×
04.04.2019
219.016.fc6b

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ШУМЯЩИХ В МОРЕ ОБЪЕКТОВ

Вид РИД

Изобретение

№ охранного документа
0002339050
Дата охранного документа
20.11.2008
Аннотация: Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Достигаемым техническим результатом изобретения является повышение достоверности обнаружения и длительного поддержания контакта с шумящей движущейся в море целью. Способ включает прием шумовых сигналов статическим веером характеристик направленности в горизонтальной и вертикальной плоскости, частотно-временную обработку в каждом пространственном канале наблюдения, квадрирование, усреднение по времени, центрирование и нормирование сигналов к помехе, наблюдение на текущем цикле обзора принятых нормированных сигналов и принятие решения об обнаружении путем сравнения с пороговым значением отношения сигнал-помеха, при этом на каждом цикле обзора для каждого частотного отсчета формируют адаптивные пространственные каналы наблюдения, каждый из которых образован, по крайней мере, тремя смежными пространственными каналами в горизонтальной или в вертикальной плоскости. 2 ил.

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования.

Известен способ обнаружения пространственно-временных шумовых сигналов, основанный на многоканальном по пространству полностью адаптивном приеме шумовых сигналов и адаптивном подавлении шумов помех с использованием оценки коэффициентов корреляции акустических помех, см. В.А.Лазуткин. Статистические методы обработки гидроакустических сигналов. Киев: Наукова думка. 1987. Гл.1, р.2, 3; В.Н.Фомин. Рекуррентное оценивание и адаптивная фильтрация. М.: Наука, 1984. с.87-88; «Подводная акустика и обработка сигналов» под ред. Л.Бьерне, М.: Мир, 1985, с.300-301 и с.321-323; A.M.Vural, Effects of perturbations on the performance of optimum/adaptive array // IEEE Transactions, 1979, vol. AES-15, #1, p.76-87. Одним из главных недостатков этого способа является то, что в некоторых случаях высокая стоимость может препятствовать применению полностью адаптивной системы или просто не возникает надобность в таких характеристиках, которые она может обеспечить.

Известно упрощение этого способа обнаружения и уменьшения стоимости (за счет уменьшения и степени оптимальности). Способ упрощают при использовании анализа положения фронта волны (интенсивных направленных шумовых помех) и обработки либо в пространстве элементов дискретной гидроакустической антенны либо в пространстве лучей (пространственных каналов) в так называемых системах с частично заданной структурой, см. цитируемую книгу под ред. Л.Бьерне, М.: Мир, 1985, с.284-286, а также А.Б.Бэггеройер. Обработка сигналов в гидролокации // Применение цифровой обработки сигнала, под ред. Э.Оппенгейма. М.: Мир. 1980, р.6.4; patent 3763490 US, 1973, Adaptive beamformer and signal processor for sonar.

Этот анализ базируется на представлении поля сигналов с использованием плоских волн, см. Ю.Г.Сосулин, Ю.Н.Паршин. Оценочно-корреляционно-компенсационные алгоритмы обнаружения многомерных сигналов. Радиотехника и электроника. 1981. Вып.26. №8. С.1635-1643, а также: R.R.Ramseyer, S.D.Morgera. A distributed microprocessor architecture far fixed and mobile acoustic array adaptive beamforming. IEEE Journal of oceanic engineering. 1979. Vol.OE-4, # 2. p.46-51; D.J.Chapman. Partial adapting for the large array // IEEE transaction on AP, 1976, vol.24, #5, p.685-696; D.A.Gray. Formulation of the maximum signal-to-noise ratio array processor in beam space // JASA, 1982, v.72, #4, p.1195-1201.

Все эти способы имеют недостатки, связанные с условиями функционирования системы обнаружения с частично заданной структурой. В неблагоприятных условиях, которые определяются особенностями помехи и наличием интенсивных направленных источников помех, акустикой окружающей среды (профиль скорости звука, глубина и наклон дна и т.п.), их эффективность может резко ухудшиться. Недостатком указанных способов является необходимость либо наличия нескольких ориентированных в пространстве приемных каналов сопровождения по пеленгу волновых фронтов источников шумоизлучения, либо наличия многоканальных корреляторов шумовых сигналов всей дискретной апертуры гидроакустической антенны. Следствием указанных факторов являются высокие затраты на реализацию способа обнаружения и относительно низкая устойчивость и достоверность обнаружения.

Наиболее близким по технической сущности к заявляемому способу является способ обнаружения, изложенный в заявке РФ №2005113369/09(015399) от 03.05.2005 г. (решение от 21.09.2006 г. о выдаче патента). Шумовой сигнал принимают (фактически имеется ввиду прием смеси сигнала шумоизлучения и помехи) антенной, которая предполагается остро направленной в вертикальной и горизонтальной плоскости.

В способе-прототипе реализуются операции приема шумовых сигналов в горизонтальной и вертикальной плоскости многоэлементной антенной решеткой гидролокатора и осуществляют первичную обработку, для чего:

преобразуют в цифровую форму напряжения шумовых сигналов антенной решетки, выполняют преобразование Фурье отсчетов напряжений шумовых сигналов антенной решетки, вычисляют для каждого из полученных частотных отсчетов амплитудные и фазовые коэффициенты синфазного сложения напряжений сигналов антенной решетки, суммируют выходные напряжения сигналов антенной решетки с постоянными весами, равными произведению амплитудных и фазовых коэффициентов, чем образуют пространственные каналы наблюдения в горизонтальной и вертикальной плоскостях, осуществляют оптимизированную частотно-временную обработку принятых шумовых сигналов для каждого пространственного канала наблюдения в горизонтальной плоскости;

после этого квадрируют и осуществляют вторичную обработку на каждом цикле обзора, для чего:

суммируют по всем частотным отсчетам выходные напряжения образованных пространственных каналов в фиксированном частотном диапазоне, усредняют по времени, центрируют и нормируют шумовые сигналы к помехе, осуществляют наблюдение на каждом цикле обзора полученных отметок принятых шумовых сигналов и принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал-помеха.

Оптимизированная частотно-временная обработка заключается в том, что:

осуществляют прием шумового сигнала статическим вертикальным веером одновременно в нескольких направлениях вертикальной плоскости каждого пространственного канала наблюдения в составе статического веера в горизонтальной плоскости, оптимизируют прием каждым горизонтальным пространственным каналом путем выбора наиболее вероятных углов приема в вертикальной плоскости для существующих гидроакустических условий подводного наблюдения для чего:

осуществляют обработку принимаемых шумовых сигналов с весами, пропорциональными расчетному отношению сигнал-помеха в вертикальных пространственных каналах, перед накоплением на последовательных циклах обзора и суммируют с расчетными весами принятые нормированные к помехе шумовые сигналы вертикальных пространственных каналов.

Способ хорошо работает при изотропной шумовой помехе и при анизотропных шумах моря, в условиях, когда можно пренебречь вкладом интенсивных помех направленных источников, приходящих с других направлений в горизонтальной плоскости. При этом наибольшей эффективности обнаружения шумовых сигналов достигают при максимизации коэффициента концентрации и коэффициента помехоустойчивости в направлении приема шумового сигнала. Здесь и далее использованный термин "коэффициент помехоустойчивости" является обобщающим по отношению к классическому термину "коэффициент концентрации" (см. Справочник по гидроакустике, Л.: Судостроение, 1988, с.305, 308-309). Помехоустойчивость антенны в дальнем анизотропном поле помех может определяться в этом случае через пространственный спектр поля распределенных помех.

Недостатком способа является то, что этот способ не позволяет обеспечить одновременно максимизацию указанных коэффициентов. К недостаткам прототипа относится низкая избирательность к помехе направленных источников вследствие ограничений габаритов антенны на носителях и наличия флуктуации волновых фронтов источников в большом пространственном интервале. Кроме того, отсутствует обеспечение селекции направленных шумовых помех, ориентированной на получение высокого разрешения. Весовое суммирование, примененное в прототипе, приводит к успеху в условиях относительно слабых направленных шумовых помех. Использование обработки с постоянными весовыми коэффициентами проблематично при сближении сигнала по углу с направленными шумовыми помехами или при воздействии интенсивных шумовых помех, что приводит к пропаданию сигнала на длительное время.

Задачей изобретения является: повышение избирательности к помехе направленных источников при наличии указанных ограничений, обеспечение селекции направленных шумовых помех, ориентированной на получение высокого разрешения, т.е. создание способа обнаружения шумящих объектов, который одновременно позволил бы с большей достоверностью, чем в способе прототипа определить наличие шумового сигнала цели и длительно поддерживать акустический контакт с целью, уменьшив время маскирования помехой и пропадания сигнала с потерей акустического контакта.

Техническим результатом заявляемого способа является повышение достоверности обнаружения и длительного поддержания контакта цели путем учета гидроакустических условий наблюдения шумящих объектов и более полной селекции шумовых сигналов в аддитивной смеси направленных шумовых помех по углу в вертикальной или горизонтальной плоскости.

Для обеспечения указанного технического результата в способ обнаружения шумящих в море объектов в фиксированном частотном диапазоне, при котором принимают шумовые сигналы в горизонтальной и вертикальной плоскостях многоэлементной антенной решеткой гидролокатора и осуществляют первичную обработку, для чего:

преобразуют в цифровую форму напряжения шумовых сигналов антенной решетки, выполняют преобразование Фурье отсчетов напряжений шумовых сигналов антенной решетки,

вычисляют для каждого из полученных частотных отсчетов амплитудные и фазовые коэффициенты синфазного сложения напряжений сигналов антенной решетки,

суммируют выходные напряжения сигналов антенной решетки с постоянными весами, равными произведению амплитудных и фазовых коэффициентов, чем образуют пространственные каналы наблюдения в горизонтальной и вертикальной плоскостях,

квадрируют и осуществляют вторичную обработку на каждом цикле обзора, для чего:

суммируют по всем частотным отсчетам выходные напряжения образованных пространственных каналов в фиксированном частотном диапазоне,

усредняют по времени, центрируют и нормируют шумовые сигналы к помехе,

осуществляют наблюдение на каждом цикле обзора полученных отметок принятых шумовых сигналов и принимают решение об обнаружении путем сравнения с пороговым значением отношения сигнал-помеха,

введены новые признаки, а именно, на каждом цикле обзора до квадрирования для каждого частотного отсчета формируют адаптивные пространственные каналы наблюдения, каждый из которых образован, по крайней мере, тремя смежными пространственными каналами в горизонтальной или в вертикальной плоскостях, для чего:

формируют взаимные спектры мощности между шумовыми сигналами пространственных каналов, участвующих в формировании адаптивного пространственного канала наблюдения,

накапливают взаимные спектры мощности шумовых сигналов для заданного времени накопления,

составляют матрицу накопленных взаимных спектров мощности шумовых сигналов и осуществляют ортогональное преобразование матрицы,

вычисляют векторы фазовых коэффициентов синфазного сложения сигналов пространственных каналов, участвующих в формировании адаптивного пространственного канала наблюдения,

вычисляют вектор выходных напряжений пространственных каналов, участвующих в формировании адаптивного пространственного канала путем решения векторно-матричного уравнения, записанного для ортогонально преобразованной матрицы накопленных взаимных спектров мощности и вектора фазовых коэффициентов синфазного сложения,

квадрирование производят, вычисляя отклик полученного адаптивного пространственного канала наблюдения, который равен обратной величине, равной сумме квадратов элементов вектора выходных напряжений,

а вторичную обработку осуществляют для выходных напряжений адаптивных пространственных каналов наблюдения.

Известно, что введение весовой обработки шумовых сигналов по адаптивному алгоритму позволяет повысить избирательность к помехе направленных источников при наличии указанных выше ограничений, обеспечить селекцию направленных шумовых помех, ориентированной на получение высокого разрешения. Однако адаптация, произведенная по полной схеме, то есть при большом количестве пространственных каналов многоэлементной антенной решетки гидролокатора, сильно усложняет процедуру и увеличивает время вычислительных операций пространственно - частотно - временной обработки с адаптацией.

Предлагаемый способ обнаружения шумовых сигналов, благодаря тому, что корреляционная матрица шумовых сигналов может быть сокращена до размеров пространства сигналов, позволяет выполнять обработку информации, поступающей от смежных пространственных каналов в уменьшенном количестве, с помощью адаптивных устройств упрощенной структуры.

Предлагаемое изобретение иллюстрируется графическими изображениями, на которых показаны: на фиг.1 - блок-схема устройства, реализующего заявляемый способ, на фиг.2 - блок-схема способа обнаружения как последовательность операций.

Способ обнаружения реализуется устройством - шумопеленгаторной станцией с системой пространственной обработки сигналов - УФХН (см. "Гидроакустические средства...", Карякин Ю.А., Смирнов С.А., Яковлев Г.Н., 2005 г., стр.173, рис.2.5).

Устройство обнаружения шумящих в море объектов фиг.1 состоит из многоэлементной, например, цилиндрической гидроакустической антенны 1. Элементы антенны соединены с устройством предварительной обработки, далее - с системами пространственной обработки блока 2, затем первичной обработки информации 5.1...5.А и системой вторичной обработки информации 11.

Предлагаемый способ осуществляется с помощью приемной системы следующим образом.

Шумовые сигналы принимаются многоэлементной гидроакустической антенной 1 в горизонтальной и в вертикальной плоскости. В блоках 2-4 (операции 16-18, фиг.2) формируют статический горизонтальный и вертикальный веер соответственно М и N характеристик направленности. Шумовые сигналы принимают каждым из А=М*N пространственных каналов, которые получены для частоты fk (где fk=kΔf, Δf - заранее выбранный шаг по частоте в результате выполнения в блоке 2 операции 17 преобразования Фурье отсчетов напряжений шумовых сигналов). Целые числа k находятся в интервале от kн до kв, при этом фиксированный частотный диапазон расположен в интервале от до

Далее в блоках 6 (6.1...6.А) производят формирование А (операция 19, фиг.2) адаптивных пространственных каналов наблюдения, каждый из которых образован, по крайней мере, тремя смежными пространственными каналами в горизонтальной Q=3 или в вертикальной плоскости R=3. При этом используют выходы смежных пространственных каналов, разнесенные по углу в горизонтальной или вертикальной плоскости обзора, по крайней мере, на ширину характеристики направленности для k-той частотной составляющей. Согласно результатам проведенного моделирования заявляемого способа целесообразен выбор каналов с данным разнесением по углу, так как при большем разнесении уменьшается помехоустойчивость обнаружителя, а при меньшем - понижается устойчивость адаптивного алгоритма, возникают ложные сигналы.

Затем в блоках 7 (7.1...7.А) производят в каждом из А адаптивных пространственных каналов формирование и накопление в течение заданного времени взаимных спектров мощности шумовых сигналов пространственных каналов, участвующих в формировании адаптивного пространственного канала наблюдения. При этом составляют матрицу ФПК размера соответственно Q×Q или R×R накопленных взаимных спектров мощности шумовых сигналов (операция 20, фиг.2).

В блоках 8 (8.1...8.А) осуществляют ортогональное преобразование матрицы ФПК (операция 21), используя процедуры треугольного разложения матрицы на множители и в матричном виде

где - нижняя и верхняя треугольные матрицы с элементами, вычисленными по алгоритму квадратного корня (см. например, в книге Б.П.Демидовича и И.А.Марона "Основы вычислительной математики", М., Гос. изд. физ. - мат. л-ры, 1963, стр.287-288).

В блоках 15 (15.1...15.А) вычисляют фазовые коэффициенты соответственно Рq0, θ0, k) или Рr0, θ0, k) и формируют вектор с элементами Рq0, θ0, k) или Рr0, θ0, k) синфазного сложения сигналов в плоской волне для фазовых центров Q или R пространственных каналов, участвующих в формировании адаптивного пространственного канала наблюдения. Возможен также очевидный вариант реализации, при котором элемент Рq0, θ0, k) и Рr0, θ0, k) вычисляют, например, как характеристику направленности антенной решетки для плоской волны (операция 22). Упомянутые расчеты могут быть проведены по алгоритмам, приведенным, например, в книге Матвиенко В.Н., Тарасюка Ю.Ф. "Дальность действия гидроакустических средств", Л., Судостроение, 1981 г., стр.212-214. Совокупность операций 22 в блоках 15 (15.1...15.А) реализуется путем предварительного расчета и запоминания фазовых коэффициентов. Рассчитанные значения фазовых коэффициентов Рq0, θ0, k) и Рr0, θ0, k) заносятся в долговременную (постоянную) память запоминающего устройства.

Операции 22 в блоках 15 (15.1...15.А) проводят независимо от остальных операций и обеспечивают получение данных для вычислительных операций 23.

В блоках 9 (9.1...9.А) вычисляют на k-той частоте совокупность Q или R спектральных откликов или образующих соответственно вектор или выходных напряжений пространственных каналов, участвующих в формировании адаптивного пространственного канала (операция 23). Вычисление осуществляют по формуле в векторно-матричном виде где соответственно Р={Рq00,k)} или Р={Pr00,k} - вектор-столбец фазовых коэффициентов, - нижняя треугольная матрица ортогонального разложения матрицы взаимных спектров мощности ФПК. Упомянутые расчеты могут быть проведены по алгоритмам, приведенным, например, в упомянутой книге Б.П.Демидовича и И.А.Марона, глава VIII, §2.

В блоках 10 (10.1...10.А) вычисляют для k-той частотной составляющей отклик каждого из А адаптивных пространственных каналов наблюдения в горизонтальной или вертикальной плоскости (операция 24), равный обратной величине суммы квадратов элементов вектора выходных напряжений, для горизонтальной плоскости по формуле

или для вертикальной плоскости по формуле

В блоке 12 суммируют по всем частотным отсчетам отклики каждого из А адаптивных пространственных каналов наблюдения в фиксированном частотном диапазоне усредняют по времени, центрируют и нормируют, производят наблюдение сигналов на каждом цикле обзора (операции 25 и 26).

Принимают решение об обнаружении сигнала в блоке 13 при превышении порогового значения отношением сигнал-помеха в пространственном канале (операция 27); регистрация, развертывание на панорамном индикаторе отметок сигналов на каждом цикле обзора реализуется в блоке 14 (операция 28).

Результаты моделирования заявляемого способа показали, что применение управления амплитудно-фазовым распределением по адаптивному алгоритму смежных пространственных каналов, которые уже обладают высокой пространственной избирательностью к распределенной помехе, обеспечивают большую помехоустойчивость, чем применение управления амплитудно-фазовым распределением слабо направленных приемников антенной решетки.

Это позволило обнаруживать шумящие объекты с большей достоверностью, чем в способе прототипа, раньше определять наличие сигнала цели и длительно поддерживать акустический контакт с целью, уменьшив время маскирования помехой и время пропадания сигнала с потерей акустического контакта. При этом сохраняется высоким коэффициент концентрации гидроакустической антенны.

Наряду с упомянутым выше моделированием заявляемого объекта с имитацией сигналов и помех была проведена обработка и записей реальных сигналов и помех, выполненных в натурных условиях, которая подтвердила полученные результаты моделирования.

Способобнаруженияшумящихвмореобъектоввфиксированномчастотномдиапазоне,прикоторомпринимаютшумовыесигналывгоризонтальнойивертикальнойплоскостяхмногоэлементнойантеннойрешеткойгидролокатораиосуществляютпервичнуюобработку,длячегопреобразуютвцифровуюформунапряженияшумовыхсигналовантеннойрешетки,выполняютпреобразованиеФурьеотсчетовнапряженийшумовыхсигналовантеннойрешетки,вычисляютдлякаждогоизполученныхчастотныхотсчетовамплитудныеифазовыекоэффициентысинфазногосложениянапряженийсигналовантеннойрешетки,суммируютвыходныенапряжениясигналовантеннойрешеткиспостояннымивесами,равнымипроизведениюамплитудныхифазовыхкоэффициентов,чемобразуютпространственныеканалынаблюдениявгоризонтальнойивертикальнойплоскостях,квадрируютиосуществляютвторичнуюобработкунакаждомциклеобзора,длячегосуммируютповсемчастотнымотсчетамвыходныенапряженияобразованныхпространственныхканаловвфиксированномчастотномдиапазоне,усредняютповремени,центрируютинормируютшумовыесигналыкпомехе,осуществляютнаблюдениенакаждомциклеобзораполученныхотметокпринятыхшумовыхсигналовипринимаютрешениеобобнаружениипутемсравненияспороговымзначениемотношениясигнал-помеха,отличающийсятем,чтонакаждомциклеобзорадоквадрированиядлякаждогочастотногоотсчетаформируютадаптивныепространственныеканалынаблюдения,каждыйизкоторыхобразован,покрайнеймере,тремясмежнымипространственнымиканаламивгоризонтальнойиливвертикальнойплоскости,длячегоформируютвзаимныеспектрымощностимеждушумовымисигналамипространственныхканалов,участвующихвформированииадаптивногопространственногоканаланаблюдения,накапливаютвзаимныеспектрымощностишумовыхсигналовдлязаданноговременинакопления,составляютматрицунакопленныхвзаимныхспектровмощностишумовыхсигналовиосуществляютортогональноепреобразованиематрицы,вычисляютвекторыфазовыхкоэффициентовсинфазногосложениясигналовпространственныхканалов,участвующихвформированииадаптивногопространственногоканаланаблюдения,вычисляютвекторвыходныхнапряженийпространственныхканалов,участвующихвформированииадаптивногопространственногоканалапутемрешениявекторно-матричногоуравнениядляортогональнопреобразованнойматрицынакопленныхвзаимныхспектровмощностиивекторафазовыхкоэффициентовсинфазногосложениясигналов,квадрированиепроизводят,вычисляяоткликполученногоадаптивногопространственногоканаланаблюдения,равногообратнойвеличинесуммыквадратовэлементоввекторавыходныхнапряжений,авторичнуюобработкуосуществляютдлявыходныхнапряженийадаптивныхпространственныхканаловнаблюдения.
Источник поступления информации: Роспатент

Showing 1-10 of 91 items.
10.01.2013
№216.012.1846

Устройство для получения массивов углеродных нанотрубок на металлических подложках

Изобретение относится к нанотехнологии. Устройство для получения массивов углеродных нанотрубок (УНТ) на металлических подложках состоит из двух электродов 7 и 8, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками 8 и 9, скользящих графитовых токоподводов 11 и 12,...
Тип: Изобретение
Номер охранного документа: 0002471706
Дата охранного документа: 10.01.2013
10.02.2013
№216.012.2477

Устройство и способ с речевым интерфейсом определения водолазом направления на источник тонального звукового сигнала

Использование: для определения водолазом направления на источник тонального звукового сигнала. Сущность: сигнал источника принимается на две ненаправленные антенны, расстояние между которыми λ/4. Сигнал от первой антенны подается на вход сумматора, сигнал от второй антенны последовательно...
Тип: Изобретение
Номер охранного документа: 0002474837
Дата охранного документа: 10.02.2013
10.04.2013
№216.012.3480

Способ определения глубины погружения приводняющегося объекта

Использование: для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе относительно горизонта его движения. Сущность: с помощью гидролокатора производят излучение зондирующих сигналов гидролокатором, прием...
Тип: Изобретение
Номер охранного документа: 0002478983
Дата охранного документа: 10.04.2013
20.06.2013
№216.012.4cb3

Способ получения монокристаллов теллурида галлия (ii)

Изобретение относится к технологии получения кристаллов GaTe, которые могут быть использованы в нелинейной оптике, а именно для оптических преобразователей частоты ИК и ТГц диапазонов. Кристаллы теллурида галлия (II) выращивают вертикальной зонной плавкой в графитовых тиглях под давлением...
Тип: Изобретение
Номер охранного документа: 0002485217
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb4

Способ получения кристаллов вольфрамата натрия-висмута

Изобретение относится к области выращивания из расплава нелегированных кристаллов вольфрамата натрия-висмута NaBi(WO), являющегося перспективным материалом для Черепковских детекторов. Выращивание кристаллов осуществляют методом Чохральского в воздушной атмосфере со скоростью вытягивания 4-5...
Тип: Изобретение
Номер охранного документа: 0002485218
Дата охранного документа: 20.06.2013
27.10.2013
№216.012.783c

Крионаконечник с сапфировым хладопроводом-облучателем

Изобретение относится к хирургическим инструментам, применяемым для локального замораживания и деструкции выделенных участков биологической ткани, и может быть использовано в общей и детской хирургии, в онкологии, дерматологии, отоларингологии, гинекологии, косметологии. Крионаконечник с...
Тип: Изобретение
Номер охранного документа: 0002496442
Дата охранного документа: 27.10.2013
20.01.2014
№216.012.98be

Устройство для визуализации электрических полей свч в пространстве

Использование: относится к области визуализации распределения в пространстве электрических полей СВЧ диапазона. Сущность: в установке визуализации СВЧ полей применены измерительная камера «открытого» типа из двух расположенных горизонтально параллельных медных дисков, антенна-зонд,...
Тип: Изобретение
Номер охранного документа: 0002504801
Дата охранного документа: 20.01.2014
27.03.2014
№216.012.adf5

Способ удаления опухолей мозга с выделением границ опухоли флуоресцентной диагностикой с одновременной коагуляцией и аспирацией и устройство для его осуществления

Группа изобретений относится к медицине. Устройство включает сапфировый зонд с продольными каналами, в которых размещены оптические волокна, одни из которых предназначены для подачи излучения, возбуждающего флуоресценцию и коагулирующего излучения в зону деструкции ткани от присоединенных...
Тип: Изобретение
Номер охранного документа: 0002510248
Дата охранного документа: 27.03.2014
10.06.2014
№216.012.d04b

Способ эксфолиации слоистых кристаллических материалов

Изобретение относится к нанотехнологиям. Способ включает эксфолиацию заготовок из слоистых кристаллических материалов, закрепленных с одной стороны на опоре из глипталя, с использованием клейкой ленты, глипталь по окончании эксфолиации растворяют в ацетоне, где образуется взвесь кристаллических...
Тип: Изобретение
Номер охранного документа: 0002519094
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d5ae

Способ получения слоев карбида кремния

Изобретение относится к области получения карбида кремния, используемого в полупроводниковой промышленности в качестве материала для радиопоглощающих покрытий, диодов, светодиодов, солнечных элементов и силовых вентилей. Карбид кремния получают перемещением ленты углеродной фольги в...
Тип: Изобретение
Номер охранного документа: 0002520480
Дата охранного документа: 27.06.2014
Showing 1-10 of 11 items.
20.05.2014
№216.012.c69b

Способ определения глубины погружения объекта

Использование: изобретение относится к области гидроакустики и может быть использовано при разработки гидроакустической аппаратуры, предназначенной для освещения подводной обстановки. Сущность: в способе определения глубины погружения объекта гидролокатором излучают зондирующий сигнал,...
Тип: Изобретение
Номер охранного документа: 0002516602
Дата охранного документа: 20.05.2014
20.09.2014
№216.012.f503

Способ обработки эхосигнала гидролокатора

Использование: гидроакустика. Сущность: способ содержит излучение зондирующего сигнала, прием эхосигнала веером статических характеристик, набор временной реализации последовательно по всем пространственным каналам, обработку последовательно по всем пространственным каналам, определение уровня...
Тип: Изобретение
Номер охранного документа: 0002528556
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f874

Способ обработки гидролокационной информации

Использование: гидроакустика и может быть использовано для построения навигационных гидроакустических станций освещения ближней обстановки. Сущность: способ содержит излучение зондирующего сигнала, прием отраженного эхосигнала, формирование статического веера характеристик направленности,...
Тип: Изобретение
Номер охранного документа: 0002529441
Дата охранного документа: 27.09.2014
19.01.2018
№218.016.06f8

Способ наведения торпеды, управляемой по проводам

Изобретение относится к области военной техники и может быть использовано в системах наведения телеуправляемого торпедного оружия. Технический результат – повышение точности за счет уменьшения линейного смещения торпеды от пеленга на цель, определяемого в момент завершения торпедой маневра...
Тип: Изобретение
Номер охранного документа: 0002631227
Дата охранного документа: 19.09.2017
10.05.2018
№218.016.43c1

Гидроакустический способ управления торпедой

Гидроакустический способ управления торпедой, содержащий выпуск торпеды, которая излучает зондирующие сигналы через фиксированные промежутки времени, прием эхосигналов гидролокатором освещения ближней обстановки, выделение классификационных признаков, определение класса объекта, формирование...
Тип: Изобретение
Номер охранного документа: 0002649675
Дата охранного документа: 04.04.2018
08.03.2019
№219.016.d46d

Способ обнаружения шумящих в море объектов

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение достоверности обнаружения и длительного поддержания контакта с целью. Способ включает прием первичного поля шумоизлучения объектов в горизонтальной...
Тип: Изобретение
Номер охранного документа: 0002298203
Дата охранного документа: 27.04.2007
24.05.2019
№219.017.5fd8

Способ получения информации о шумящих в море объектах

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Способ содержит следующие операции. Принимают шумовые сигналы в горизонтальной и вертикальной плоскостях, осуществляют частотно-временную обработку в каждом пространственном канале наблюдения,...
Тип: Изобретение
Номер охранного документа: 0002353946
Дата охранного документа: 27.04.2009
19.07.2019
№219.017.b633

Способ обнаружения шумящих в море объектов

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования гидроакустических станций. Способ содержит следующие операции. Принимают шумовые сигналы статическим веером характеристик направленности в горизонтальной и вертикальной плоскостях, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002694782
Дата охранного документа: 16.07.2019
19.07.2019
№219.017.b6ae

Способ наведения торпеды, управляемой по проводам

Изобретение относится к области военной техники и может быть использовано в системах наведения телеуправляемого торпедного оружия. Способ телеуправляемого наведения торпеды включает измерение с помощью пассивной гидролокации пеленгов с носителя на цель и на торпеду, определение дистанции от...
Тип: Изобретение
Номер охранного документа: 0002694792
Дата охранного документа: 16.07.2019
22.01.2020
№220.017.f806

Способ классификации гидроакустических сигналов шумоизлучения морских объектов

Настоящее изобретение относится к области гидроакустики и предназначено для классификации сигналов шумоизлучения обнаруженных объектов, в том числе и сигналов шумоизлучения, вызванных источниками биоакустики. Способ классификации гидроакустических сигналов шумоизлучения морских объектов...
Тип: Изобретение
Номер охранного документа: 0002711406
Дата охранного документа: 17.01.2020
+ добавить свой РИД