×
10.04.2019
219.017.04f5

Результат интеллектуальной деятельности: СПОСОБ ОЖИЖЕНИЯ ВОДОРОДА С ГЕЛИЕВЫМ ХОЛОДИЛЬНЫМ ЦИКЛОМ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано при создании водородных ожижителей средней и крупной производительности. Способ включает сжатие продукционного потока водорода, предварительные ступени охлаждения с помощью холодильной установки и жидкого азота, охлаждение гелием с проведением адиабатной конверсии, промежуточное дросселирование, сжижение водорода гелием с проведением адиабатной конверсии и дросселирование жидкого параводорода. В гелиевом холодильном цикле гелий сжимают и после охлаждения жидким азотом большую часть от сжатого потока расширяют в двух последовательно установленных турбодетандерах с понижением температуры, при этом часть расширившегося потока отводят на охлаждение водорода, а оставшуюся - меньшую часть сжатого потока гелия - охлаждают и расширяют в третьем турбодетандере с понижением температуры гелия, после чего его направляют на охлаждение потока водорода и затем соединяют с потоком гелия, отобранным после второго турбодетандера, а затем проводят теплообмен с потоком водорода, при этом поток гелия разделяют на три части и возвращают в гелиевый цикл на трех температурных уровнях. Техническим результатом является снижение удельного расхода энергии и повышение термодинамической эффективности цикла ожижения водорода в широком диапазоне регулирования производительности. 2 н.п.ф-лы, 2 ил.

Изобретение относится к криогенной технике и широко может быть использовано в водородных ожижителях.

Известен способ ожижения водорода за счет водородного холодильного цикла и ожижитель водорода, включающий сжатие, предварительное азотное охлаждение продукционного потока водорода, рекуперативный теплообмен с циркуляционным потоком водорода холодильного цикла и конденсацию за счет испарения водорода, получаемого в холодильном цикле [Криогенные системы. Т.2. А.М.Архаров и др. Москва, Машиностроение, 1987 г., стр.168-170, рис.2.17].

Главными недостатками данного способа и ожижителя водорода являются взрыво-пожароопасность и сложность создания надежного оборудования компримирования и расширительных машин в циркуляционном водородном контуре охлаждения.

Известен способ ожижения водорода и установка посредством водородно-пропанового холодильного цикла [Криогенные системы. A.M.Архаров, В.П.Беляков. Москва, Машиностроение, 1987 г., стр.382-387, рис.5-18].

Основной недостаток указанного способа и установки взрыво- и пожароопасность, зависимость эффективности от состава водородно-пропановой смеси, необходимость постоянного контроля и поддержание состава смеси, затруднительность регулирования холодопроизводительности в широком диапазоне.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому изобретению является способ ожижения водорода с гелиевым холодильным циклом и водородный ожижитель, включающий сжатие потока водорода, предварительное охлаждение газообразным и жидким азотом, изотермическую конверсию, а также охлаждение, адиабатную конверсию и сжижение водорода за счет рекуперативного теплообмена с частью потока гелия, выводимого из гелиевого холодильного цикла, и дросселирование потока водорода, а также сжатие гелия, охлаждение его жидким азотом, расширение части потока гелия в двух последовательно установленных турбодетандерах, отбор оставшейся части сжатого потока гелия из гелиевого холодильного цикла на охлаждение водорода и возврат его в холодильный гелиевый цикл. [Химическое и нефтяное машиностроение, №3, 2002 г. Ожижитель водорода малой производительности с гелиевым циклом, стр.26-28]

Основным недостатком данного способа и ожижителя водорода является низкий термодинамический КПД, высокий удельный расход энергии на производство жидкого водорода на номинальном режиме работы при дальнейшем снижении эффективности в случае регулирования производительности.

Решаемая задача - снижение удельного расхода энергии и повышение термодинамической эффективности цикла ожижения водорода в широком диапазоне регулирования производительности.

Указанный технический результат достигается тем, что в способе ожижения водорода, включающем сжатие потока водорода, предварительное охлаждение газообразным и жидким азотом, изотермическую конверсию, охлаждение, адиабатную конверсию и сжижение водорода за счет рекуперативного теплообмена с частью потока гелия, выводимого из гелиевого холодильного цикла, и дросселирование потока водорода, а также сжатие гелия, охлаждение его жидким азотом, расширение части потока гелия в двух последовательно установленных турбодетандерах, отбор оставшейся части сжатого потока гелия из гелиевого холодильного цикла на охлаждение водорода и возврат его в холодильный гелиевый цикл, поток водорода сжимают с 0,1 МПа...1,6 МПа до 5,0 МПа, предварительно охлаждают до 273 К с помощью холодильной установки, до 80 К - жидким азотом с проведением изотермической конверсии на уровне 80 К, а от 80 К до 25 К - охлаждают гелием с проведением адиабатной конверсии водорода на уровне 30 К и 25 К, после чего осуществляют промежуточное дросселирование водорода с 5,0 МПа до 1,0 МПа...1,2 МПа, сжижение водорода гелием с проведением адиабатной конверсии на уровне 20 К...22 К и дросселирование до давления 0,03 МПа...0,05 МПа жидкого параводорода, кроме того, в гелиевом холодильном цикле гелий сжимают с 0,35 МПа до 2,5 МПа и после охлаждения жидким азотом большую часть от сжатого потока расширяют в двух последовательно установленных турбодетандерах до давления 0,35 МПа с понижением температуры до 28 К...30 К, при этом часть расширившегося потока отводят на охлаждение водорода давлением 5,0 МПа, а оставшуюся - меньшую часть сжатого потока гелия - охлаждают и расширяют в третьем турбодетандере до давления 0,35 МПа с понижением температуры гелия до 18 К...20 К, после чего его направляют на охлаждение потока водорода давлением 1,0 МПа...1,2 МПа до температуры 18,5 К...20,5 К, а при достижении температуры гелия 28 К...30 К его соединяют с потоком гелия, отобранным после второго турбодетандера, а затем проводят теплообмен с потоком водорода с давлением 5,0 МПа, при этом поток гелия разделяют на три части и возвращают в гелиевый цикл на трех температурных уровнях:

- на уровне 43 К...45 К возвращают первую часть;

- на уровне 53 К...56 К возвращают вторую часть;

- на уровне 78 К...78,5 К возвращают третью часть,

и кроме того, из гелиевого холодильного цикла выводят газообразный азот, соединяют с газообразным азотом водородного цикла и полученный в результате поток газообразного азота направляют на охлаждение потока водорода.

Указанный технический результат достигается также тем, что устройство для ожижения водорода по предлагаемому способу, содержащее установленные по линии подачи водорода водородный компрессор, блок азотного охлаждения, состоящий из рекуперативного теплообменника, азотной ванны и изотермического конвертора, блок ожижения водорода, состоящий из каскада рекуперативных теплообменников с адиабатными конверторами, и дроссельный вентиль, а также гелиевый компрессор, гелиевый блок предварительного азотного охлаждения, состоящий из рекуперативного теплообменника и азотной ванны, гелиевый блок охлаждения, состоящий из каскада рекуперативных теплообменников, двух последовательно установленных турбодетандеров, имеющий основную криогенную линию подачи гелия на ожижение водорода и криогенную линию возврата гелия в гелиевый блок охлаждения, отличающееся тем, что оно снабжено в блоке азотного охлаждения и гелиевом блоке предварительного азотного охлаждения - холодильной установкой и дополнительным рекуперативным теплообменником, в блоке ожижения водорода - дополнительным дроссельным вентилем, при этом три адиабатных конвертора размещены поочередно после рекуперативных теплообменников, входящих в каскад, начиная с третьего, при этом дополнительный дроссельный вентиль установлен на линии подачи водорода после второго адиабатного конвертора, а дроссельный вентиль - на выходе из последнего рекуперативного теплообменника каскада, в гелиевом блоке охлаждения - третьим турбодетандером, который размещен на основной криогенной линии подачи гелия на ожижение водорода, а также дополнительным криогенным трубопроводом подачи гелия на ожижение водорода, установленным между вторым турбодетандером и входом гелия в третий рекуперативный теплообменник каскада блока ожижения водорода, а криогенную линию возврата в гелиевый блок охлаждения разделяют на три части, которые расположены:

- между выходом гелия из третьего теплообменника каскада блока ожижения водорода и четвертым теплообменником гелиевого блока охлаждения;

- между выходом гелия из второго теплообменника каскада блока ожижения водорода и третьим теплообменником гелиевого блока охлаждения;

- между выходом гелия из первого теплообменника каскада блока ожижения водорода и рекуперативным теплообменником гелиевого блока предварительного азотного охлаждения,

а к выходу газообразного азота из азотной ванны блока азотного охлаждения подведен азотный трубопровод от азотной ванны гелиевого блока предварительного азотного охлаждения, и, кроме того, водородный компрессор выполнен дожимающим, а гелиевый компрессор выполнен с регулируемым давлением на входе.

Проведенный анализ уровня техники позволил установить, что заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявленного изобретения, а следовательно, оно соответствует критерию «новизна» и «изобретательский уровень».

Сущность изобретения поясняет фиг.1, где показана схема ожижителя водорода с гелиевым холодильным циклом, и фиг.2, где отражен процесс организации и осуществления теплообмена между потоком водорода и потоком охлаждающего гелия.

Ожижитель водорода состоит из компрессора 1 для сжатия водорода, блока азотного охлаждения 2, который включает дополнительный рекуперативный теплообменник 3, холодильную установку 4, рекуперативный теплообменник 5, азотную ванну 6 с изотермическим конвертором 7, блока ожижения водорода 8, который включает каскад из пяти рекуперативных теплообменников 9...13, в том числе и концевой теплообменник 13, три адиабатных конвертора 14, 15, 16, установленных после каждого теплообменника, начиная с третьего теплообменника, дополнительный дроссельный вентиль 17, установленный после второго адиабатного конвертора 15, концевой дроссельный вентиль 18, установленный после концевого теплообменника 13, а также из гелиевого компрессора 19, гелиевого блока предварительного азотного охлаждения 20, который включает дополнительный рекуперативный теплообменник 21, холодильную установку 22, рекуперативный теплообменник 23, азотную ванну 24, гелиевого блока охлаждения 25, который включает рекуперативные теплообменники 26...29, два последовательно установленных турбодетандера 30, 31 и третий турбодетандер 32, а также шести межблочных трубопроводов связи, а именно:

- основного криогенного трубопровода 33 подачи потока гелия в концевой теплообменник 13 после третьего турбодетандера 32;

- дополнительного криогенного трубопровода 34 подачи части потока гелия после второго турбодетандера 31 в теплообменник 11;

- первого криогенного трубопровода 35 возврата гелия после теплообменника 11 в теплообменник 28;

- второго криогенного трубопровода 36 возврата гелия после теплообменника 10 в теплообменник 27;

- третьего криогенного трубопровода 37 возврата гелия после теплообменника 9 в теплообменник 23;

- трубопровода 38 подачи паров азота из азотной ванны 24 в трубопровод 39 отвода паров азота из азотной ванны 6.

Способ ожижения водорода осуществляется следующим образом.

Поток водорода сжимают с 0,1 МПа...1,6 МПа до 5,0 МПа, предварительно охлаждают до 273 К с помощью холодильной установки, до 80 К - жидким азотом с проведением изотермической конверсии на уровне 80 К, а от 80 К до 25 К - охлаждают гелием с проведением адиабатной конверсии водорода на уровне 30 К и 25 К, после чего осуществляют промежуточное дросселирование водорода с 5,0 МПа до 1,0 МПа...1,2 МПа, сжижение водорода гелием с проведением адиабатной конверсии на уровне 20 К...22 К и дросселирование до давления 0,03 МПа...0,05 МПа жидкого параводорода, кроме того, в гелиевом холодильном цикле гелий сжимают с 0,35 МПа до 2,5 МПа и после охлаждения жидким азотом большую часть от сжатого потока расширяют в двух последовательно установленных турбодетандерах до давления 0,35 МПа с понижением температуры до 28 К...30 К, при этом часть расширившегося потока отводят на охлаждение водорода давлением 5,0 МПа, а оставшуюся - меньшую часть сжатого потока гелия - охлаждают и расширяют в третьем турбодетандере до давления 0,35 МПа с понижением температуры гелия до 18 К...20 К, после чего его направляют на охлаждение потока водорода давлением 1,0 МПа...1,2 МПа до температуры 18,5 К...20,5 К, а при достижении температуры гелия 28 К...30 К его соединяют с потоком гелия, отобранным после второго турбодетандера, а затем проводят теплообмен с потоком водорода с давлением 5,0 МПа, при этом поток гелия разделяют на три части и возвращают в гелиевый цикл на трех температурных уровнях:

- на уровне 43 К...45 К возвращают первую часть;

- на уровне 53 К...56 К возвращают вторую часть;

- на уровне 78 К...78,5 К возвращают третью часть,

и кроме того, из гелиевого холодильного цикла выводят газообразный азот, соединяют с газообразным азотом водородного цикла и полученный в результате поток газообразного азота направляют на охлаждение потока водорода.

Устройство для осуществления способа работает следующим образом.

Поток водорода сжимается в дожимающем компрессоре 1 с давления 0,1 МПа...1,6 МПа до давления 5,0 МПа и поступает в блок азотного охлаждения 2, где предварительно охлаждается от 300 К до 280 К в дополнительном теплообменнике 3 за счет холода отходящих паров азота, затем от 280 К до 273 К с помощью холодильной установки 4, а от 273 К до 80 К охлаждение осуществляется за счет паров азота в рекуперативном теплообменнике 5 и жидкого азота в ванне 6, где содержание параводорода после изотермического конвертора 7 увеличивается с 25% до 55%. Далее поток с давлением 5,0 МПа последовательно проходит рекуперативные теплообменники 9, 10, 11, 12 и два адиабатных конвертора 14 и 15, где водород охлаждается за счет газообразного гелия до 25 К, при этом содержание параводорода повышается до 94-95%. После конвертора 15 давление водорода снижается с помощью промежуточного дроссельного вентиля 17 до 1,0 МПа...1,2 МПа, и он за счет потока гелия с температурой 18...20 К охлаждается и сжижается в теплообменниках 12 и 13, при этом значение параводорода после прохождения конвертора 16 составляет 98%. Далее поток водорода дросселируется с помощью дроссельного вентиля 18 до давления 0,05 МПа...0,1 МПа и отводится в виде жидкого продукта. Охлаждение, ожижение и превращение водорода в параводород в диапазоне температур от 80 К до 20 К производится за счет гелия, необходимый холод которого создается в гелиевом холодильном цикле. В номинальном режиме работы гелий сжимается в компрессоре 19 с давления 0,35 МПа до 2,5 МПа, далее он охлаждается в гелиевом блоке предварительного азотного охлаждения 20 от 300 К до 80 К за счет рекуперации холода обратного потока гелия в дополнительном теплообменнике 21, рекуперативном теплообменнике 23, а также холода холодильной установки 22 и скрытой теплоты азота в азотной ванне 24, при этом пары азота из ванны 24 отводятся по трубопроводу 38 и соединяются с парами азота, отходящими по трубопроводу 39 из азотной ванны 6. После азотной ванны 24 гелий с температурой 80 К и давлением 2,5 МПа поступает в гелиевый блок охлаждения 25, где после теплообменника 26 большая часть (65%...70%) от сжатого потока гелия расширяется в двух последовательно установленных турбодетандерах 30 и 31 с 2,5 МПа до 0,35 МПа с понижением температуры до 28...30 К, при этом часть расширившегося потока, равную 17,5%...18,5% от сжатого потока, по дополнительному криогенному трубопроводу 34 отводят в блок ожижения водорода 8, а оставшийся поток поступает в теплообменники 29...21. Другая же - меньшая (30%...35%) часть сжатого гелия - после охлаждения в теплообменниках 27...29 поступает в третий турбодетандер 32, где расширяется с 2,5 МПа до 0,35 МПа с понижением температуры до 18...20 К и по основному криогенному трубопроводу 33 отводится в теплообменник 13. Отдав свой холод потоку водорода давлением 1,0 МПа...1,2 МПа поток гелия нагревается до 28...30 К и соединяется с потоком гелия, отведенным от второго турбодетандера 31. Далее гелий последовательно нагревается в теплообменниках 11, 10, 9 до 78 К...78,5 К, при этом при температуре 43 К...45 К часть потока, равная 17%...18% от сжатого потока гелия, после теплообменника 11 из блока ожижения водорода 8 возвращается по первому криогенному трубопроводу 35 в теплообменник 28 гелиевого блока охлаждения 25, еще 8%...9% гелия от величины сжатого потока возвращаются при температуре 53 К...56 К по второму криогенному трубопроводу 36 после теплообменника 10 в теплообменник 27, а оставшийся поток гелия (22%...25% от величины сжатого потока) после теплообменника 9 по третьему криогенному трубопроводу 37 возвращают в теплообменник 23 гелиевого блока предварительного азотного охлаждения 20.

На фиг.2 приведена Q-T диаграмма, в которой графически отражен процесс организации теплообмена в блоке ожижения 8 (в диапазоне температур от 80 К до 20 К) между водородом и гелием с учетом их реальных теплофизических свойств. Как видно из графика, характер изменения разности температур в указанном диапазоне близок к оптимальному закону теплообмена для криогенных циклов, что позволяет минимизировать внутренние потери от необратимости рекуперативного теплообмена.

В предлагаемом устройстве оптимизация процесса теплообмена в блоке ожижения 8 между потоками достигается следующими способами:

- в диапазоне температур от 19 К до 30 К средняя разность температур 0,75 К достигается за счет промежуточного дросселирования потока водорода с 5,0 МПа до 1,0 МПа...1,2 МПа (пунктирной линией показан характер изменения разности температур без промежуточного дросселирования потока водорода);

- в диапазоне температур от 30 К до 43 К разность температур между теплообменивающими потоками - 0,5 К и обеспечивается за счет потока гелия, поступающего после второго турбодетандера 31 и соединяемого с потоком гелия, выходящего из теплообменника 12;

- в диапазоне от 43 К до 55 К разность температур в 0,5 К сохраняется за счет отвода части гелия с температурой 43 К...45 К в гелиевый блок охлаждения 25;

- в диапазоне от 55 К до 80 К средняя разность температур 2 К обеспечивается за счет нового отбора части гелия с температурой 55 К (пунктиром показан характер изменения разности температур без отбора гелия).

Кроме того, высокая термодинамическая эффективность предложенного способа и устройства ожижения водорода обусловлено не только минимальными потерями от внутреннего теплообмена между потоком водорода и охлаждающим гелием, но за счет высокоэффективного гелиевого цикла, включающего ступень предварительного охлаждения холодильной установки, ступень предварительного азотного охлаждения, три турбодетандерных ступени охлаждения с адиабатным КПД более 75%, оптимальных условий теплообмена между потоком гелия за счет организации возврата гелия из водородного цикла.

Как показывают расчеты предложенного способа ожижения водорода удельный расход энергии составляет от 12,5...14,5 кВт·ч/кг жидкого водорода в зависимости от типа компрессора, а термодинамический КПД с учетом ортопараконверсии - от 30% до 34,5%.

Проведенный сравнительный термодинамический анализ показал, что предложенный способ ожижения и устройство для его осуществления позволяют снизить на 8%...10% удельные затраты электроэнергии по сравнению с ожижителем водорода, в котором используется в качестве источника охлаждения внешний водородный цикл.

Другое преимущество предлагаемого способа и устройства заключается в том, что они позволяют регулировать в широком диапазоне холодопроизводительность гелиевого цикла (от 100 до 50%) при сохранении высокой термодинамической эффективности за счет изменения абсолютного давления на всасывании от 0,35 МПа до 0,10 МПа при сохранении степени сжатия и расширения в компрессоре и турбодетандерах. Это дает возможность легко регулировать режим работы гелиевого цикла охлаждения при изменении расхода сжижаемого водорода и дает основание считать, что предложенное изобретение «промышленно применимо».

Таким образом, предлагаемое техническое решение обеспечивает снижение расхода энергии и повышение термодинамической эффективности в широком диапазоне изменения производительности по жидкому водороду.

науровне43...45Квозвращаютпервуючасть;науровне53...56Квозвращаютвторуючасть;науровне78...78,5Квозвращаюттретьючастьи,крометого,изгелиевогохолодильногоциклавыводятгазообразныйазот,соединяютсгазообразнымазотомводородногоциклаиполученныйврезультатепотокгазообразногоазотанаправляютнаохлаждениепотокаводорода.междувыходомгелияизтретьеготеплообменникакаскадаблокаожиженияводородаичетвертымтеплообменникомгелиевогоблокаохлаждения;междувыходомгелияизвтороготеплообменникакаскадаблокаожиженияводородаитретьимтеплообменникомгелиевогоблокаохлаждения;междувыходомгелияизпервоготеплообменникакаскадаблокаожиженияводородаирекуперативнымтеплообменникомгелиевогоблокапредварительногоазотногоохлаждения,аквыходугазообразногоазотаизазотнойванныблокаазотногоохлажденияподведеназотныйтрубопроводотазотнойванныгелиевогоблокапредварительногоазотногоохлаждения,и,крометого,водородныйкомпрессорвыполнендожимающим,агелиевыйкомпрессорвыполненсрегулируемымдавлениемнавходе.1.Способсжиженияводородасгелиевымхолодильнымциклом,включающийсжатиепотокаводорода,предварительноеохлаждениегазообразнымижидкимазотом,изотермическуюконверсию,атакжеохлаждение,адиабатнуюконверсиюисжижениеводородазасчетрекуперативноготеплообменасчастьюпотокагелия,выводимогоизгелиевогохолодильногоцикла,идросселированиепотокаводорода,атакжесжатиегелия,охлаждениеегожидкимазотом,расширениечастипотокагелиявдвухпоследовательноустановленныхтурбодетандерах,отбороставшейсячастисжатогопотокагелияизгелиевогохолодильногоцикланаохлаждениеводородаивозвратеговхолодильныйгелиевыйцикл,отличающийсятем,чтопотокводородасжимаютс0,1...1,6МПадо5,0МПа,предварительноохлаждаютдо273Кспомощьюхолодильнойустановки,до80К-жидкимазотомспроведениемизотермическойконверсиинауровне80К,аот80до25Кохлаждаютгелиемспроведениемадиабатнойконверсииводороданауровне30и25К,послечегоосуществляютпромежуточноедросселированиеводородас5,0МПадо1,0...1,2МПа,сжижениеводородагелиемспроведениемадиабатнойконверсиинауровне20...22Кидросселированиедодавления0,03...0,05МПажидкогопараводорода,крометого,вгелиевомхолодильномциклегелийсжимаютс0,35до2,5МПаипослеохлажденияжидкимазотомбольшуючастьотсжатогопотокарасширяютвдвухпоследовательноустановленныхтурбодетандерахдодавления0,35МПаспонижениемтемпературыдо28...30К,приэтомчастьрасширившегосяпотокаотводятнаохлаждениеводородадавлением5,0МПа,аоставшуюся-меньшуючастьсжатогопотокагелия-охлаждаютирасширяютвтретьемтурбодетандередодавления0,35МПаспонижениемтемпературыгелиядо18...20К,послечегоегонаправляютнаохлаждениепотокаводородадавлением1,0...1,2МПадотемпературы18,5...20,5К,апридостижениитемпературыгелия28...30Кегосоединяютспотокомгелия,отобраннымпослевтороготурбодетандера,азатемпроводяттеплообменспотокомводородасдавлением5,0МПа,приэтомпотокгелияразделяютнатричастиивозвращаютвгелиевыйциклнатрехтемпературныхуровнях:12.Устройствоожиженияводородасгелиевымхолодильнымциклом,включающееустановленныеполинииподачиводородаводородныйкомпрессор,блоказотногоохлаждения,состоящийизрекуперативноготеплообменника,азотнойванныиизотермическогоконвертора,блокожиженияводорода,состоящийизкаскадарекуперативныхтеплообменниковсадиабатнымиконверторами,идроссельныйвентиль,атакжегелиевыйкомпрессор,гелиевыйблокпредварительногоазотногоохлаждения,состоящийизрекуперативноготеплообменникаиазотнойванны,гелиевыйблокохлаждения,состоящийизкаскадарекуперативныхтеплообменников,двухпоследовательноустановленныхтурбодетандеров,имеющийосновнуюкриогеннуюлиниюподачигелиянаожижениеводородаикриогеннуюлиниювозвратагелиявгелиевыйблокохлаждения,отличающеесятем,чтооноснабженовблокеазотногоохлажденияигелиевомблокепредварительногоазотногоохлажденияхолодильнойустановкойидополнительнымрекуперативнымтеплообменником,вблокеожиженияводородадополнительнымдроссельнымвентилем,приэтомтриадиабатныхконвертораразмещеныпоочереднопослерекуперативныхтеплообменников,входящихвкаскад,начинаястретьего,приэтомдополнительныйдроссельныйвентильустановленналинииподачиводородапослевторогоадиабатногоконвертора,адроссельныйвентиль-навыходеизпоследнегорекуперативноготеплообменникакаскада,вгелиевомблокеохлаждения-третьимтурбодетандером,которыйразмещеннаосновнойкриогеннойлинииподачигелиянаожижениеводорода,атакжедополнительнымкриогеннымтрубопроводомподачигелиянаожижениеводорода,установленныммеждувторымтурбодетандеромивходомгелиявтретийрекуперативныйтеплообменниккаскадаблокаожиженияводорода,акриогеннуюлиниювозвратавгелиевыйблокохлажденияразделяютнатричасти,которыерасположены2
Источник поступления информации: Роспатент

Showing 11-14 of 14 items.
18.05.2019
№219.017.552d

Способ удаления продуктов газовыделения из каналов пластинчато-ребристых теплообменников при их пайке

Изобретение может быть использовано в аппаратостроении при изготовлении пластинчато-ребристых теплообменников. Пакет собирают из элементов, образующих теплообменные каналы. Размещают пакет в камере и вакуумируют ее. Заполняют камеру инертным газом с созданием давления ниже атмосферного. Нагрев...
Тип: Изобретение
Номер охранного документа: 0002252114
Дата охранного документа: 20.05.2005
18.05.2019
№219.017.5788

Способ выдачи жидкого криопродукта и устройство для его осуществления

Изобретение относится к криогенной технике. Способ выдачи жидкого продукта потребителю включает захолаживание и пуск центробежного насоса, выход на номинальный автономный режим работы, байпасирование расхода после насоса в криогенную емкость. Переход на режим выдачи потребителю осуществляют...
Тип: Изобретение
Номер охранного документа: 0002358188
Дата охранного документа: 10.06.2009
18.05.2019
№219.017.5839

Адсорбер

Изобретение может быть применено в блоках комплексной очистки воздухоразделительных установок и блоках осушки гелиевых криогенных систем. Адсорбер состоит из корпуса (1), патрубка (2) подачи газа для очистки, патрубка (3) выхода чистого газа, емкости (4) с сорбентом (5), нажимного устройства в...
Тип: Изобретение
Номер охранного документа: 0002305003
Дата охранного документа: 27.08.2007
29.05.2019
№219.017.6999

Устройство для концентрирования неона в газовых смесях, содержащих неон

Изобретение относится устройству для концентрирования неона из газовых смесей воздухоразделительных установок (ВРУ) и может быть использовано в химической промышленности. Устройство включает источник смеси ВРУ и снабжено дефлегматором 3 сырой неоногелиевой смеси и мембранным блоком, состоящим...
Тип: Изобретение
Номер охранного документа: 0002441693
Дата охранного документа: 10.02.2012
Showing 11-20 of 27 items.
06.04.2019
№219.016.fd9d

Способ работы двигателя внутреннего сгорания

Изобретение относится к двигателестроению, в частности к двигателям внутреннего сгорания. Техническим результатом является повышение эффективности работы двигателя. Сущность изобретения заключается в том, что осуществляют внешнее многоступенчатое сжатие смеси, состоящей из воздуха, отработавших...
Тип: Изобретение
Номер охранного документа: 0002684046
Дата охранного документа: 03.04.2019
27.04.2019
№219.017.3c89

Система электрогидравлического привода клапанов двигателя внутреннего сгорания

Изобретение может быть использовано в механизмах газораспределения двигателей внутреннего сгорания. Система электрогидравлического привода клапанов двигателя внутреннего сгорания включает гидроцилиндр (1), плунжер (2), гидронасос (15), редукционный клапан (16) и магистраль (11) слива масла в...
Тип: Изобретение
Номер охранного документа: 0002686140
Дата охранного документа: 24.04.2019
18.05.2019
№219.017.5788

Способ выдачи жидкого криопродукта и устройство для его осуществления

Изобретение относится к криогенной технике. Способ выдачи жидкого продукта потребителю включает захолаживание и пуск центробежного насоса, выход на номинальный автономный режим работы, байпасирование расхода после насоса в криогенную емкость. Переход на режим выдачи потребителю осуществляют...
Тип: Изобретение
Номер охранного документа: 0002358188
Дата охранного документа: 10.06.2009
18.05.2019
№219.017.5839

Адсорбер

Изобретение может быть применено в блоках комплексной очистки воздухоразделительных установок и блоках осушки гелиевых криогенных систем. Адсорбер состоит из корпуса (1), патрубка (2) подачи газа для очистки, патрубка (3) выхода чистого газа, емкости (4) с сорбентом (5), нажимного устройства в...
Тип: Изобретение
Номер охранного документа: 0002305003
Дата охранного документа: 27.08.2007
29.05.2019
№219.017.6999

Устройство для концентрирования неона в газовых смесях, содержащих неон

Изобретение относится устройству для концентрирования неона из газовых смесей воздухоразделительных установок (ВРУ) и может быть использовано в химической промышленности. Устройство включает источник смеси ВРУ и снабжено дефлегматором 3 сырой неоногелиевой смеси и мембранным блоком, состоящим...
Тип: Изобретение
Номер охранного документа: 0002441693
Дата охранного документа: 10.02.2012
21.08.2019
№219.017.c20b

Способ работы поршневого двигателя

Изобретение относится к двигателестроению, в частности к двигателям, работающим с обогащением воздуха кислородом или использующим кислород в качестве окислителя вместе атмосферного воздуха. Техническим результатом является повышение экономичности и экологической эффективности в широком...
Тип: Изобретение
Номер охранного документа: 0002697778
Дата охранного документа: 19.08.2019
12.09.2019
№219.017.ca60

Способ получения искусственной газовой смеси для энергетической установки, работающей в режиме рециркуляции отработанных газов

Изобретение относится к области анаэробной энергетики и может быть использовано в воздухонезависимых энергоустановках с тепловыми двигателями и особенно в судовых энергетических установках подводных аппаратов, работающих без доступа атмосферного воздуха. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002699850
Дата охранного документа: 11.09.2019
16.01.2020
№220.017.f599

Установка извлечения he из товарного жидкого гелия методом ректификации

Изобретение относится к области получения гелия из природного газа. Установка извлечения Не из товарного жидкого гелия содержит внешний ожижитель гелия, блок ректификации, включающий ректификационную колонну с конденсаторами, трубопроводы, соединяющие ожижитель гелия и блок ректификации, и один...
Тип: Изобретение
Номер охранного документа: 0002710969
Дата охранного документа: 14.01.2020
18.03.2020
№220.018.0ca5

Турбодетандер

Изобретение относится к расширительным машинам, а именно к турбодетандерам, которые могут широко применяться в криогенных системах и, особенно, в составе гелиевых и водородных установок. В корпусе турбодетандера выполнены два газодинамических подшипника скольжения, а турбинные колеса...
Тип: Изобретение
Номер охранного документа: 0002716780
Дата охранного документа: 16.03.2020
25.06.2020
№220.018.2aff

Поршневой двигатель внутреннего сгорания

Изобретение относится к поршневым двигателям внутреннего сгорания и в первую очередь к двигателям с изменяемой комбинацией тактов. Поршневой двигатель внутреннего сгорания содержит поршень (2) с уплотнительными кольцами, расположенный в цилиндре (1) и соединенный с кривошипно-шатунным...
Тип: Изобретение
Номер охранного документа: 0002724377
Дата охранного документа: 23.06.2020
+ добавить свой РИД