных труб обеспечивается при одновременной оптимизации химического состава стали и температурных режимов производства и охлаждения рулонов.

В стали предложенного химического состава в процессе прокатки штрипсов в температурном интервале от 1190-1250 до 820-870°С обеспечивается полное выделение дисперсных карбонитридных частиц типа V (C, N) и измельчение в процессе прокатки аустенитных зерен микроструктуры. Охлаждение «свежедеформированного» мелкозернистого аустенита водой от температуры конца прокатки Ткп=820-870°С до температуры смотки Тсм=500-580°С обеспечивает формирование в стали микроструктуры зернистого перлита с номером зерна не ниже 11 балла. Последующее охлаждение штрипса, смотанного в рулон, с регламентированной скоростью V=5-20°С/ч до температуры не выше Тр=100°С обеспечивает высокие и равномерные механические и эксплуатационные свойства, несмотря на то, что сталь содержит в своем составе примесные элементы - хром, никель, медь, серу и фосфор. Регламентированное охлаждение рулонов со скоростью 5-20°С/ч до температуры не выше 100°С обеспечивает формирование стабильной микроструктуры и свойств штрипсов, что улучшает их эксплуатационные свойства, снижает отбраковку и себестоимость производства.

Высокая свариваемость штрипсов обеспечивается тем, что углеродный эквивалент Сэ, характеризующий степень легированности стали, в том числе примесными металлами (Cr, Ni, Cu), ограничен величиной Сэ≤0,39%. Это позволяет, помимо повышения такой эксплуатационной характеристики штрипсов, как свариваемость, использовать при выплавке стали металлический лом.

Кроме того, поскольку нефтегазопроводные трубы, изготовленные из штрипсов, при эксплуатации испытывают действие агрессивных компонентов (в частности, сероводорода), входящих в транспортируемые под давлением нефть и газ, то для исключения сероводородного растрескивания под напряжением содержание химических элементов в стали дополнительно ограничено параметром трещиностойкости Рсм≤0,24%.

Таким образом, использование для изготовления штрипсов для нефтегазопроводных труб стали предложенного состава с ограничением параметров Сэ и Рсм при заданных значениях температур нагрева слябов, Ткп, Тсм, скорости регламентированного охлаждения рулона V и температуры его окончания Тр обеспечивает повышение эксплуатационных свойств штрипсов - свариваемость и трещиностойкость. Исключение необходимости вакуумирования расплава стали перед разливкой и возможность применения при выплавке металлолома снижают себестоимость производства штрипсов.

Экспериментально установлено, что при регламентированном охлаждении рулонов от температуры Тсм=500-580°С со скоростью менее 5°С/ч удлиняется период охлаждения, увеличивается время оборачиваемости оборотных средств предприятия и себестоимость штрипсов. Увеличение скорости охлаждения более 20°С/ч приводит к появлению неравномерности механических свойств внешних и внутренних витков рулонов, что ухудшает эксплуатационные свойства штрипсов. При температуре окончания регламентированного охлаждения выше 100°С ухудшается равномерность механических свойств по длине штрипсов. Помимо этого, по условиям безопасности персонала и технологического оборудования рулоны нельзя назначать на последующие операции (порезку, правку, отгрузку и др.).

Увеличение температуры нагрева слябов выше 1250°С приводит к росту аустенитного зерна, ослаблению границ зерен, разнобалльности микроструктуры стали. Снижение температуры нагрева менее 1190°С не позволяет полностью растворить крупные карбонитридные частицы в стали, что ухудшает ее механические и эксплуатационные характеристики.

При температуре Ткп выше 870°С не достигается достаточная степень упрочнения штрипса, а при Ткп ниже 820°С ухудшаются вязкостные свойства при отрицательных температурах. Это приводит к снижению эксплуатационных свойств штрипсов.

Охлаждение штрипсов водой до температуры Тсм выше 580°С приводит к росту размеров зернистого перлита, ухудшению трещиностойкости. При Тсм ниже 500°С ухудшается ударная вязкость штрипсов при отрицательных температурах и эксплуатационные свойства штрипсов.

Углерод в стали предложенного состава определяет ее прочностные свойства. Снижение содержания углерода менее 0,08% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,13% ухудшает пластичность и вязкость стали.

Марганец введен для раскисления и повышения прочности стали, связывания примесной серы в сульфиды. При содержании марганца менее 0,50% снижается прочность стали и вязкость при отрицательных температурах, приводит к увеличению отбраковки. Повышение концентрации марганца сверх 0,70% ухудшает пластичность стали, снижает трещиностойкость.

Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства. При содержании кремния менее 0,40% прочность стали недостаточна. Увеличение содержания кремния более 0,65% приводит к возрастанию количества силикатных неметаллических включений, охрупчивает сталь, ухудшает ее пластичность.

Ванадий и ниобий образуют с углеродом карбиды VC, NbC, а с азотом - нитриды VN, NbN. Мелкие нитриды и карбонитриды ванадия и ниобия располагаются по границам зерен и субзерен, тормозят движение дислокации и тем самым упрочняют сталь. При содержании ванадия менее 0,05% и ниобия менее 0,015% их влияние недостаточно велико, свойства стали ниже допустимого уровня. Увеличение концентрации ванадия более 0,09% или ниобия более 0,040% вызывает дисперсионное твердение проката и приводит к их выделению на границах зерен в виде интерметаллических соединений. Это ухудшает эксплуатационные свойства штрипсов.

Титан является сильным карбидообразующим элементом, упрочняющим сталь. Снижение концентрации титана менее 0,01% не оказывает благоприятного влияния на механические свойства горячекатаных штрипсов. Однако при сварке труб титан полностью выгорает, поэтому повышение его концентрации в стали выше 0,030% нецелесообразно.

Алюминий является раскисляющим и модифицирующим элементом. При содержании алюминия менее 0,02% его воздействие проявляется слабо, сталь имеет низкие механические свойства. Увеличение содержания алюминия более 0,05% приводит к графитизации стали, потере прочности, ухудшению эксплуатационных свойств штрипсов.

Азот является карбонитридообразующим элементом, упрочняющим сталь. Однако повышение концентрации азота сверх 0,008% приводит к снижению вязкостных свойств при отрицательных температурах, что недопустимо.

Хром, никель и медь способствуют повышению прочностных свойств и стойкости против питтинговой коррозии, но при содержании хрома более 0,3%, никеля более 0,3% или меди более 0,2% имеет место ухудшение эксплуатационных свойств штрипсов. В то же время полное исключение этих элементов из состава стали приводит к ее удорожанию и повышению себестоимости штрипсов.

Сера является вредной примесью, снижающей пластические и вязкостные свойства. При концентрации серы не более 0,005% ее вредное действие проявляется слабо и не приводит к заметному снижению эксплуатационных свойств штрипсов. В то же время более глубокое удаление серы удорожает сталь, увеличивает себестоимость производства штрипсов.

Фосфор в количестве не более 0,015% целиком растворяется в α-железе, что ведет к упрочнению металлической матрицы. Однако увеличение содержания фосфора более 0,015% вызывает охрупчивание стали и снижение эксплуатационных свойств штрипсов.

Углеродный эквивалент Сэ определяет свариваемость стали. Если Сэ=C+Mn/6+(Cr+V+Ti)/5+(Cu+Ni)/15>0,39%, то прочность сварного шва трубы, изготовленной из штрипса, будет меньше прочности основного металла. Это снижает эксплуатационные свойства штрипса.

Параметр трещиностойкости Рсм характеризует устойчивость стали к растрескиванию под действием механического напряжения, вызванного давлением в трубопроводе перекачиваемым продуктом, содержащим агрессивные компоненты. В случаях, когда имеет место неблагоприятное сочетание концентраций компонентов в стали, т.е. если Рсм=C+(Mn+Cr+Cu)/20+Si/30+Ni/15+V/10>0,24%, сталь имеет низкую стойкость против трещинообразования, что снижает эксплуатационные свойства штрипса.

Стали различных составов выплавляли в кислородном конвертере из передельного чугуна с использованием металлического лома. Расплавы раскисляли ферромарганцем, ферросилицием, легировали феррованадием, феррониобием, ферротитаном, вводили металлический алюминий. Проводили десульфурацию и дефосфорацию расплава, продувку аргоном.

Химический состав сталей для штрипсов приведен в таблице 1.

Выплавленную сталь подвергают непрерывной разливке в слябы толщиной 275 мм. Непрерывнолитые слябы садят в газовую печь с шагающими балками и производят их нагрев до температуры аустенитизации Та=1220°С. Нагретые слябы подвергают горячей прокатке в черновой и чистовой группах клетей непрерывного широкополосного стана 2000 в штрипсы толщиной 8,0 мм. Заданную температуру окончания прокатки Ткп=845°С поддерживают изменением скорости прокатки и межклетевым охлаждением раската.

Прокатанные штрипсы при транспортировании по отводящему рольгангу охлаждают ламинарными струями воды до температуры Tсм=540°C, после чего сматывают в рулоны.

Горячекатаные рулоны подвергают регламентированному охлаждению со скоростью V=12,5°С/ч при обдуве воздухом. Регламентированное охлаждение ведут до температуры рулонов Тр=90°С.

Варианты реализации предложенного способа и показатели их эффективности приведены в таблице 2.

Из данных, приведенных в таблицах 1 и 2, следует, что при реализации предложенного способа (варианты №2-6, химический состав сталей №2-6) обеспечиваются наиболее высокие механические и эксплуатационные свойства штрипсов. Одновременно с этим, поскольку в химическом составе предложенной стали допускается присутствие примесных элементов - хрома, никеля и меди, ее выплавка производится с применением металлического лома. Данная сталь не требует вакуумирования перед разливкой. Благодаря этому себестоимость штрипсов, произведенных согласно предложенному способу, снижается и составляет Q=85-88% от себестоимости производства полос по способу-прототипу (вариант №8), принятой за 100%.

В случаях запредельных значений заявленных параметров (варианты №1 и №7) имеет место ухудшение эксплуатационных свойств штрипсов при росте себестоимости Q до 95% (вариант №1).

Помимо более высокой себестоимости производства Q, способ-прототип (вариант №8) также характеризуется низкими эксплуатационными свойствами полос по сравнению с предложенным способом.

Таблица 1
№ составаХимический состав сталей для штрипсов
Содержание химических элементов, масс.%Сэ, %Рсм, %
СMnSiVNbTiAlNCrNiCuSРFe
1.0,0700,400,300,040,0140,0090,010,0040,10,20,10,0020,010основа0,1900,13
2.0,0800,500,400,050,0150,0100,020,0050,20,10,20,0030,011-"-0,2380,15
3.0,1000,600,500,070,0270,0200,030,0060,10,10,10,0040,013-"-0,2560,17
4.0,1200,700,650,090,0400,0300,050,0080,30,30,20,0050,014-"-0,3620,23
5.0,1250,600,650,090,0400,0300,040,0080,30,30,20,0050,015-"-0,3900,24
6.0,1300,500,400,060,0160,0150,030,0070,20,30,10,0020,012-"-0,3000,21
7.0,1360,800,700,100,0500,0400,060,0090,40,40,30,0060,016-"-0,4340,28
8.0,0900,660,590,0750,0360,0160,050,006---0,0030,007-"---

Таблица 2
Режимы производства штрипсов для нефтегазопроводных труб и показатели их эффективности
Температурные режимы Механические свойстваЭксплуатационные
п/псоставапроизводстваштрипсовсвойства штрипсовQ, %
Та, °СТкп, °СТсм, °СV, °С/чТр, °Сσв, МПаσт, МПаδ4, %KCU-60°С, Дж/см2свариваемостьтрещиностойкость
1.7.11808104904,05063055033190высокаяудовлетвор.95
2.2.11908205005,06062050037210высокаяудовлетвор.84
3.3.122084554012,57061549038210высокаяудовлетвор.85
4.4.124086055014,18061048537210высокаяудовлетвор.88
5.5.125086556016,39061049036215высокаяудовлетвор.88
6.6.125087058020,010061049036210высокаяудовлетвор.85
7.1.126088057021,011055037534204низкаяне удовлетвор.83
8.8.110085061010-140-53046028205низкаяне удовлетвор.100

Технико-экономические преимущества предложенного способа производства штрипсов состоят в том, что за счет одновременной оптимизации химического состава стали и температурных режимов ее горячей прокатки и охлаждения рулонов обеспечивается возможность присутствия в стали примесных элементов - хрома, никеля, меди. При ограничении величин углеродного эквивалента Сэ≤0,39% и параметра трещиностойкости Рсм≤0,24% достигается повышение эксплуатационных свойств штрипсов, несмотря на наличие в стали этих примесных элементов.

Благодаря возможности использования металлического лома при выплавке стали и исключению необходимости проведения вакуумирования расплава перед непрерывной разливкой обеспечивается снижение себестоимости производства штрипсов.

В качестве базового объекта при оценке технико-экономической эффективности предложенного способа выбран способ-прототип. Использование стали предложенного состава позволит повысить рентабельность производства магистральных труб для нефте- и газопроводов на 12-15%.

Литературные источники

1. Патент США №4421573, МПК C21D 8/02, C21D 9/46, 1983.

2. Заявка Японии №57-29528, МПК C21D 8/00, С22С 38/12, 1982.

3. Патент Российской Федерации №2195505, МПК C21D 8/04, С22С 38/12, 2002.

углерод0,08-0,13марганец0,50-0,70кремний0,40-0,65ванадий0,05-0,09ниобий0,015-0,040титан0,01-0,03алюминий0,02-0,05азотнеболее0,008хромнеболее0,3никельнеболее0,3медьнеболее0,2серанеболее0,005фосфорнеболее0,015железоостальное.c0c1211none761C=C+Mn/6+(Cr+V+Ti)/5+(Cu+Ni)/15≤0,39%;P=С+(Mn+Cr+Cu)/20+Si/30+Ni/15+V/10≤0,24%,гдеС-углеродныйэквивалент,%;Р-параметртрещиностойкости,%.1.Способпроизводстваштрипсовдлянефтегазопроводныхтруб,включающийвыплавкустали,непрерывнуюразливкувслябы,нагревслябовдотемпературы1190-1250°С,горячуюпрокаткустемпературойокончания820-870°С,охлаждениеводойдотемпературы500-580°Сисмоткуштрипсовврулоны,отличающийсятем,чтосмотанныерулоныохлаждаютсоскоростью5-20°С/чдотемпературыневыше100°С.12.Способпоп.1,отличающийсятем,чтовыплавляютстальследующегохимическогосостава,мас.%:23.Способпоп.2,отличающийсятем,чтовыплавляютстальссодержаниемС,Mn,Cr,V,Ti,Cu,Ni,Si,удовлетворяющимследующимсоотношениям:3
Источник поступления информации: Роспатент

Showing 101-104 of 104 items.
10.07.2019
№219.017.adb5

Способ управления агломерационным процессом

Изобретение относится к черной металлургии и может быть использовано при подготовке сырья к доменной плавке, в частности для управления агломерационным процессом. Скорость движения спекательных тележек регулируют для обеспечения наибольшей величины относительного выхода агломерата не менее...
Тип: Изобретение
Номер охранного документа: 0002377322
Дата охранного документа: 27.12.2009
10.07.2019
№219.017.aef7

Способ производства агломерата для доменной плавки

Изобретение относится к области черной металлургии, в частности к агломерации шихт, содержащих вторичное сырье, с получением железорудного офлюсованного агломерата для выплавки чугуна. Способ производства агломерата, спекаемого из шихты, состоящей из железосодержащих компонентов, флюса и...
Тип: Изобретение
Номер охранного документа: 0002418079
Дата охранного документа: 10.05.2011
10.07.2019
№219.017.b00c

Способ производства штрипса для магистральных труб из низкоуглеродистой стали

Изобретение предназначено для повышения качества штрипса при одновременном увеличении производительности реверсивного толстолистового стана. Способ включает нагрев непрерывнолитой заготовки, черновое обжатие этой заготовки по толщине, подстуживание полученной промежуточной заготовки на воздухе,...
Тип: Изобретение
Номер охранного документа: 0002401168
Дата охранного документа: 10.10.2010
10.07.2019
№219.017.b010

Способ производства штрипса для магистральных труб из низкоуглеродистой стали

Изобретение предназначено для повышения производительности реверсивного толстолистового стана при производстве штрипса для труб большого диаметра. Способ включает нагрев заготовки, черновую прокатку на реверсивном толстолистовом стане до получения заданной толщины и ширины промежуточной...
Тип: Изобретение
Номер охранного документа: 0002401706
Дата охранного документа: 20.10.2010
Showing 141-150 of 166 items.
18.05.2019
№219.017.56f8

Способ выплавки стали в конвертере

Изобретение относится к области черной металлургии, в частности к выплавке стали в кислородном конвертере. Способ включает подачу в конвертер ожелезненного магнезиального флюса и магнезиально-глиноземистого флюса при соотношении их расходов 0,2-15 из расчета получения в шлаке по окончании...
Тип: Изобретение
Номер охранного документа: 0002387717
Дата охранного документа: 27.04.2010
18.05.2019
№219.017.572a

Способ центрирования движущейся полосы по оси агрегата

Изобретение относится к производству полосового материала и может быть использовано для центрирования движущейся стальной полосы по оси агрегата при ее прокатке, порезке, термообработке, покрытии и т.д., в частности к способу центрирования движущейся стальной полосы по оси агрегата. Способ...
Тип: Изобретение
Номер охранного документа: 0002383405
Дата охранного документа: 10.03.2010
18.05.2019
№219.017.58ab

Способ намотки холоднокатаной полосы в рулон

Изобретение относится к прокатному производству, в частности к способу намотки полосы на барабан моталки стана холодной прокатки для последующего отжига рулона в садочной печи. Способ включает изменение натяжения полосы в процессе намотки по синусоидальному закону с амплитудой, составляющей...
Тип: Изобретение
Номер охранного документа: 0002323055
Дата охранного документа: 27.04.2008
09.06.2019
№219.017.7b0a

Коррозионно-стойкая сталь для насосно-компрессорных и обсадных труб

Изобретение относится к области металлургии, а именно к легированным сталям, предназначенным для изготовления насосно-компрессорных и обсадных труб, а также скважинного оборудования, эксплуатирующихся в агрессивных средах, содержащих сероводород и углекислый газ. Сталь содержит углерод,...
Тип: Изобретение
Номер охранного документа: 0002371508
Дата охранного документа: 27.10.2009
19.06.2019
№219.017.89e1

Способ производства толстолистового проката из свариваемой хромомарганцевой стали

Изобретение относится к черной металлургии и термической обработке и может быть использовано при получении высокопрочной листовой низколегированной стали для металлоконструкций, эксплуатируемых в районах Крайнего Севера. Способ включает непрерывную разливку стали в слябы, их нагрев,...
Тип: Изобретение
Номер охранного документа: 0002455105
Дата охранного документа: 10.07.2012
29.06.2019
№219.017.99fd

Зубчатая муфта

Изобретение относится к зубчатым муфтам, преимущественно к муфтам для соединения валов с применением промежуточного вала, особенно к зубчатым муфтам шпинделей прокатных станов. Зубчатая муфта включает зубчатую втулку с наружными бочкообразными зубьями и обойму с внутренними зубьями поперечного...
Тип: Изобретение
Номер охранного документа: 0002268799
Дата охранного документа: 27.01.2006
29.06.2019
№219.017.99ff

Способ производства холоднокатаной листовой стали

Изобретение относится к области металлургии, конкретно к прокатному производству, и может быть использовано при изготовлении стальных холоднокатаных листов и полос для штамповки. Задача изобретения - уменьшение расходного коэффициента металла. Способ включает горячую прокатку полос с...
Тип: Изобретение
Номер охранного документа: 0002268097
Дата охранного документа: 20.01.2006
29.06.2019
№219.017.9a05

Устройство для позиционирования рулонов полосы при снятии с барабана моталки

Изобретение относится к прокатному производству, преимущественно к моталкам непрерывных прокатных станов и агрегатам продольной и поперечной резки полосы. Устройство для позиционирования рулонов полосы при снятии с барабана моталки включает барабан, закрепленный на валу, соединенном через...
Тип: Изобретение
Номер охранного документа: 0002268803
Дата охранного документа: 27.01.2006
29.06.2019
№219.017.9d53

Способ производства листов

Изобретение относится к металлургии, конкретнее к производству толстых листов из низколегированной хромосодержащей стали, используемых при изготовлении сварных кузовов большегрузных самосвалов. Для повышения механических свойств, снижения неплоскостности и увеличения выхода годных листов слябы...
Тип: Изобретение
Номер охранного документа: 0002350662
Дата охранного документа: 27.03.2009
29.06.2019
№219.017.9f2e

Сталь конструкционная с высокой ударной вязкостью при криогенных температурах

Изобретение относится к области металлургии, к особохладостойким конструкционным сталям, используемым для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа. Сталь содержит углерод, марганец, кремний, никель, ниобий, титан, кальций, кобальт,...
Тип: Изобретение
Номер охранного документа: 0002414520
Дата охранного документа: 20.03.2011
+ добавить свой РИД