×
04.04.2019
219.016.fc9c

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УГЛОВ НАЗЕМНЫМ ЛАЗЕРНЫМ СКАНЕРОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области метрологии в геодезической отрасли. Техническим результатом изобретения является определение достоверных и точных погрешностей измерения углов для наземных лазерных сканеров. Способ определения погрешности измерения углов наземным лазерным сканером заключается в использовании эталонных значений углов и полигона. Испытательный радиальный полигон создают специальными марками, установленными по окружности через одинаковый угол в количестве не менее 20 штук. Радиус окружности должен быть от 10 до 40 м. Устанавливают высокоточный электронный тахеометр в центр радиального полигона. Измеряют эталонные значения углов между направлениями на марки. Затем вместо электронного тахеометра устанавливают сканер. Выполняют множественные измерения (более 200) на каждую марку в соответствии с эксплуатационными документами (ЭД). По множественным измерениям определяют координаты центров марок при помощи управляющего программного обеспечения. Производят внешнее ориентирование сканов в систему координат, заданную электронным тахеометром. В программном продукте определяют отклонения измеренных углов от их эталонных значений. Вычисляют среднюю квадратическую погрешность измерения углов m. Сравнивают полученные значения погрешности m с допуском, вычисляемым по формуле где m - средняя квадратическая погрешность измерений углов, указанная в ЭД на конкретный вид наземного лазерного сканера. 1 ил.

Данный способ относится к области метрологии в геодезической отрасли.

Известен способ определения погрешности измерения углов электронными тахеометрами и теодолитами, который основан на использовании автоколлиматора, взятый в качестве прототипа [Геодезия. Геодезические и фотограмметрические приборы [Текст]: Справ. Пособие. / Н.Н.Воронков, B.C.Плотников, Е.И.Калантаров и др. - М.: Недра, 1991. - 429 с.: ил.].

В этом способе выполняется наблюдение эффекта автоколлимации через специальные устройства, угол между которыми известен с высокой точностью и является эталонным значением. После измерений выполняют сравнение углов, измеренных исследуемым прибором с эталонным значением, на основе чего делают заключение о погрешности измерения углов теодолитом или электронным тахеометром.

Недостатком этого способа для применения для наземных лазерных сканеров является то что, в нем используется эффект автоколлимации. Этот эффект предполагает наблюдение в зрительную трубу прибора четкого изображения. В наземных лазерных сканерах нет возможности наблюдать эффект автоколимации, так как в нем измерение углов выполняется автоматически (отсутствует зрительная труба). Это требует разработки совершенно нового способа определения погрешностей измерения углов наземным лазерным сканером.

Задачей предлагаемого изобретения является разработка способа определения достоверных и точных погрешностей измерения углов, приспособленного для наземных лазерных сканеров.

Технический результат, получаемый при решении поставленной задачи, достигается тем, что в способе определения погрешности измерения углов наземным лазерным сканером используют эталонные значения углов и полигона и согласно изобретению испытательный радиальный полигон создают специальными марками, установленными по окружности через одинаковый угол в количестве не менее 20 штук, при этом радиус окружности должен быть от 10 до 40 м (для каждой модели наземного лазерного сканера специальные марки имеют индивидуальный вид, рекомендуемый заводом-изготовителем), устанавливают электронный тахеометр в центр радиального полигона, измеряют эталонные значения углов между направлениями на марки, затем вместо электронного тахеометра устанавливают сканер, для определения погрешности измерения горизонтальных углов ось вращения сканера приводят приблизительно в отвесное положение, а для определения погрешности измерения вертикальных углов - в горизонтальное положение, с погрешностью не грубее 5°, выполняют множественные измерения (более 200) на каждую марку в соответствии с эксплуатационными документами (ЭД), получают несколько сканов, количество которых равняется числу марок, установленных на полигоне, по множественным измерениям определяют координаты центров марок при помощи управляющего программного обеспечения, поставляемого заводом-изготовителем, производят внешнее ориентирование сканов в систему координат, заданную электронным тахеометром, в результате чего в программном продукте определяют отклонения измеренных углов от их эталонных значений, вычисляют среднюю квадратическую погрешность измерения углов mизм для горизонтальных и вертикальных углов и сравнивают полученное значение погрешности mизм с допуском, вычисляемым по формуле

где mφ(θ) - средняя квадратическая погрешность измерений горизонтальных (вертикальных) углов, указанная в ЭД на конкретный вид наземного лазерного сканера.

На чертеже представлена схема размещения марок и наземного лазерного сканера, где:

1 - марка,

2 - центр радиального полигона.

Предлагаемый способ осуществляется следующим образом.

Устанавливают марки по окружности в количестве 20 штук. Радиус окружности выбирается в зависимости от модели наземного лазерного сканера (от 10 до 40 м).

Устанавливают в центр созданного полигона высокоточный электронный тахеометр и определяют эталонные значения углов, при этом количество полуприемов должно быть не менее 3-х.

Устанавливают наземный лазерный сканер в соответствии с чертежом, при этом для определения погрешности измерения горизонтальных углов ось вращения сканера приводят приблизительно в отвесное положение, а для определения погрешности измерения вертикальных углов - в горизонтальное положение, с погрешностью не грубее 5°, и выполняют измерения на каждую марку с максимальным разрешением в соответствии с ЭД.

Выполняют внешнее ориентирование наземного лазерного сканера собственной программой обработки данных, принадлежащих данному оборудованию.

Определяют измеренные углы между центрами марок и сравнивают с эталонными значениями. Оборудование признается годным к эксплуатации, если разности между измеренными и эталонными значениями абсолютной погрешности горизонтальных (вертикальных) углов соответственно, вычисленной по формуле

где mφ(θ) - средняя квадратическая погрешность измерения горизонтальных (вертикальных) углов, указанная в ЭД на конкретный вид оборудования.

В настоящее время для метрологической аттестации наземных лазерных сканеров их необходимо либо отправлять за границу, либо проводить поверку не в полном объеме. Предлагаемый способ позволит проводить полномасштабную поверку наземных лазерных сканеров в Российской Федерации, что сократит затраты, связанные с этими процедурами.

Способ определения погрешности измерения углов наземным лазерным сканером, при котором используют эталонные значения углов и полигон, отличающийся тем, что испытательный радиальный полигон создают специальными марками, установленными по окружности через одинаковый угол в количестве не менее 20 штук, при этом радиус окружности должен быть от 10 до 40 м (для каждой модели наземного лазерного сканера специальные марки имеют индивидуальный вид, рекомендуемый заводом-изготовителем), устанавливают высокоточный электронный тахеометр в центр радиального полигона, измеряют эталонные значения углов между направлениями на марки, затем вместо электронного тахеометра устанавливают сканер, причем для определения погрешности измерения горизонтальных углов ось вращения сканера приводят приблизительно в отвесное положение, а для определения погрешности измерения вертикальных углов - в горизонтальное положение с погрешностью не грубее 5°, выполняют множественные измерения (более 200) на каждую марку в соответствии с эксплуатационными документами (ЭД), получают несколько сканов, количество которых равняется числу марок, установленных на полигоне, по множественным измерениям определяют координаты центров марок при помощи управляющего программного обеспечения, поставляемого заводом-изготовителем, производят внешнее ориентирование сканов в систему координат, заданную электронным тахеометром, в результате чего в программном продукте определяют отклонения измеренных углов от их эталонных значений, вычисляют среднюю квадратическую погрешность измерения углов m, сравнивают полученные значения погрешности m с допуском, вычисляемым по формуле: где m - средняя квадратическая погрешность измерений углов, указанная в ЭД на конкретный вид наземного лазерного сканера.
Источник поступления информации: Роспатент

Showing 1-10 of 12 items.
01.03.2019
№219.016.ce9c

Дифференциальный массивный калориметр и способ определения теплоты адсорбции и химических реакций газов

Изобретение относится к технике физико-химических методов анализа химических соединений и может быть использовано для измерения теплоты химических реакций. В предложенном решении описан дифференциальный массивный калориметр, в котором измерительные рабочие массы и измерительные массы сравнения...
Тип: Изобретение
Номер охранного документа: 0002454641
Дата охранного документа: 27.06.2012
01.03.2019
№219.016.d032

Способ образования на подложке упорядоченного массива наноразмерных сфероидов

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, к нелитографическим микротехнологиям формирования на подложках тонкопленочных рисунков из наносимых на ее поверхность веществ. Сущность изобретения: способ образования на подложке упорядоченного массива...
Тип: Изобретение
Номер охранного документа: 0002444084
Дата охранного документа: 27.02.2012
04.04.2019
№219.016.fcb1

Лазерное формообразование механических микроструктур на поверхности подложки

Изобретение относится к оптическим технологиям, в частности к лазерным методам формирования на подложках структурных образований нано- и микроразмеров для нано- и микромеханики и микроэлектроники. Способ включает осаждение частиц вещества из газовой фазы с использованием локального нагрева...
Тип: Изобретение
Номер охранного документа: 0002452792
Дата охранного документа: 10.06.2012
17.04.2019
№219.017.15e4

Устройство управляемого углового дискретного позиционирования оптического луча

Устройство относится к оптоэлектронной технике, в частности к устройствам сканеров и дефлекторов для управления положением оптического луча и для его переключения из одного углового положения в другое, и может быть использовано при лазерной локации объектов. Устройство содержит сканер с...
Тип: Изобретение
Номер охранного документа: 0002383908
Дата охранного документа: 10.03.2010
09.06.2019
№219.017.7e5c

Двухкоординатный датчик перемещений

Датчик содержит двумерную дифракционную решетку с периодической структурой, источник когерентного излучения, фотоприемное устройство и четное количество отражающих зеркал. Двумерная дифракционная решетка с положительными и отрицательными порядками дифракции в двух перпендикулярных плоскостях...
Тип: Изобретение
Номер охранного документа: 0002400703
Дата охранного документа: 27.09.2010
13.06.2019
№219.017.81c5

Термически и оптически управляемое фокусирующее устройство

Изобретение относится к оптической отрасли техники, в частности к микрооптическим устройствам, оптическую силу которых можно изменять с помощью световых или тепловых воздействий. Устройство содержит подложку, размещенную в вакуумированном корпусе с прозрачным окном, на которой расположен массив...
Тип: Изобретение
Номер охранного документа: 0002390810
Дата охранного документа: 27.05.2010
13.06.2019
№219.017.81d5

Устройство электростатически управляемого оптического сканера

Изобретение относится к оптоэлектронной технике, в частности к устройствам для изменения углового положения оптического луча. Электростатически управляемый оптический сканер состоит из ячеек, каждая из которых содержит зеркало, деформируемый электрическим полем элемент, закрепленный на...
Тип: Изобретение
Номер охранного документа: 0002399938
Дата охранного документа: 20.09.2010
13.06.2019
№219.017.81ea

Способ изготовления перестраиваемого светофильтра с интерферометром фабри-перо

Перестраиваемый светофильтр с интерферометром Фабри-Перо содержит прозрачные пластины с зеркальными покрытиями, расположенные с зазором. При его изготовлении на одну пластину с зеркальным покрытием наносят жертвенный слой, поверх которого наносят зеркальное покрытие и прикрепляют к нему вторую...
Тип: Изобретение
Номер охранного документа: 0002388025
Дата охранного документа: 27.04.2010
13.06.2019
№219.017.828a

Устройство экспонирования при формировании наноразмерных структур и способ формирования наноразмерных структур

Изобретение относится к микроэлектронике. В устройстве, содержащем один или более источников монохроматического излучения, зону для размещения подложек или слоев подложек и совокупность оптических элементов для формирования локально освещенных областей на подложках, в качестве упомянутой...
Тип: Изобретение
Номер охранного документа: 0002438153
Дата охранного документа: 27.12.2011
19.06.2019
№219.017.8935

Апохроматический объектив

Объектив может быть использован в астрономических телескопах для визуального наблюдения, фото- и видеорегистрации. Объектив состоит из расположенных по ходу лучей трех компонентов, первый и третий из которых являются положительными. Первый компонент выполнен к виде мениска, обращенного вогнутой...
Тип: Изобретение
Номер охранного документа: 0002429508
Дата охранного документа: 20.09.2011
Showing 1-10 of 21 items.
20.03.2014
№216.012.ace7

Способ определения неровности поверхности дорожного полотна

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. В способе определения неровности поверхности покрытия дорожного полотна измеряют просветы под трехметровой рейкой и согласно изобретению устанавливают наземный лазерный сканер на станции на контролируемом...
Тип: Изобретение
Номер охранного документа: 0002509978
Дата охранного документа: 20.03.2014
27.06.2014
№216.012.d88a

Способ градуировки резервуара вертикального цилиндрического для определения вместимости, соответствующей высоте его наполнения

Изобретение относится к измерительной технике и может быть использовано для определения вместимости и градуировки резервуаров вертикальных цилиндрических. Способ заключается в том, что производят построение цифровой векторной трехмерной (3D) модели внешней поверхности резервуара при наполнении...
Тип: Изобретение
Номер охранного документа: 0002521212
Дата охранного документа: 27.06.2014
27.08.2014
№216.012.ee2e

Способ определения состояния поверхности покрытия автомобильной дороги по ее геометрическим параметрам

Изобретение относится к области геодезического контроля в дорожно-строительной отрасли. Техническим результатом изобретения является определение достоверных и точных значений геометрических параметров поверхности покрытия автомобильной дороги с помощью наземного лазерного сканера. Согласно...
Тип: Изобретение
Номер охранного документа: 0002526793
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f645

Способ получения концентрата микробных клеток для получения живой туляремийной вакцины

Изобретение относится к технологии производства медицинских иммунобиологических препаратов и может быть использовано в практике производства туляремийной живой вакцины. Изобретение представляет собой способ получения концентрата микробных клеток для получения живой туляремийной вакцины,...
Тип: Изобретение
Номер охранного документа: 0002528878
Дата охранного документа: 20.09.2014
10.12.2014
№216.013.0e79

Способ получения холерогена-анатоксина

Изобретение относится к технологии производства медицинских иммунобиологических препаратов и касается способа получения холерогена-анатоксина. Способ включает выделение холерогена-анатоксина методом тангенциальной ультрафильтрации с использованием мембран с номинальной отсечкой по мол. массе...
Тип: Изобретение
Номер охранного документа: 0002535122
Дата охранного документа: 10.12.2014
10.02.2015
№216.013.250e

Способ определения координат контрольной точки объекта с применением наземного лазерного сканера

Изобретение относится к области геодезического контроля и может быть использовано для определения координат контрольной точки любых сложных конструкций, используя в качестве геодезической марки любой участок, принадлежащий этим конструкциям. Поставленная задача достигается за счет того, что в...
Тип: Изобретение
Номер охранного документа: 0002540939
Дата охранного документа: 10.02.2015
10.09.2015
№216.013.783b

Способ трёхмерного (3d) картографирования

Изобретение относится к области обработки и отображения пространственной информации для построения топографических карт. Технический результат - обеспечение отображения пространственной информации посредством определения точных значений геометрических параметров отображения объектов. Способ...
Тип: Изобретение
Номер охранного документа: 0002562368
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d17

Способ получения таблетированной формы холерной бивалентной химической вакцины

Изобретение относится к технологии иммунобиологических лекарственных препаратов, в частности к производству химической холерной вакцины. Изобретение раскрывает способ получения таблетированной формы холерной бивалентной химической вакцины, который включает подготовку и смешивание...
Тип: Изобретение
Номер охранного документа: 0002563620
Дата охранного документа: 20.09.2015
10.01.2016
№216.013.9fa1

Способ определения величины отклонения образующих стенок резервуара вертикального цилиндрического от вертикали

Изобретение относится к области геодезического контроля резервуаров вертикальных цилиндрических стальных и может быть использовано при поверке стальных и железобетонных резервуаров вертикальных цилиндрических. Технический результат - повышение точности и достоверности определения величины...
Тип: Изобретение
Номер охранного документа: 0002572502
Дата охранного документа: 10.01.2016
20.04.2016
№216.015.357e

Способ определения величин деформаций стенки резервуара вертикального цилиндрического

Изобретение относится к области геодезического контроля вертикальных цилиндрических резервуаров. В заявленном способе определения величин деформаций стенки резервуара производят сканирование внешней поверхности резервуара при помощи наземного лазерного сканера. Определяют пространственные...
Тип: Изобретение
Номер охранного документа: 0002581722
Дата охранного документа: 20.04.2016
+ добавить свой РИД