×
01.03.2019
219.016.d032

СПОСОБ ОБРАЗОВАНИЯ НА ПОДЛОЖКЕ УПОРЯДОЧЕННОГО МАССИВА НАНОРАЗМЕРНЫХ СФЕРОИДОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, к нелитографическим микротехнологиям формирования на подложках тонкопленочных рисунков из наносимых на ее поверхность веществ. Сущность изобретения: способ образования на подложке упорядоченного массива наноразмерных сфероидов заключается в переносе вещества пленки, нанесенной на поверхность прозрачной пластины-донора, на акцепторную подложку путем импульсного лазерного облучения пленки сквозь пластину, при этом между упомянутой пленкой и пластиной наносят жертвенный подслой, который при упомянутом облучении испаряется. Изобретение обеспечивает повышение разрешающей способности формирования рисунка, получение возможности изготовления микроструктур с минимальными размерами, много меньшими длины волны излучения, инициирующего технологический процесс. 4 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, к нелитографическим микротехнологиям формирования на подложках тонкопленочных рисунков из наносимых на ее поверхность веществ.

Аналогами изобретения авторы считают лазерно-фотолитический и лазерно-пиролитический способы получения микрорисунков на подложке [Вьюков Л.А., Емельянов Ф.В., Ермолов А.В. Лазерные процессы в технологии микроэлектроники // Изв. АН СССР, Сер. Физ. - 1987. - Т.51, №6. - С.1203-1210], при которых подложка облучается сфокусированным лазерным излучением и находится в атмосфере паров соединения, разлагающегося под действием света или нагревания. На облучаемом участке подложки оседает слой вещества тонкопленочного рисунка. Недостатком аналога является малое разрешение, что вызвано дифракцией света на объективе осветителя; достижимое минимальное значение фокального пятна порядка длины волны света, то есть не менее сотен нм при использовании ультрафиолетового излучателя.

Прототипом изобретения является способ переноса вещества тонкой пленки с подложки-донора на подложку-акцептор путем лазерного облучения тонкой металлической пленки сквозь прозрачную подложку-донор при ретуши фотошаблонов [Вейко В.П. Лазерная обработка пленочных элементов. - Л.: Машиностроение, 1986]. При локальном облучении металлической пленки, расположенной непосредственно на поверхности донора, участок пленки испарялся, пары вещества пересекали зазор между пластинами донора и акцептора и оседали, создавая на поверхности акцептора островок из тонкого слоя металла, размер которого несколько больше облученной области пленки на подложке-доноре. Недостатком способа - прототипа является, как и в аналоге, малое разрешение.

Задачами, решаемыми в данном изобретении, являются:

- преодоление недостатков прототипа: увеличение разрешающей способности способа, получение возможности изготовления микроструктур с минимальными размерами, много меньшими длины волны излучения, инициирующего технологический процесс;

- создание способа получения объемных нанообразований типа сфер или сфероидов.

Задача решается тем, что в способе переноса вещества пленки, нанесенной на поверхность прозрачной пластины-донора, на акцепторную подложку путем импульсного лазерного облучения пленки сквозь пластину, в соответствии с изобретением, между упомянутой пленкой и пластиной наносят жертвенный подслой, причем подслой при упомянутом облучении испаряется.

Предлагается также, чтобы упомянутая пленка была сформирована в виде массива островков.

Предлагается также, чтобы упомянутое лазерное облучение велось путем сканирования фокальным пятном.

Предлагается также, чтобы пластину-донор перемещали относительно подложки.

Предлагается также, чтобы температура испарения жертвенного слоя была меньше температуры испарения пленки, но больше температуры ее плавления, причем облучение необходимо проводить в условиях вакуума или инертной атмосферы.

Способ поясняется на Фиг.1, 2, 3.

На Фиг.1 а), б), в) показана последовательность этапов получения наносфер в соответствии с п.1 Формулы. Здесь 1 - пленка переносимого вещества, 2 - прозрачная пластина-донор, 3 - жертвенный подслой между переносимой пленкой и донором, 4 - подложка-акцептор, 5 - зазор между акцептором и пластиной-донором, 6 - лазерный пучок, 7 - фокальное пятно лазерного пучка, 8 - участок пленки 1, отделившийся от пластины 2 после испарения жертвенного слоя в фокальном пятне, 9 - сфера, в которую был стянут участок 8 силами поверхностного натяжения во время перемещения в зазоре 5.

На Фиг.2 а) и б) показана последовательность этапов получения наносфер в соответствии с п.2 Формулы. Здесь 10 - массив островков переносимой пленки, 11 - массив сфер, оказавшихся на подложке 4 в результате переноса массива островков с донора 2.

На Фиг.3 показан перенос вещества пленки 1 пластины 2 на подложку и получение наносфер в соответствии с п.3 Формулы. Здесь 12 - сфокусированный сканирующий лазерный пучок, перемещаемый по направлению стрелки, 13 - участок пленки, отделившийся от пластины 2 в результате воздействия лазерного пучка, 14 - массив сфер, оказавшихся на подложке 4 в результате поочередного лазерного облучения новых участков пленки двухслойной структуры.

При облучении жертвенного слоя 3 (Фиг.1) сфокусированным лазерным пучком 6 излучение поглощается, и участок жертвенного слоя в области фокального пятна 7 нагревается за время лазерного импульса до температуры кипения и испаряется. Давлением пара отрывается участок 8 пленки 1, температура этого участка оказывается приблизительно одинаковой с температурой пара. Если эта температура выше температуры плавления пленки, силами поверхностного натяжения плоский лоскут пленки собирается в сферическую каплю 9. Расчеты показали, что времени пролета (~0,2 мкс) капли в зазоре 5, величина которого должна составлять 1-2 мкм, достаточно для формирования сферы. Часть вещества пленки оказывается перенесенной через зазор на поверхность подложки и имеет на ней форму сфероида. При толщине пленки 8 нм и диаметре фокального пятна 200 нм образующаяся сфера имеет диаметр 80 нм.

В соответствии с п.2 Формулы реализуется групповой перенос (Фиг.2) множества пленочных островков 10 на подложку 4 и образование на ней массива наношариков 11. Островки заранее формируются одним из известных, например, электронно-литографическим, способов на пластине-доноре; лазерному облучению одновременно подвергается вся поверхность пластины, занятая островками. При толщине пленки 2 нм и диаметре островка 50 нм диаметр образующихся наносфер равен 20 нм.

В соответствии с п.3 Формулы реализуется поочередное формирование наносфер на подложке без предварительного формирования островков переносимого вещества на донорной пластине (Фиг.3). Сфокусированный лазерный пучок 12 перемещается относительно неподвижных пластины и подложки (или они перемещаются относительно неподвижного лазерного луча); лазер импульсно облучает пластину; за каждый импульс на подложке образуется наносфера 14. Перемещение лазера может быть скачкообразным или непрерывным, непрерывное перемещение возможно при малой длительности лазерного импульса порядка единиц наносекунд. Минимальное расстояние между наносферами определяется диаметром фокального пятна на жертвенном слое 3. Период следования лазерных импульсов должен быть согласован со скоростью сканирования.

На подложке формируется упорядоченный массив наночастиц, размер которых определяется толщиной пленки и диаметром испаренной зоны жертвенного слоя аналогично рассмотренному выше.

В соответствии с п.4 Формулы пластину-донор перемещают относительно подложки параллельно ее поверхности при одновременном сканирующем движении лазерного луча. Этим достигается возможность уменьшения минимального расстояния между наносферами, необходимо лишь двигать пластину навстречу движению луча.

Условия, предусмотренные в п.5 Формулы - вакуум или инертная атмосфера в зазоре, - обеспечивают отсутствие химического взаимодействия расплава переносимого вещества со средой за время переноса. Предполагается также, что инертная среда благодаря гидродинамическому воздействию на движущуюся каплю расплава может изменить ее форму со сферической на веретенообразную. Подобные формы осаждаемых наночастиц необходимы в некоторых применениях, например, при их использовании в качестве наноантенн.

Из вышесказанного следует:

- техническим результатом использования испаряющегося при облучении жертвенного слоя (п.1 Формулы) является предотвращение испарения переносимого с поверхности донора на акцептор вещества, возможность его переноса в компактном виде;

- техническим результатом предварительного формирования поверх жертвенного слоя массива островков переносимого вещества (п.2 Формулы) является возможность одновременного переноса большого числа островков, увеличение производительности при получении на акцепторной пластине слоя наносфер, а также возможность уменьшения размеров наносфер, так как островки могут быть выполнены с использованием неоптической технологии много меньших размеров, чем размер фокального пятна оптического излучения;

- техническим результатом использования облучения в виде сканирования фокальным пятном (п.3 Формулы) является возможность избежать стадии предварительного формирования массива островков переносимого вещества на доноре (упрощение технологии);

- техническим результатом перемещения пластины-донора параллельно поверхности акцептора в процессе сканирования фокальным пятном (п.4 Формулы) является возможность уменьшения расстояний между осаждающимися наносферами до значений, меньших диаметра фокального пятна;

- техническим результатом выбора температуры испарения жертвенного слоя в диапазоне между температурами плавления и испарения переносимой пленки, причем процесс переноса проводится в вакууме или инертном газе (п.5 Формулы) является возможность переноса вещества в компактном расплавленном состоянии. Химическая инертность среды переноса обеспечивает отсутствие химических воздействий на переносимое вещество, упругость газовой атмосферы предоставляет возможность управления формой осаждаемой наночастицы.

Рассмотрим примеры реализации изобретения.

Переносимым материалом, из которого состоят осаждающиеся на подложке нанообразования, может быть практически любой металл, полупроводник, диэлектрик (алюминий, золото, молибден, вольфрам, кремний, двуокись кремния, стекло, арсенид галлия, тройные и четверные полупроводники и т.д.). В качестве материала донорной пластины необходимо использовать прозрачные стекло, сапфир и др., в качестве материала акцепторной пластины могут быть применены и прозрачные, и непрозрачные материалы, в том числе стекло, металл, полупроводники кремний, германий, арсенид галлия и др.

Жертвенный слой может быть из легко испаряющихся или легко диссоциирующих при нагревании, предпочтительно поглощающих в тонких слоях лазерное излучение веществ (металлы алюминий, магний и др., органические соединения типа маннита, азиды металлов и т.д.). Условие поглощения в тонких слоях не обязательно, так как жертвенный слой может нагреваться и от переносимого островка за счет теплопроводности, если переносимое вещество тугоплавкое.

Лазерное излучение должно быть импульсным с длительностью импульса порядка единиц - сотен нс, длина волны излучения в диапазоне от УФ до ближней ИК-области спектра (эксимерные лазеры, азотный и твердотельный лазеры, последний - с модуляцией добротности и др.). Плотность мощности излучения на поверхности жертвенного слоя в импульсе - порядка 106-108 Вт/см2, при этом достигаются импульсные температуры нагреваемого вещества от единиц тысяч до десятков тысяч градусов, расчетные значения давления паров жертвенного слоя - десятки атм.

Таким образом, показано, что новые элементы в предложениях обеспечивают возникновение полезных эффектов; показана реализуемость изобретения, показана достижимость целей изобретения.

Практическое применение изобретение может найти в микро- и наноэлектронике как нелитографическая технология формирования наноточек с упорядоченным их расположением, в оптике и нанооптике при создании фотонных кристаллов и сверхбыстродействующих приемников излучения и излучателей и др.

Источник поступления информации: Роспатент

Showing 1-10 of 12 items.
01.03.2019
№219.016.ce9c

Дифференциальный массивный калориметр и способ определения теплоты адсорбции и химических реакций газов

Изобретение относится к технике физико-химических методов анализа химических соединений и может быть использовано для измерения теплоты химических реакций. В предложенном решении описан дифференциальный массивный калориметр, в котором измерительные рабочие массы и измерительные массы сравнения...
Тип: Изобретение
Номер охранного документа: 0002454641
Дата охранного документа: 27.06.2012
04.04.2019
№219.016.fc9c

Способ определения погрешности измерения углов наземным лазерным сканером

Изобретение относится к области метрологии в геодезической отрасли. Техническим результатом изобретения является определение достоверных и точных погрешностей измерения углов для наземных лазерных сканеров. Способ определения погрешности измерения углов наземным лазерным сканером заключается в...
Тип: Изобретение
Номер охранного документа: 0002429449
Дата охранного документа: 20.09.2011
04.04.2019
№219.016.fcb1

Лазерное формообразование механических микроструктур на поверхности подложки

Изобретение относится к оптическим технологиям, в частности к лазерным методам формирования на подложках структурных образований нано- и микроразмеров для нано- и микромеханики и микроэлектроники. Способ включает осаждение частиц вещества из газовой фазы с использованием локального нагрева...
Тип: Изобретение
Номер охранного документа: 0002452792
Дата охранного документа: 10.06.2012
17.04.2019
№219.017.15e4

Устройство управляемого углового дискретного позиционирования оптического луча

Устройство относится к оптоэлектронной технике, в частности к устройствам сканеров и дефлекторов для управления положением оптического луча и для его переключения из одного углового положения в другое, и может быть использовано при лазерной локации объектов. Устройство содержит сканер с...
Тип: Изобретение
Номер охранного документа: 0002383908
Дата охранного документа: 10.03.2010
09.06.2019
№219.017.7e5c

Двухкоординатный датчик перемещений

Датчик содержит двумерную дифракционную решетку с периодической структурой, источник когерентного излучения, фотоприемное устройство и четное количество отражающих зеркал. Двумерная дифракционная решетка с положительными и отрицательными порядками дифракции в двух перпендикулярных плоскостях...
Тип: Изобретение
Номер охранного документа: 0002400703
Дата охранного документа: 27.09.2010
13.06.2019
№219.017.81c5

Термически и оптически управляемое фокусирующее устройство

Изобретение относится к оптической отрасли техники, в частности к микрооптическим устройствам, оптическую силу которых можно изменять с помощью световых или тепловых воздействий. Устройство содержит подложку, размещенную в вакуумированном корпусе с прозрачным окном, на которой расположен массив...
Тип: Изобретение
Номер охранного документа: 0002390810
Дата охранного документа: 27.05.2010
13.06.2019
№219.017.81d5

Устройство электростатически управляемого оптического сканера

Изобретение относится к оптоэлектронной технике, в частности к устройствам для изменения углового положения оптического луча. Электростатически управляемый оптический сканер состоит из ячеек, каждая из которых содержит зеркало, деформируемый электрическим полем элемент, закрепленный на...
Тип: Изобретение
Номер охранного документа: 0002399938
Дата охранного документа: 20.09.2010
13.06.2019
№219.017.81ea

Способ изготовления перестраиваемого светофильтра с интерферометром фабри-перо

Перестраиваемый светофильтр с интерферометром Фабри-Перо содержит прозрачные пластины с зеркальными покрытиями, расположенные с зазором. При его изготовлении на одну пластину с зеркальным покрытием наносят жертвенный слой, поверх которого наносят зеркальное покрытие и прикрепляют к нему вторую...
Тип: Изобретение
Номер охранного документа: 0002388025
Дата охранного документа: 27.04.2010
13.06.2019
№219.017.828a

Устройство экспонирования при формировании наноразмерных структур и способ формирования наноразмерных структур

Изобретение относится к микроэлектронике. В устройстве, содержащем один или более источников монохроматического излучения, зону для размещения подложек или слоев подложек и совокупность оптических элементов для формирования локально освещенных областей на подложках, в качестве упомянутой...
Тип: Изобретение
Номер охранного документа: 0002438153
Дата охранного документа: 27.12.2011
19.06.2019
№219.017.8935

Апохроматический объектив

Объектив может быть использован в астрономических телескопах для визуального наблюдения, фото- и видеорегистрации. Объектив состоит из расположенных по ходу лучей трех компонентов, первый и третий из которых являются положительными. Первый компонент выполнен к виде мениска, обращенного вогнутой...
Тип: Изобретение
Номер охранного документа: 0002429508
Дата охранного документа: 20.09.2011
Showing 1-10 of 35 items.
20.01.2013
№216.012.1cd0

Способ атомно-слоевого выращивания тонких пленок химических соединений на подложках

Изобретение относится к области технологий микроэлектроники, а именно к способам получения тонких пленок на подложках. В реакционную зону подают поток инертного газа-носителя с первым летучим реагентом, формируют на подложке из газовой фазы мономолекулярный слой из молекул первого летучего...
Тип: Изобретение
Номер охранного документа: 0002472870
Дата охранного документа: 20.01.2013
10.03.2013
№216.012.2e90

Многолучевой интерферометр

Изобретение относится к устройствам оптических спектральных приборов, в частности к устройствам интерферометров. Многолучевой интерферометр содержит два зеркальных полупрозрачных покрытия. При этом зона формирования интерференционной картины образована преломляющей призмой, имеющей...
Тип: Изобретение
Номер охранного документа: 0002477451
Дата охранного документа: 10.03.2013
20.06.2013
№216.012.4da2

Интерференционный монохроматор

Изобретение может найти применение в системах экспресс-анализа химических веществ и различных промышленных жидкостей и газов, при исследованиях содержания вредных веществ в окружающей среде. Интерференционный монохроматор содержит мультиплексный интерферометр с несовпадающими порядками...
Тип: Изобретение
Номер охранного документа: 0002485456
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e08

Способ получения равномерных нанозазоров между поверхностями тел

Способ может использоваться при изготовлении различных оптических, оптоэлектронных, квантовых и микромеханических устройств, в которых необходимо получать зазор равной и малой толщины между электродами или пластинами, имеющими поверхности большой площади, в частности, управляемых...
Тип: Изобретение
Номер охранного документа: 0002485558
Дата охранного документа: 20.06.2013
27.08.2013
№216.012.655b

Интерференционный многолучевой светофильтр (варианты)

Изобретение может использоваться в качестве узкополосного светофильтра и в качестве диспергирующего устройства монохроматоров и спектрофотометров. Светофильтр содержит на плоской поверхности планарный оптический волновод и призмы ввода в волновод и вывода излучения, оптически изолированные от...
Тип: Изобретение
Номер охранного документа: 0002491584
Дата охранного документа: 27.08.2013
10.11.2013
№216.012.7fbd

Оптический коммутатор оптических линий связи

Изобретение относится к оптике, к оптическим волноводным устройствам, в частности к микромеханическим оптическим коммутаторам оптических линий связи. Технический результат изобретения заключается в создании устройства матричного коммутатора оптических линий связи, имеющего размеры...
Тип: Изобретение
Номер охранного документа: 0002498374
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.834a

Способ корректировки формы поверхности оптических деталей

Изобретение может быть использовано для выравнивания поверхностей пластин интерферометров путем локального нанесения на поверхность тонких, компенсирующих неравномерности слоев. Способ включает локальное нанесение лазерным осаждением на поверхность слоя прозрачного или непрозрачного материала....
Тип: Изобретение
Номер охранного документа: 0002499286
Дата охранного документа: 20.11.2013
10.03.2014
№216.012.aa58

Оптический пассивный затвор

Изобретение относится к оптической и оптоэлектронной технике, к устройствам предохранения фоточувствительных элементов оптических и оптоэлектронных систем от разрушающего воздействия мощного излучения. Затвор содержит испаряющуюся сфокусированным излучением металлическую пленку на прозрачной...
Тип: Изобретение
Номер охранного документа: 0002509323
Дата охранного документа: 10.03.2014
10.05.2014
№216.012.c0e9

Интерференционный многолучевой светофильтр (варианты)

Светофильтр содержит плоскую прозрачную пластину с тонкопленочным прозрачным покрытием одной ее поверхности. В первом варианте светофильтр содержит также оптическую призму ввода излучения, закрепленную плоской гранью на тонкопленочном покрытии вблизи конца пластины. Показатели преломления...
Тип: Изобретение
Номер охранного документа: 0002515134
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.cd73

Сканирующее интерференционное устройство в виде двухзеркального интерферометра фабри-перо

Сканирующее интерференционное устройство содержит подложки с зеркальным покрытием с регулированием положения при помощи пьезоэлемента, подключенного к источнику переменного напряжения. Поверхности подложек зеркал интерферометра между собой соединены с помощью прозрачного упругого сплошного или...
Тип: Изобретение
Номер охранного документа: 0002518366
Дата охранного документа: 10.06.2014
+ добавить свой РИД