×
10.04.2019
219.017.07a7

БИОКАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ИНВЕРТНОГО СИРОПА С ИСПОЛЬЗОВАНИЕМ ЭТОГО КАТАЛИЗАТОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение предназначено для использования в пищевой промышленности, а именно в технологии получения сиропов, содержащих глюкозу и фруктозу и используемых в кондитерской и хлебопекарной промышленности для производства кондитерских изделий, конфет. Заявлен биокатализатор для получения инвертного сиропа, способ его приготовления и способ получения инвертного сиропа - инверсия сахарозы с участием приготовленных биокатализаторов. Биокатализатор для получения инвертного сиропа содержит в мас.% по сухим веществам: в качестве ферментативно-активной биомассы автолизаты дрожжей 30-50, наноуглеродный компонент 5-15 и носитель, состоящий из диоксида кремния, до 100. Используют наноуглеродный компонент со структурой нановолокна или со структурой углеродных нанотрубок, или со структурой наноалмазов, или со структурой луковичного наноуглерода. Способ получения инверного сиропа осуществляют в проточном реакторе с неподвижным слоем описанного выше биокатализатора при температуре не выше 50°C. Технический результат - высокая ферментативная активность биокатализаторов для биоконверсии субстрата (сахарозы) в инвертный сироп. 3 н. и 3 з.п. ф-лы, 14 пр., 1 табл.
Реферат Свернуть Развернуть

Изобретение предназначено для использования в пищевой промышленности, а именно имеет отношение к технологии получения сиропов, содержащих глюкозу и фруктозу и используемых в кондитерской и хлебопекарной промышленности для производства кондитерских изделий, конфет. Изобретение направлено на разработку биокатализаторов, способов их приготовления и способов проведения процессов гидролиза - инверсия сахарозы с участием приготовленных биокатализаторов.

Известен способ инверсии сахарозы с помощью биокатализатора, включающий дрожжевые мембраны и твердый носитель [RU 2279475, C12N 11/14, 10.07.2006]. В качестве твердого носителя используют гранулированный углеродсодержащий носитель, приготовленный из возобновляемого сырья - илистых отложений пресных озер (сапропелей). Приготовление биокатализатора включает стадии получения носителя и проведения иммобилизации дрожжевых мембран путем адгезии в течение не менее 20 ч. Активность биокатализатора составляет 102-135 ЕА/г. Время полуинактивации в условиях гидролиза сахарозы при 50°C составляет 30 ч.

Известен способ получения иммобилизованной инвертазы для гидролиза сахарозы [RU 2158761, C12N 11/10, 10.11.2000]. Препарат инвертазы получают в виде изолированных стенок клеток дрожжей, подвергнутых автолизу. Дрожжевые автолизаты иммобилизуют на поверхности или в массе твердого или гелеобразного носителя. Недостатком способа являются относительно низкие значения активности биокатализатора, составляющей 12-98 ЕА/г биокатализатора. Время полуинактивации биокатализатора в условиях непрерывного процесса инверсии сахарного сиропа при 50°C составляет 6-45 суток.

Наиболее близким к предлагаемому изобретению является способ инверсии сахарозы с помощью биокатализатора, приготовленного путем включения целых клеток пекарских дрожжей в ксерогель диоксида кремния [RU 2372403, C12N 11/14, 10.11.2009]. Приготовление биокатализатора включает стадии смешения дрожжевой биомассы с гидрогелем диоксида кремния, высушивание, прессование и фракционирование таблетированного биокатализатора до гранул размером 0.1-4 мм. Активность биокатализатора составляет 500 ЕА/г. Время полуинактивации в условиях гидролиза сахарного сиропа при 50°C составляет 200 ч.

Недостатком данного способа является сравнительно низкая активность приготовленных биокатализаторов.

Изобретение решает задачу повышения ферментативной активности биокатализаторов для биоконверсии субстрата (сахарозы) в инвертный сироп.

Задача решается составом биокатализатора для получения инвертного сиропа, содержащего ферментативно-активную биомассу и носитель, в качестве ферментативно-активной биомассы он содержит автолизаты дрожжей, а в качестве носителя - диоксид кремния и наноуглеродный компонент.

Биокатализатор имеет следующий состав, в мас.% по сухим веществам: автолизаты дрожжей 30-50, наноуглеродный компонент 5-15, диоксид кремния - до 100%.

Задача решается способом приготовления биокатализатора для получения инвертного сиропа, который включает стадии смешения ферментативно-активной биомассы с носителем, высушивание, прессование и фракционирование таблетированного сухого биокатализатора. Биокатализатор готовят путем смешения ферментативно-активной биомассы - автолизатов дрожжей с носителем - гидрогелем диоксида кремния и наноуглеродным компонентом в соотношении в мас.% по сухим веществам: автолизаты дрожжей 30-50, нанонуглеродный компонент 5-15, диоксид кремния - до 100%, с последующим высушиванием при температуре не выше 50°C, прессованием и фракционированием до размера гранул 0.1-4 мм.

Используют гидрогель диоксида кремния, который при высушивании и прессовании переходит в ксерогель диоксида кремния.

Используют наноуглеродный компонент со структурой нановолокна или со структурой углеродных нанотрубок, или со структурой наноалмазов, или со структурой луковичного наноуглерода.

Задача решается способом получения инвертных сиропов, который осуществляют в проточном реакторе с неподвижным слоем биокатализатора, включающего ферментативно-активную биомассу и носитель. Используют биокатализатор следующего состава, в мас.% по сухим веществам: автолизаты дрожжей 30-50, наноуглеродный компонент 5-15, диоксид кремния - до 100%. Процесс осуществляют при температуре не выше 50°C.

Задача решается тем, что для приготовления биокатализаторов используют ферментативно-активную биомассу в виде автолизатов дрожжей, обладающих необходимой инвертазной активностью, и композитные углерод-силикатные матрицы, полученные при смешении гидрогеля диоксида кремния и современных углеродных материалов (со структурой нановолокна или со структурой углеродных нанотрубок, или со структурой наноалмазов, или со структурой луковичного наноуглерода). Оптимальное содержание наноуглеродного компонента в биокатализаторе составляет 5-15 мас.%. Диоксид кремния является связующим компонентом, и его содержание составляет не менее 20 мас.%.

Оптимизация состава биокатализаторов осуществляется по двум основным параметрам: 1) максимально достижимое значение ферментативной активности биокатализатора, 2) максимальная стабильность работы биокатализатора в водной реакционной среде, обусловленная сохранением механической прочности гранул.

Ферментативная активность биокатализатора увеличивается с ростом содержания ферментативно-активной биомассы в биокатализаторе до некоторого оптимального значения, при котором биокатализатор обладает максимально достижимой активностью при максимально высокой стабильности в работе. Обнаружено, что данное оптимальное содержание биомассы определяется таксономической принадлежностью микроорганизма (дрожжи, бактерии). Например, для биокатализатора с инвертазной активностью оптимальное содержание биомассы дрожжевых автолизатов составляет 50-70 мас.% (по сухим веществам).

Предложен способ приготовления биокатализаторов путем включения ферментативно-активной биомассы в композитную углерод-силикатную матрицу, характеризующийся тем, что биокатализаторы готовят путем смешения трех компонентов. В качестве компонента 1 используют ферментативно-активную биомассу с влажностью 70-80%. В качестве компонента 2 используют гидрогель диоксида кремния, в котором содержится 10-12 мас.% сухих веществ в пересчете на SiO2. В качестве компонента 3 используют наноуглеродный материал (нановолокна, нанотрубки, наноалмазы, наноуглерод луковичной структуры). Все три компонента тщательно смешивают до однородного состояния, затем полученную смесь высушивают при температуре не выше 50°C, измельчают, прессуют и фракционируют для получения гранул биокатализатора размером 0.1-4 мм.

Используют гидрогель диоксида кремния (компонент 2) со следующим набором свойств: величина удельной поверхности продукта, получающегося после высушивания гидрогеля при 105-120°C, равна 30-550 м2/г, насыпная плотность продукта, получающегося после высушивания гидрогеля при 105-120°C, равна 0.1-0.7 г/см3. Гидрогель диоксида кремния получают путем осаждения силиката натрия или силиката калия (в виде жидкого стекла) аммонийными солями серной, или азотной, или угольной кислоты. Гидрогель диоксида кремния абсолютно инертен, отличается высокой химической и микробиологической устойчивостью.

Наноуглеродные материалы (компонент 3) используют в виде тонкодисперсного порошка, вводимого в состав биокатализатора. Данные материалы отличаются наноструктурой углеродного образования, а именно взаимным расположением и количеством графеновых слоев. Так, углеродные нановолокна (УНВ) в зависимости от расположения графенового слоя по отношению к оси волокна имеют наноструктуру либо «рыбья кость», либо «колода карт». Углеродные нанотрубки имеют в структуре один, два и более графеновых слоев.

Наноуглеродный компонент - углеродные нановолокна (УНВ), получают в результате каталитического пиролиза углеводородов на катализаторах, содержащих металлы подгруппы железа, при 500-1000°C. Углеродный компонент характеризуется следующим набором свойств: диаметр нановолокна 20-100 нм, длина 1-10 мкм. Величина удельной поверхности составляет 100-550 м2/г, насыпная плотность 0.5-1.1 г/см3.

Наноуглеродный компонент - углеродные нанотрубки (УНТ), получают одним из известных методов: либо испарением графитных электродов, содержащих металлы 8 группы (Fe, Co, Ni), в электрической дуге; либо разложением моноксида углерода при повышенном давлении в присутствии паров карбонила железа, либо методом химического напыления путем разложения углеводородов на высокодисперсных катализаторах. Углеродный компонент УНТ характеризуются следующим набором свойств: диаметр трубок 0.7-3.5 нм, длина 0.5-20 мкм. Углеродные нанотрубки могут собираться в пучки. Величина удельной поверхности составляет 100-1200 м2/г, насыпная плотность 0.1-0.5 г/см3.

Многослойные углеродные нанотрубки (МУНТ) в виде вложенных друг в друга двух и более графеновых цилиндров получают пиролизом углеводородов, или других органических молекул, или СО на катализаторах, содержащих металлы подгруппы железа при 500-900°C. Углеродный компонент МУНТ характеризуется следующим набором свойств: средний диаметр 3-100 нм, длина 1-50 мкм. Величина удельной поверхности составляет 50-800 м2/г, насыпная плотность 0.05-0.4 г/см3.

Окисленные многослойные углеродные нанотрубки (МОНТ) получают окислением МУНТ в кипящей азотной кислоте в течение 2 ч. Углеродный компонент МОНТ характеризуется следующим набором свойств: средний диаметр 3-100 нм, длина 1-50 мкм. Величина удельной поверхности составляет 50-800 м2/г, насыпная плотность 0.05-0.4 г/см3.

Наноалмазы (НА) получают в условиях взрыва взрывчатых веществ с отрицательным балансом по кислороду. Углеродный компонент НА характеризуется следующим набором свойств: средний размер первичных частиц 4-8 нм, эти частицы формируют прочные агломераты размером 50-300 нм. Величина удельной поверхности составляет 200-300 м2/г, насыпная плотность 0.3-0.5 г/см3.

Наноуглерод луковичной структуры (НУЛС) получают отжигом НА при 1200-1900°C. Основным структурным элементом являются вложенные друг в друга дефектные фуллереноподобные оболочки, объединенные общими искривленными графеновыми слоями в прочные агломераты размером 50-300 нм. Углеродный компонент НУЛС характеризуется следующим набором свойств: величина удельной поверхности составляет 300-600 м2/г, насыпная плотность 0.05-0.4 г/см3.

Биокатализаторы готовят путем смешения ферментативно-активной биомассы, гидрогеля диоксида кремния и наноуглеродного компонента до однородной массы. Затем полученную массу высушивают при температуре не выше 50°C, и гидрогель переходит в твердый ксерогель диоксида кремния. Мелкодисперсные частицы ксерогеля с включенной в них биомассой прессуют под давлением 150 атм, механически измельчают и рассевают на фракции. Размер гранул составляет 0.1-4 мм.

Биокатализаторы имеют состав, оптимизированный по компонентам согласно параметрам 1 и 2, описанным выше. Для приготовления биокатализаторов с инвертазной активностью используют автолизаты дрожжей в виде биомассы (компонент 1), гидрогель диоксида кремния (компонент 2) и наноуглеродный материал (компонент 3). Размер гранул биокатализаторов составляет 0.1-4 мм.

Активность биокатализаторов выражают в единицах активности (ЕА) на 1 г. Единица активности соответствует скорости реакции, равной мкмоль/мин. Инвертазную активность приготовленных биокатализаторов измеряют в среде ацетатного буфера, pH 4.6, при 50°C. Свежеприготовленные биокатализаторы характеризуются величиной начальной активности A0. В течение первых 1-2 ч работы в условиях реакции данная активность падает до величины рабочей активности Aраб, которая затем практически не изменяется в течение 20-30 ч работы биокатализатора. Приготовленные композитные углерод-силикатные биокатализаторы обладают рабочей инвертазной активностью, равной в среднем 1200 ЕА/г (в прототипе 500 ЕА/г).

Задача решается также тем, что процессы биоконверсии субстратов осуществляют с участием приготовленных биокатализаторов в проточном реакторе с неподвижным слоем при подаче раствора субстрата сверху вниз со скоростью потока 0.01-2 л/час.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Приготовление биокатализатора с инвертазной активностью (контроль).

Приготовление биокатализатора с инвертазной активностью осуществляют следующим образом. Тщательно перемешивают 2 г автолизатов дрожжей (компонент 1) и 3.75 г гидрогеля диоксида кремния (компонент 2) до однородного состояния. Затем полученную массу высушивают при 20-22°C до суховоздушного состояния, растирают до мелкодисперсного состояния, порошок прессуют под давлением 150 атм. Таблетки, полученные после прессования, механически размельчают и рассеивают по фракциям определенного гранулометрического состава. Размер гранул составляет 0.1-4 мм. Биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, диоксид кремния 50.

Начальная активность приготовленного биокатализатора равна A0=1124 ЕА/г. Рабочая активность составляет Aраб=646 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Пример 2. Приготовление биокатализатора с инвертазной активностью (выбор оптимального состава).

Аналогичен примеру 1, только в состав биокатализатора вводят наноуглероный компонент в виде углеродных нановолокон (УНВ) со следующим набором свойств: диаметр нановолокна 20-100 нм, длина 1-10 мкм. Величина удельной поверхности составляет 100-550 м2/г, насыпная плотность 0.5-1.1 г/см3.

Приготовление биокатализатора с инвертазной активностью осуществляют следующим образом. Тщательно перемешивают 2 г автолизатов дрожжей (компонент 1), 3.7 г гидрогеля диоксида кремния (компонент 2) и 0.045 г углеродных нановолокон (УНВ, компонент 3) до однородного состояния. Затем полученную массу высушивают, растирают до мелкодисперсного состояния, порошок прессуют под давлением 150 атм. Таблетки, полученные после прессования, механически размельчают и рассеивают по фракциям определенного гранулометрического состава. Биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, УНВ 5, диоксид кремния 45.

Начальная активность приготовленного биокатализатора равна 1100 ЕА/г и не отличается от активности биокатализатора по примеру 1. Рабочая активность составляет 820 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Пример 3. Приготовление биокатализатора с инвертазной активностью (выбор оптимального состава).

Аналогичен примеру 2, только биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, УНВ 10, диоксид кремния 40.

Начальная активность приготовленного биокатализатора составляет 1350 ЕА/г, что в 1.2 раза больше активности биокатализатора по примеру 1 (контроль). Рабочая активность составляет 1160 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Пример 4. Приготовление биокатализатора с инвертазной активностью (выбор оптимального состава).

Аналогичен примеру 2, только катализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, УНВ 15, диоксид кремния 40.

Начальная активность приготовленного биокатализатора равна 2420 ЕА/г, что в 2 раза больше активности биокатализатора по примеру 1 (контроль). Рабочая активность составляет 890 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Пример 5. Приготовление биокатализатора с инвертазной активностью (выбор оптимального состава).

Аналогичен примеру 2, только катализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, УНВ 20, диоксид кремния 40.

Начальная активность приготовленного биокатализатора равна 2020 ЕА/г, что 1.8 раза больше активности биокатализатора по примеру 1 (контроль). Рабочая активность равна нулю, так как гранулы биокатализатора разрушаются в реакционной среде в процессе биоконверсии субстрата через 1 ч работы.

Пример 6. Приготовление биокатализатора с инвертазной активностью (выбор оптимального состава).

Аналогичен примеру 1, только для приготовления биокатализатора используют наноуглеродный материал в виде углеродных нанотрубок (УНТ) со следующим набором свойств: диаметр трубок 0.7-3.5 нм, длина 0.5-20 мкм. Величина удельной поверхности составляет 100-1200 м2/г, насыпная плотность 0.1-0.5 г/см3. Биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, УНТ 5, диоксид кремния 45.

Начальная активность приготовленного биокатализатора равна 540 ЕА/г. Рабочая активность составляет 510 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Пример 7. Приготовление биокатализатора с инвертазной активностью (выбор оптимального состава).

Аналогичен примеру 1, только для приготовления биокатализатора используют наноуглеродный материал в виде углеродных нанотрубок (УНТ) со следующим набором свойств: диаметр трубок 0.7-3.5 нм, длина 0.5-20 мкм. Величина удельной поверхности составляет 100-1200 м2/г, насыпная плотность 0.1-0.5 г/см3. Биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, УНТ 15, диоксид кремния 35.

Начальная активность приготовленного биокатализатора равна 1541 ЕА/г, что, 1.4 раза больше активности биокатализатора по примеру 1 (контроль). Рабочая активность составляет 780 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Пример 8. Приготовление биокатализатора с инвертазной активностью (выбор оптимального состава).

Аналогичен примеру 6, только биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса - 50, УНТ - 25, диоксид кремния - 25.

Начальная активность приготовленного биокатализатора равна 1560 ЕА/г, рабочая равна нулю, так как биокатализатор обладает низкой механической прочностью в реакционной среде/средах и его гранулы разрушаются через 1 ч работы.

Из примеров 2-8 видно, что оптимальное содержание наноуглеродного компонента 3 в углерод-силикатной матрице композитных биокатализаторов составляет 5-15%.

Пример 9. Приготовление биокатализатора с инвертазной активностью.

Аналогичен примеру 1, только для приготовления биокатализатора используют наноуглеродный материал в виде многослойных нанотрубок (МУНТ) со следующим набором свойств: диаметр 3-100 нм, длина 1-50 мкм. Величина удельной поверхности составляет 50-800 м2/г, насыпная плотность 0.05-0.4 г/см3. Биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, МУНТ 15, диоксид кремния 35.

Начальная активность приготовленного биокатализатора равна 4511 ЕА/г, что в 3.3 раза больше активности биокатализатора по примеру 1 (контроль). Рабочая активность составляет 3051 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Пример 10. Приготовление биокатализатора с инвертазной активностью.

Аналогичен примеру 1, только для приготовления биокатализатора используют углеродный материал в виде окисленных многослойных нанотрубок (МОНТ) со следующим набором свойств: диаметр 3-100 нм, длина 1-50 мкм. Величина удельной поверхности составляет 50-800 м2/г, насыпная плотность 0.05-0.4 г/см3. Биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, МОНТ 15, диоксид кремния 35.

Начальная активность приготовленного биокатализатора равна 1565 ЕА/г, что в 1.2 раза больше активности биокатализатора по примеру 1 (контроль). Рабочая активность составляет 900 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Пример 11. Приготовление биокатализатора с инвертазной активностью.

Аналогичен примеру 1, только для приготовления биокатализатора используют углеродный материал в виде ультрадисперсных наноалмазов (НА) со следующим набором свойств: средний размер первичных частиц 4-8 нм. Величина удельной поверхности составляет 200-300 м2/г, насыпная плотность 0.3-0.5 г/см3. Биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, НА 15, диоксид кремния 45.

Начальная активность приготовленного биокатализатора равна 1527 ЕА/г. Рабочая активность составляет 794 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Пример 12. Приготовление биокатализатора с инвертазной активностью.

Аналогичен примеру 1, только для приготовления биокатализатора используют углеродный материал в виде наноуглерода луковичной структуры (НУЛС) со следующим набором свойств: величина удельной поверхности составляет 300-600 м2/г, насыпная плотность 0.05-0.4 г/см3. Биокатализатор имеет следующий состав, в мас.% по сухим веществам: биомасса 50, НУЛС 15, диоксид кремния 35.

Начальная активность приготовленного биокатализатора равна 2085 ЕА/г, то в 1.9 раз больше активности биокатализатора по примеру 1 (контроль). Рабочая активность составляет 972 ЕА/г. Биокатализатор обладает высокой механической прочностью в реакционных средах, что обеспечивает его высокую стабильность в процессе биоконверсии субстрата (сахарозы).

Полученные в примерах 1-12 данные представлены в таблице.

Свойства приготовленных биокатализаторов с инвертазной активностью
Углеродный компонент 3 биокатализатора состава 50:15:35 Начальная активность биокатализатора, ЕА/г Рабочая активность, ЕА/г
Контроль (пример 1) 1124 646
УНВ (пример 4) 2420 892
УНТ (пример 7) 1541 780
МУНТ (пример 8) 4511 3051
МОНТ (пример 9) 1565 1330
НА (пример 10) 1527 794
НУЛС (пример 11) 2085 972

При сравнении с биокатализаторами, приготовленными без углеродного компонента видно, что введение компонента 3 повышает величину как начальной, так и рабочей активности в 1.2-4.7 раза.

Пример 13. Получение инвертного сиропа с применением биокатализатора оптимального состава в процессе инверсии сахарозы.

Биокатализатор по примеру 11 с рабочей активностью 972 ЕА/г помещают в проточный реактор идеального вытеснения. Через неподвижный слой биокатализатора прокачивают 20-50%-ный сахарный сироп pH 4.6 при 50°C. Объемную скорость потока субстрата и время контакта реакционной среды с биокатализатором подбирают таким образом, чтобы на выходе наблюдалась полная биоконверсия субстрата (сахарозы) в инвертный сироп (полный инверт). Объемеая скорость составляет с объемной скоростью 0.01-0.9 л/ч. В изученных условиях инверсии сахарозы время инактивации биокатализатора превышает 250 ч.

Пример 14. Получение инвертного сиропа с применением биокатализатора оптимального состава в процессе инверсии сахарозы.

Биокатализатор по примеру 8 с рабочей активностью 3051 ЕА/г помещают в проточный реактор идеального вытеснения. Через неподвижный слой биокатализатора прокачивают 20-50%-ный сахарный сироп pH 4.6 при 50°C с объемной скоростью 1-1.8 л/ч. В изученных условиях инверсии сахарозы время инактивации биокатализатора превышает 250 ч.

Таким образом, биокатализаторы, приготовленные на основе композитных углерод-силикатных матриц, имеют начальную активность 4500 ЕА/г, что в 9 раза превышает активность биокатализатора-прототипа (500 ЕА/г). Рабочая активность биокатализаторов также многократно увеличивается (в 1.9-4.7 раз) и достигает в среднем 1200 ЕА/г.

Повышение активности происходит благодаря присутствию наноуглеродного компонента в композитной матрице биокатализатора. Приготовленные биокатализаторы используют в проточных реакторах с неподвижным слоем в процессах биоконверсии природного субстрата - сахара до инверного сиропа, содержащего глюкозу и фруктозу.

Источник поступления информации: Роспатент

Showing 1-9 of 9 items.
20.01.2013
№216.012.1bb2

Катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора

Изобретение относится к области разработки катализатора и процесса для процесса получения углеводородов путем каталитической гидродеоксигенации продуктов переработки растительной биомассы, включая биомассу микроводорослей. Описан катализатор гидродеоксигенации кислородорганических продуктов...
Тип: Изобретение
Номер охранного документа: 0002472584
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1f5c

Способ очистки коксохимического бензола от азотсодержащих примесей

Изобретение относится к области химической технологии, а именно к получению очищенного от примесей бензола. Способ очистки коксохимического бензола от азотсодержащих примесей осуществляют с помощью селективной адсорбции. В качестве сорбента используют модифицированные хлоридом никеля(II)...
Тип: Изобретение
Номер охранного документа: 0002473529
Дата охранного документа: 27.01.2013
10.04.2013
№216.012.3246

Композитный фотокатализатор для очистки воды и воздуха

Изобретение может быть использовано для фотокаталитической и адсорбционной очистки газовых и водных сред, загрязненных органическими и неорганическими веществами. Композитный фотокатализатор состоит из адсорбента, диоксида кремния и фотокатализатора, при этом каждая гранула представляет собой...
Тип: Изобретение
Номер охранного документа: 0002478413
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3a4d

Способ получения алифатических и алифатически-ароматических полиэфиров

Настоящее изобретение относится к способу получения биоразлагаемых алифатических и алифатически-ароматических полиэфиров, используемых как в качестве полимерных материалов бытового назначения, так и в качестве медицинских полимерных материалов. Способ осуществляется методом поликонденсации...
Тип: Изобретение
Номер охранного документа: 0002480486
Дата охранного документа: 27.04.2013
20.03.2019
№219.016.e83b

Способ получения диметилсульфида

Изобретение относится к способам получения серосодержащих соединений, конкретно к диметилсульфиду, используемому в качестве одоранта и исходного сырья для синтеза диметилсульфоксида, который применяется как лекарственный препарат, растворитель, экстрагент. Описан способ получения...
Тип: Изобретение
Номер охранного документа: 0002457029
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3455

Способ получения обессмоленного воска

Изобретение относится к переработке твердых горючих ископаемых (ТГИ), таких как бурый уголь, торф и т.п., и может быть использовано для получения обессмоленных модифицированных восков. Изобретение касается способа обработки ТГИ расслаивающейся смесью метанола и углеводородных растворителей при...
Тип: Изобретение
Номер охранного документа: 0002468067
Дата охранного документа: 27.11.2012
29.04.2019
№219.017.4675

Катализатор и способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата

Изобретение относится к многокомпонентным оксидным ванадий-молибденовым катализаторам, используемым для селективного получения уксусной кислоты или смеси уксусной кислоты и этилацетата. Описаны катализатор и способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата путем...
Тип: Изобретение
Номер охранного документа: 0002462307
Дата охранного документа: 27.09.2012
30.05.2019
№219.017.6bdc

Катализатор, способ его приготовления и способ получения водорода

Изобретение относится к каталитическому способу осуществления реакции паровой конверсии метанола с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике, в частности, в качестве топлива для питания топливных элементов различного назначения....
Тип: Изобретение
Номер охранного документа: 0002431526
Дата охранного документа: 20.10.2011
05.07.2019
№219.017.a6b2

Композитный адсорбционно-каталитический материал для фотокаталитического окисления

Изобретение относится к составу структурно-организованного материала на основе тканого неорганического материала. На поверхность неорганического материала нанесен композитный фотокаталитически активный материал на основе адсорбента большой удельной поверхности с нанесенным промежуточным...
Тип: Изобретение
Номер охранного документа: 0002465046
Дата охранного документа: 27.10.2012
Showing 1-8 of 8 items.
10.01.2015
№216.013.1df9

Биокатализатор, способ его приготовления и способ переэтерификации растительных масел с использованием этого биокатализатора

Заявленная группа изобретений относится к области биотехнологии. Заявлен биокатализатор для переэтерификации растительных масел, содержащий в качестве ферментативно-активной субстанции частично разрушенные клетки или клеточные лизаты рекомбинантного штамма-продуцента r/lip, носитель, состоящий...
Тип: Изобретение
Номер охранного документа: 0002539101
Дата охранного документа: 10.01.2015
10.03.2016
№216.014.cb57

Способ получения аэрогелей на основе многослойных углеродных нанотрубок

Изобретение относится к области получения аэрогелей на основе многослойных углеродных нанотрубок в виде изделий с контролируемой формой, в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм, которые могут использоваться для получения покрытий, поглощающих и/или...
Тип: Изобретение
Номер охранного документа: 0002577273
Дата охранного документа: 10.03.2016
13.01.2017
№217.015.77b0

Смазочная композиция с использованием углеродных нанотрубок и нановолокон

Настоящее изобретение относится композиционному смазочному материалу на основе смазочных коммерческих масел, при этом он содержит углеродные наноматерилы - нанотрубки и нановолокна - в соотношении 70:30 мас. % с концентрацией в масле от 0,004 до 0,01 мас. %. Техническим результатом настоящего...
Тип: Изобретение
Номер охранного документа: 0002599632
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.9aa7

Способ получения композита на основе полиолефинов и углеродных нанотрубок

Изобретение относится к способу введения углеродных нанотрубок в полиолефины для получения нанокомпозитов, используемых при получении различных изделий из полимерных композиционных материалов. Способ получения композита на основе полиолефинов и углеродных нанотрубок - УНТ с повышенным...
Тип: Изобретение
Номер охранного документа: 0002610071
Дата охранного документа: 07.02.2017
03.10.2018
№218.016.8dab

Биокатализатор, способ его приготовления и способ получения сложных эфиров жирных кислот с использованием этого биокатализатора

Предложены способ получения биокатализатора для получения сложных эфиров, биокатализатор на основе рекомбинантной липазы из Thermomyces lanuginosus и способ получения сложных эфиров с использованием этого биокатализатора. Группа изобретений относится к биотехнологии и может быть использована...
Тип: Изобретение
Номер охранного документа: 0002668405
Дата охранного документа: 28.09.2018
15.03.2019
№219.016.e122

Палладированные нанотрубки для гидрирования растительных масел, способ их приготовления и способ жидкофазного гидрирования

Изобретение относится к катализаторам гидрирования растительных масел и жиров. Описан палладиевый катализатор, нанесенный на углеродный носитель, для жидкофазного гидрирования растительных масел и жиров, характризующийся тем, что в качестве углеродного носителя он содержит углеродные нанотрубки...
Тип: Изобретение
Номер охранного документа: 0002438776
Дата охранного документа: 10.01.2012
29.04.2019
№219.017.45b2

Способ очистки многослойных углеродных трубок

Изобретение относится к нанотехнологии и может быть использовано в качестве компонента композиционных материалов. Многослойные углеродные нанотрубки получают пиролизом углеводородов с использованием катализаторов, содержащих в качестве активных компонентов Fe, Co, Ni, Mo, Mn и их комбинаций, а...
Тип: Изобретение
Номер охранного документа: 0002430879
Дата охранного документа: 10.10.2011
04.07.2020
№220.018.2e6e

Биокатализатор, способ его приготовления и способ получения сложных эфиров с использованием этого биокатализатора

Группа изобретение относится к разработке биокатализатора, предназначенного для процессов этерификации различных органических кислот. Предложены биокатализатор для получения сложных эфиров в процессе ферментативной этерификации органических кислот, способ его приготовления и способ получения...
Тип: Изобретение
Номер охранного документа: 0002725474
Дата охранного документа: 02.07.2020
+ добавить свой РИД