×
10.04.2019
219.017.07b0

Результат интеллектуальной деятельности: АНТЕННЫЙ ОБТЕКАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области создания конструкций антенных обтекателей высокоскоростных ракет с оболочками из жаростойких керамических материалов. Антенный обтекатель содержит керамическую оболочку, металлический стыковой шпангоут и расположенный между ними теплоизоляционный слой, образованный не менее чем двумя секторами, выполненными из термостойкого стеклопластика, и соединенный термостойким клеем с оболочкой и шпангоутом. Керамическая оболочка в зоне соединения с теплоизоляционным слоем выполнена по внутренней поверхности с обратным направлением конусности по отношению к конусности ее наружной поверхности, а внешняя поверхность стыкового шпангоута выполнена с конусностью, совпадающей с конусностью наружной поверхности керамической оболочки. Сектора теплоизоляционного слоя выполнены из термостойкого стеклопластика на основе полиимидного, алюмохромфосфатного или фенолформальдегидного связующих. Техническим результатом изобретения является обеспечение работоспособности антенного обтекателя в условиях повышенного теплосилового нагружения. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям радиопрозрачных обтекателей летательных аппаратов, и может быть использовано при разработке керамических головных обтекателей высокоскоростных ракет.

Основная проблема создания надежного соединения хрупкой керамической оболочки с металлическим стыковым шпангоутом при высоких температурах обусловлена значительной разницей их тепловых расширений, вызываемой резким возрастанием исходно низкого ТКЛР материала шпангоута (инварные сплавы), близкого к ТКЛР керамики в небольшом интервале температур (до 300°С), в процессе нагрева свыше 320-350°С (при практически стабильном ТКЛР материала оболочки при более высоких температурах).

С ростом скоростей ракет и, соответственно, теплового воздействия на носовые радиопрозрачные обтекатели с оболочками, изготавливаемыми в настоящее время, в основном, из ситаллов и кварцевой керамики с ее модификациями, нагрев оболочек достигает температур размягчения керамического материала, когда начинаются процессы аблирования наружной поверхности оболочки, приводящие к эрозионному уносу материала и изменению электрической толщины стенки оболочки, а также к снижению прочности конструкции. Изменение электрической толщины стенки оболочки приводит к искажению радиотехнических характеристик и снижению вероятности выполнения основной задачи - попадания ракеты в цель.

Поэтому для обтекателей высокоскоростных ракет, температура нагрева наружной поверхности керамических оболочек которых в радиопрозрачной зоне достигает температуры абляции применяемых в настоящее время керамических материалов (например, для кварцевой керамики - около 1500°С), предлагаются керамические материалы, не подверженные тепловой эрозии, например нитридкремниевая и алюмооксидная керамики.

Однако эти материалы, обладающие высокой термостойкостью (до 2000-2500°С), помимо высокой прочности имеют повышенную теплопроводность, что обусловливает значительный нагрев силовых элементов конструкции узла соединения оболочки и металлического стыкового шпангоута. Например, при непосредственном клеевом соединении оболочки и шпангоута в обтекателях ракет классов "воздух-воздух" и "воздух-поверхность", когда предварительный нагрев конструкции в полете под носителем может достигать 150-300°С еще до пуска ракеты, то после пуска, в автономном режиме, металлический стыковой шпангоут и клеевой шов могут прогреваться до температур 650-750°С. Такой режим эксплуатации является недопустимым не только для эластичных термостойких адгезивов, которые, в основном, используются в обтекателях с оболочками, изготавливаемыми из кварцевой керамики и ситаллов, но и приводит к разрушению оболочки вследствие теплового расширения шпангоута в радиальном направлении.

Изготовление оболочек из нитридкремниевой и алюмооксидной керамик, имеющих повышенные, по сравнению с кварцевой керамикой, ТКЛР и теплопрочность, позволяет использовать для шпангоута некоторые инварные сплавы также с повышенными ТКЛР, допускающими нагрев шпангоута до температур 450-500°С. Однако в этом случае невозможным становится использование термостойких эластичных адгезивов типа герметика У-2-28, работоспособность которых ограничивается нагревом до 300-320°С.

Известен ряд технических решений для конструкций антенных обтекателей, включающих керамическую оболочку и металлический шпангоут, в которых работоспособность обеспечивается установкой между оболочкой и шпангоутом термокомпенсаторов или теплозащитных элементов, позволяющих исключить непосредственный контакт оболочки со шпангоутом и снизить температуру нагрева шпангоута и клеевого соединения.

Известна конструкция головного антенного обтекателя ракеты по патенту РФ №2189672, МПК 7H01Q 1/42, 2001, состоящая из керамической оболочки и металлического шпангоута и дополнительной оболочки, изготовленной из композиционного материала, согласованного по ТКЛР с керамической оболочкой, установленной с зазором между керамической оболочкой и металлическим шпангоутом и соединенной с ними на одном конце эластичным адгезивом. Кроме этого, в конструкции обтекателя имеются эластичные компенсирующие элементы.

Основным ограничением в применении такой конструкции является недостаточная на современном уровне термопрочность существующих эластичных компенсирующих элементов, невозможность использования жестких адгезивов, обладающих высокой термостойкостью, и усложненность конструкции.

Известна также конструкция головного обтекателя ракеты по патенту РФ №2168815, МПК 7HOIQ 1/42, 2000, включающая эластичную обечайку, введенную в расширяющуюся полость между оболочкой и носовой частью шпангоута, а в качестве адгезива-эластичный герметик на основе полисилоксана. К шпангоуту подсоединен или выполнен за одно целое с ним аккумулятор тепла.

Ограничение работоспособности такой конструкции для обтекателя с оболочкой, материал которой обладает повышенной теплопроводностью, обусловлено также невысокой термопрочностью эластичных элементов узла соединения, невозможностью использования жестких термостойких адгезивов и узким температурным интервалом совместимости ТКЛР материалов оболочки и шпангоута.

Наиболее близким устройством по совокупности признаков, выбранным в качестве прототипа, является антенный обтекатель по патенту США №4520364, МПК 6H01Q 1/28, 1/42, 1985, включающий радиопрозрачную керамическую оболочку, переходную секцию с изолирующей прокладкой, изготовленную из композиционного материала на полиимидном связующем и выполняющую роль теплозащитного слоя, металлический стыковой шпангоут и элементы их соединения. Керамическая оболочка соединяется с переходной секцией и стыковым шпангоутом по коническим сопрягаемым поверхностям термостойким клеем и с помощью стандартных крепежных элементов. Введение в конструкцию обтекателя переходной секции с изолирующей прокладкой позволяет снизить температуру металлического шпангоута до приемлемых значений.

Причинами, ограничивающими применение данного изобретения, являются:

- в условиях значительного теплосилового нагружения обтекателя и прогрева оболочки, обладающей повышенной теплопроводностью, клеевой слой в соединении "керамическая оболочка - переходная секция" и сам теплозащитный слой могут деструктировать, если температура нагрева превысит пределы термостойкости адгезива и связующего композиционного материала переходной секции, что не позволит обеспечить передачу внешней нагрузки на металлический стыковой шпангоут;

- отсутствие контакта по всей поверхности теплозащитного слоя и стыкового шпангоута не позволяет использовать для поджатия переходной секции увеличение размеров шпангоута в радиальном направлении в процессе нагрева.

Тепловые расчеты и практика разработки обтекателей с теплозащитными слоями между керамической оболочкой и металлическим шпангоутом показывают, что применение теплозащитного слоя из материала с низкой теплопроводностью с целью снижения температуры в металлическом шпангоуте приводит к концентрации тепла в соединении "керамическая оболочка - теплозащитный слой", что обусловливает повышение температуры на внутренней поверхности оболочки и клеевого слоя в этом соединении.

Этот отрицательный эффект тем значительнее, чем меньше теплопроводность материала теплозащитного слоя и чем выше теплопроводность керамики. Достигнутое необходимое снижение температуры металлического шпангоута и облегчение условий его работы приводит к тому, что наиболее теплонагруженным становится клеевой слой, соединяющий оболочку с теплозащитным слоем. Это особенно характерно для обтекателей с оболочками из нитридных и алюмооксидных керамик, обладающих высокой теплопроводностью.

Задачей настоящего изобретения является обеспечение работоспособности антенного обтекателя в условиях повышенного теплосилового нагружения за счет снижения температуры нагрева стыкового шпангоута и его воздействия на керамическую оболочку.

Поставленная задача решается тем, что предложен:

1. Антенный обтекатель, содержащий керамическую оболочку, металлический стыковой шпангоут и расположенный между ними теплоизоляционный слой, соединенный термостойким клеем с оболочкой и шпангоутом, отличающийся тем, что теплоизоляционный слой образован не менее чем двумя секторами, выполненными из термостойкого стеклопластика, при этом керамическая оболочка в зоне соединения с теплоизоляционным слоем по внутренней поверхности выполнена с обратным направлением конусности по отношению к конусности ее наружной поверхности, а внешняя поверхность металлического стыкового шпангоута выполнена с конусностью, совпадающей по направлению с конусностью наружной поверхности керамической оболочки.

2. Антенный обтекатель по п.1, отличающийся тем, что в качестве термостойкого стеклопластика выбран стеклопластик на основе полиимидного связующего.

3. Антенный обтекатель по п.1, отличающийся тем, что в качестве термостойкого стеклопластика выбран стеклопластик на основе алюмохромфосфатного связующего.

4. Антенный обтекатель по п.1, отличающийся тем, что в качестве термостойкого стеклопластика выбран стеклопластик на основе фенолформальдегидного связующего.

В условиях полета под носителем при прогреве всей конструкции до 150-300°С и относительной совместимости ТКЛР материалов оболочки, теплоизоляционного слоя и шпангоута, значительных растягивающих напряжений в керамической оболочке от распора шпангоутом не возникает, а термостойкий адгезив в соединениях еще не претерпевает необратимых структурных изменений и деформаций, поскольку внешние нагрузки и температура нагрева соединяемых деталей не значительны. При охлаждении до температуры окружающей среды система практически приходит в исходное состояние.

При пуске ракеты после предварительного прогрева до температур 150-300°С в соединении "оболочка - теплоизоляционный слой" дополнительный нагрев в автономном режиме приводит к значительному увеличению температуры клея и внешних слоев теплоизоляционного слоя.

В то же время увеличения температуры металлического шпангоута и адгезива в соединении "теплоизоляционный слой - шпангоут" в течение короткого времени автономного режима не происходит, т.к. значительная часть тепла идет на нагрев оболочки и теплоизоляционного слоя.

В соединении "оболочка - теплоизоляционный слой" происходит постепенная деструкция адгезива и размягчение связующего во внешних слоях композиционного материала кольцевых секторов. Скорость протекания деструкции адгезива и связующего в композиционном материале пропорциональна длительности теплового воздействия на обтекатель, которая составляет от нескольких десятков секунд до 1,5-2 минут.

По мере деструкции адгезива и некоторого размягчения внешних слоев материала кольцевых секторов одновременно происходит поджатие теплоизоляционного слоя к оболочке за счет теплового расширения шпангоута. В результате этого в соединении, благодаря конусности обратной направленности, образуется клин, который при приложении внешней нагрузки "запирает" весь узел и препятствует сползанию оболочки со шпангоута. В общем случае эффективность клинового соединения тем выше, чем больше угол конусности клина, который, однако, лимитирован строительной высотой узла соединения. В оболочках, изготовленных из нитридной и алюмооксидной керамик, обладающих значительной прочностью (σи=200-400 МПа), клиновое соединение способно выдержать без разрушения оболочки значительные нагрузки, поскольку теплоизоляционный слой "работает", в основном, на изгиб и сжатие.

Работоспособность конструкции узла соединения обеспечивается до тех пор, пока сохраняется прочность клеевого соединения "теплоизоляционный слой - шпангоут", а окружные растягивающие напряжения, возникающие в оболочке от распора шпангоутом через теплоизоляционный слой, не превышают допустимых. Это может быть достигнуто применением в этом соединении термостойкого адгезива.

На фигуре представлено продольное сечение антенного обтекателя в зоне узла соединения.

Антенный обтекатель включает керамическую оболочку 1, металлический стыковой шпангоут 2 и теплоизоляционный слой 3, соединенный термостойким клеем 4 с оболочкой и шпангоутом. Теплоизоляционный слой состоит из секторов 5, разделенных между собой зазором, заполненным теплостойким клеем 4. Внешняя поверхность секторов 5, образующих теплоизоляционный слой 3, и внутренняя поверхность керамической оболочки 1 имеют обратное направление конусности по отношению к конусности наружной поверхности оболочки (угол конусности выбирается конструктивно), а внутренняя поверхность секторов 5 и наружная поверхность шпангоута 2 - конусность, совпадающую по направлению с конусностью наружной поверхности оболочки 1.

Теплопрочностные расчеты и эксперименты показывают, что применение для ракет классов "воздух - воздух" и "воздух - поверхность" конструкции антенного обтекателя, включающего теплоизоляционный слой, образованный из отдельных кольцевых секторов, изготовленных из стеклопластиков на основе фенолформальдегидных, полиимидных, алюмофосфатных и других теплостойких связующих с низкой теплопроводностью, позволит обеспечить работоспособность антенного обтекателя при прогреве клеевого слоя в соединении "керамическая оболочка - теплоизоляционный слой" до 650-850°С и выше, а в соединении "теплоизоляционный слой - металлический шпангоут" - до 500-550°С (ограничение обусловлено резким подъемом ТКЛР применяемых в настоящее время конструкционных инварных материалов для шпангоутов при нагреве выше этих температур). Температурными полями в соединениях можно управлять, применяя материалы с необходимыми теплофизическими характеристиками для теплоизоляционных слоев. Такая конструкция антенного обтекателя может быть реализована не только с оболочками, материал которых обладает высокой прочностью (нитридная и алюмооксидная керамики), но также и с оболочками, имеющими относительно невысокие прочностные характеристики материалов (кварцевая керамика и ее модификации, стеклокерамика и др.).

Достигнутым техническим результатом применения изобретения является возможность создания работоспособных конструкций антенных обтекателей в условиях повышенного аэродинамического воздействия, создающего тепловые потоки, приводящие к нагреву наружной поверхности керамической оболочки в зоне узла соединения с металлическим шпангоутом до температур 1000-1100°С.

Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
27.01.2013
№216.012.2140

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей скоростных ракет из пористой керамики. Технический результат заключается в упрощении конструкции и технологии изготовления антенного обтекателя из пористой керамики....
Тип: Изобретение
Номер охранного документа: 0002474013
Дата охранного документа: 27.01.2013
01.03.2019
№219.016.ce98

Устройство для определения диэлектрической проницаемости образца материала при воздействии внешних факторов

Изобретение относится к измерениям диэлектрической проницаемости материалов при воздействии внешних факторов, преимущественно к устройствам измерения диэлектрической проницаемости при нагреве. Устройство, содержащее излучающий генератор, передающую линейно поляризованную антенну, камеру для...
Тип: Изобретение
Номер охранного документа: 0002453856
Дата охранного документа: 20.06.2012
01.03.2019
№219.016.cefb

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным системам «антенна-обтекатель» для работы в совмещенных диапазонах. Техническим результатом является снижение пеленгационных ошибок в системе «антенна-обтекатель», работающей в совмещенных диапазонах....
Тип: Изобретение
Номер охранного документа: 0002459324
Дата охранного документа: 20.08.2012
Showing 91-100 of 155 items.
01.06.2019
№219.017.7279

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет различных классов с оболочками из жаростойких керамических материалов. Антенный обтекатель включает керамическую оболочку, соединенную...
Тип: Изобретение
Номер охранного документа: 0002690040
Дата охранного документа: 30.05.2019
01.06.2019
№219.017.7287

Способ тепловых испытаний натурных керамических элементов летательных аппаратов

Изобретение относится к способам тепловых испытаний элементов летательных аппаратов, в частности керамических обтекателей ракет. Заявлен способ тепловых испытаний натурных керамических элементов летательных аппаратов, который включает нанесение на нагреваемую поверхность высокотемпературного...
Тип: Изобретение
Номер охранного документа: 0002690048
Дата охранного документа: 30.05.2019
19.06.2019
№219.017.87ec

Установка для упрочнения изделий из стеклокристаллических материалов путем ионного обмена

Изобретение относится к стекольной и керамической промышленности и производству радиотехнических изделий из стеклокристаллических материалов. Установка содержит: камеры сушки и охлаждения, между которыми размещена камера упрочнения, отделенная от них шиберами, направляющие, каретки с кассетами...
Тип: Изобретение
Номер охранного документа: 0002305078
Дата охранного документа: 27.08.2007
29.06.2019
№219.017.9a1e

Антенный обтекатель ракеты

Изобретение относится к ракетной технике, а точнее к конструкции антенных обтекателей ракет с радиолокационной системой управления. Технический результат заключается в повышении термоустойчивости и улучшении радиотехнических характеристик при обеспечении несущей способности оболочки и...
Тип: Изобретение
Номер охранного документа: 0002267837
Дата охранного документа: 10.01.2006
10.07.2019
№219.017.ad8c

Способ получения керамических изделий на основе волластонита

Изобретение относится к технологии производства футеровочных и конструкционных керамических элементов оснастки литейных агрегатов алюминиевой промышленности. Техническим результатом изобретения является сокращение продолжительности технологического цикла производства крупногабаритных и...
Тип: Изобретение
Номер охранного документа: 0002358951
Дата охранного документа: 20.06.2009
11.07.2019
№219.017.b242

Антенный обтекатель

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей ракет с оболочками, изготавливаемыми из жаропрочных неорганических (керамических) материалов, являющихся укрытием от аэродинамического воздействия для антенных...
Тип: Изобретение
Номер охранного документа: 0002694132
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b244

Способ определения содержания высокодисперсного диоксида кремния в шликере на основе кварцевого стекла

Изобретение относится к методам аналитического контроля и может быть использовано для определения количественного содержания высокодисперсного кремнезема в шликере на основе кварцевого стекла. Способ определения содержания высокодисперсного диоксида кремния в шликере на основе кварцевого стекла...
Тип: Изобретение
Номер охранного документа: 0002694116
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b2af

Способ определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях и установка для его реализации

Изобретение относится к области теплофизики и касается способа определения степени черноты поверхности натурных обтекателей при тепловых испытаниях. Способ включает радиационный нагрев обтекателя, полностью соответствующего натурному обтекателю, на тепловом стенде кварцевыми галогенными лампами...
Тип: Изобретение
Номер охранного документа: 0002694115
Дата охранного документа: 09.07.2019
12.07.2019
№219.017.b30e

Способ тепловых испытаний радиопрозрачных обтекателей

Изобретение относится к технике наземных испытаний головных частей (обтекателей) летательных аппаратов (ЛА), а именно к способам контроля радиотехнических характеристик (РТХ) радиопрозрачного обтекателя (РПО) в условиях, имитирующих аэродинамический нагрев. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002694237
Дата охранного документа: 10.07.2019
12.07.2019
№219.017.b318

Инфракрасный нагреватель

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на элементах летательных аппаратов в наземных условиях. Инфракрасный нагреватель, содержащий каркас, теплоизоляционный экран,...
Тип: Изобретение
Номер охранного документа: 0002694244
Дата охранного документа: 10.07.2019
+ добавить свой РИД