×
30.03.2019
219.016.f94c

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМЫХ СКАФФОЛДОВ ИЗ ФИБРОИНА ШЕЛКА С УЛУЧШЕННЫМИ БИОЛОГИЧЕСКИМИ СВОЙСТВАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к биотехнологии, в частности к получению биодеградируемых скаффолдов. Способ включает смешение водного раствора фиброина шелка с микрочастицами межклеточного матрикса размером менее 0,5 мм при соотношении компонентов водный раствор фиброин шелка 10-95 масс. % и частицы межклеточного матрикса 90-5 масс. %. Далее вносят диметилсульфоксид до конечной концентрации 0,5-2%. Из полученной смеси формируют изделия необходимой формы и выдерживают не менее 5 дней при температуре от -10 до -80°С. После чего производят размораживание изделий в 96% этиловом спирте в течение 0,5-10 ч со сменой этилового спирта не менее 3 раз. Изобретение позволяет получить биодеградируемые скаффолды с оптимизацией культуральных условий для прикрепления и пролиферации клеток при сохранении механической прочности и эластичности. 2 ил., 1 пр.

Изобретение относится к медицине, а именно, к регенеративной медицине и тканевой инженерии, конкретно, к способам получения биодеградируемых скаффолдов, используемых для восстановления поврежденных органов и тканей.

Одной из актуальных проблем современной трансплантологии является нехватка донорских органов для пересадки. Решением этой проблемы может стать создание искусственных органов и тканей, представляющих собой конструкции, содержащие матриксный и клеточный компоненты. Выбор материала, который будет использоваться как каркас будущего искусственного органа, является первостепенной задачей. Этот материал должен максимально точно имитировать свойства нативного межклеточного матрикса и выполнять его функции: определять физические свойства тканей, обеспечивать адгезию, пролиферацию, дифференцировку и миграцию клеток. В настоящее время в качестве таких материалов рассматривают как синтетические материалы, так и материалы природного происхождения.

Одним из универсальных материалов, используемых в качестве каркасного компонента, является фиброин шелка из коконов тутового шелкопряда Bombyx mori. Фиброин обладает свойствами, которые позволяют формировать из него различные изделия: покрытия, пленки, трубки, пористые матриксы, микро- и наночастицы, гели - а также широко использовать его в тканевой инженерии как самостоятельный материал, так и в составе композитов. К таким свойствам можно отнести его механические показатели, позволяющие осуществлять хирургические манипуляции, а так же возможность контроля скорости биодеградации за счет регулирования конформационного состояния белка [Сафонова Л.А. Боброва М.М., Агапова О.И., Котлярова М.С., Архипова А.Ю., Мойсенович М.М., Агапов И.И. Биологические свойства пленок из регенерированного фиброина шелка // Современные технологии в медицине. - 2015. - Том 7. - №3. - С. 6-13.]. Однако, изделия из чистого фиброина шелка обладают низкими адгезионными свойствами для клеток млекопитающих.

Известен способ получения биодеградируемых скаффолдов из фиброина шелка, включающий внесение в состав скаффолда, по меньшей мере, одного биодеградируемого полимера, способствующего адгезии и пролиферации клеток млекопитающего [US 7842780] (прототип). Известный способ предполагает включение в рабочий раствор фиброина шелка биодеградируемого полимера.

Однако при использовании в регенеративной медицине биодеградируемые скаффолды, полученные по указанному выше способу, не позволяют воссоздать нативные условия - трехмерное микроокружение и комплекс молекулярно-биологических сигналов для клеток млекопитающих.

Техническая проблема заключается в создании биодеградируемых скаффолдов, обеспечивающих одновременно нативные условия существования для клеток млекопитающего и обладающих механическими свойствами, позволяющими формировать из него изделия различных размеров и формы.

Технический результат, достигаемый при осуществлении изобретения, заключается в одновременном достижении комплекса характеристик у биодеградируемых скаффолдов, включая оптимизацию культуральных условий для прикрепления и пролиферации клеток при сохранении механической прочности и эластичности путем сочетанного введения в рабочий раствор (композицию) для получения скаффолдов водного раствора фиброина шелка и микрочастиц межклеточного матрикса при определенном соотношении компонентов.

Нами было установлено, что при соединении в рабочем растворе указанных компонентов они сохраняют свои свойства. Причем эти свойства сохраняются и в биодеградируемых скаффолдах, полученных из такого рабочего раствора.

Сущность изобретения состоит в следующем.

При изготовлении биодеградируемых скаффолдов суспензию микрочастиц межклеточного матрикса размером менее 0,5 мм, по меньшей мере, одной ткани млекопитающего, смешивают с водным раствором фиброина шелка при следующем соотношении компонентов, масс. %:

водный раствор фиброин шелка 10-95
частицы межклеточного матрикса 90-5.

Затем вносят диметилсульфоксид до конечной концентрации 0,5-2%. Из полученной смеси формируют изделия необходимой формы и выдерживают не менее 5 дней при температуре от -10°С до -80°С. После чего производят размораживание изделий в 96% этиловом спирте в течение 0,5-10 часов со сменой этилового спирта не менее 3 раз.

Изобретения поясняются следующими фигурами

На фиг. 1 представлено изображение поры биодеградируемого скаффолда из фиброина шелка, на фиг. 2 изображение поры биодеградируемого скаффолда из фиброина шелка с внесенными в состав скаффолда микрочастицами децеллюляризованного межклеточного матрикса ткани печени. Изображения получены методом сканирующей электронной микроскопии, увеличение ×200.

Способ получения биодеградируемых скаффолдов осуществляется следующим образом.

Суспензию частиц межклеточного матрикса размером менее 0,5 мм, по меньшей мере, одной ткани млекопитающего, смешивают, тщательно перемешивая, с водным раствором фиброина шелка при следующем соотношении компонентов, масс. %:

водный раствор фиброин шелка 10-95
частицы межклеточного матрикса 90-5.

В качестве ткани млекопитающего суспензия может содержать одну из следующих тканей млекопитающего, например человека или крысы: ткань сердца, ткань легкого, ткань мозга, ткань печени, ткань почки, ткань поперечнополосатой мышцы, ткань кожи, что расширяет возможности способа при применении в регенеративной медицине.

Затем вносят диметилсульфоксид до конечной концентрации 0,5-2%. Из полученной смеси формируют изделия необходимой формы, например, в культуральном 48- или 96-луночном планшете, аккуратно внося смесь в лунки и не позволяя смеси отстояться, и выдерживают не менее 5 дней при температуре в диапазоне (-10°С)-(-80°С). После чего производят размораживание изделий, внося в форму с изделием 96% этиловый спирт, в течение 0,5-10 часов со сменой этилового спирта не менее 3 раз. Далее изделие извлекают из формы и хранят в 70% этаноловом спирте.

Для доказательства возможности реализации заявленного назначения и достижения указанного технического результата приводим следующие данные.

В качестве примера реализации получения биодеградируемых скаффолдов представлено изображение макропоры биодеградируемого скаффолда из фиброина шелка с внесенными в состав скаффолда микрочастицами децеллюляризованного межклеточного матрикса ткани печени (в соответствии с предлагаемым способом) (фиг. 2), полученное методом сканирующей электронной микроскопии.

Ткань печени человека была децеллюляризована раствором натрий-фосфатного буфера рН 7,4, содержащим в качестве детергентов тритон X-100 с концентрацией 3% и додецилсульфат натрия с концентрацией 0,1%; и раствором трипсина с концентрацией 0,025% в течение 10 дней. Предварительно ткань печени была измельчена ножницами до размера 0,5-3 мм. Децеллюляризованный межклеточный матрикс ткани печени человека был отмыт раствором натрий-фосфатного буфера рН 7,4 в течение 24 часов. После чего была произведена заморозка децеллюляризованного межклеточного матрикса ткани печени человека в жидком азоте, а затем было произведено измельчение децеллюляризованного межклеточного матрикса ткани до размера частиц меньше 0,5 мм при помощи ступки и пестика. Далее было произведено выделение фракции микрочастиц децеллюляризованного межклеточного матрикса ткани печени человека размером 1 мкм и меньше путем центрифугирования по 10 минут при 1350 g два раза, отбора супернатанта и повторного центрифугирования по 10 минут при 12100 g 8 раз. Затем был изготовлен биодеградируемый скаффолд методом замораживания-оттаивания из смеси раствора фиброина шелка и суспензии микрочастиц децеллюляризованного межклеточного матрикса ткани, доля которых по массе составляет 30% от общей массы смеси. Для этого к композиции, включающей раствор фиброина шелка и суспензию микрочастиц децеллюляризованного межклеточного матрикса ткани, вносят диметилсульфоксид до конечной концентрации 1%; из полученной смеси формируют изделия в 96-луночном культуральном планшете и выдерживают 7 дней при температуре от -20°С, после чего производят размораживание изделий в 96% этиловом спирте в течение 2 часов с четырехкратной сменой этилового спирта. Для сравнения на фиг. 1 приведено изображение макропоры биодеградируемого скаффолда из фиброина шелка. При сравнении микрофотографий модифицированного и немодифицированного биодеградируемого скаффолда из фиброина шелка можно увидеть, что предлагаемый способ обработки приводит к изменению поверхности макропор биодеградируемого скаффолда из фиброина шелка, что обеспечивает нативное микроокружение для клеток млекопитающих как за счет биохимического состава микрочастиц, так и за счет увеличения шероховатости поверхности макропор.

Был проведен сравнительный анализ адгезии клеток культуры гепатокарциномы человека Hep G2 на модифицированном (предлагаемом нами) и немодифицированном биодеградируемом скаффолде из фиброина шелка. Было выявлено, что уровень адгезии клеток на модифицированном скаффолде на 30% выше, чем на немодифицированном скаффолде из фиброина шелка. Механические свойства скаффолда, полученного предлагаемым способом, аналогичны таковым у скаффолда-прототипа.


СПОСОБ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМЫХ СКАФФОЛДОВ ИЗ ФИБРОИНА ШЕЛКА С УЛУЧШЕННЫМИ БИОЛОГИЧЕСКИМИ СВОЙСТВАМИ
Источник поступления информации: Роспатент

Showing 21-21 of 21 items.
17.06.2023
№223.018.8123

Устройство и способ для механической поддержки лимфатической системы

Изобретение относится к медицине и медицинской технике, а именно к устройствам и способам механической поддержки лимфатической системы в условиях острой декомпенсированной сердечной недостаточности. Предложенное устройство содержит катетер, предназначенный для введения в левую плечеголовную...
Тип: Изобретение
Номер охранного документа: 0002763416
Дата охранного документа: 29.12.2021
Showing 21-27 of 27 items.
18.05.2018
№218.016.5182

Сканирующий зондовый микроскоп, совмещенный с устройством модификации поверхности образца

Изобретение относится к измерительной технике, а более конкретно к сканирующим зондовым микроскопам, адаптированным для измерения поверхности образца, полученной после механической модификации этой поверхности. Сущность изобретения заключается в том, что сканирующий зондовый микроскоп,...
Тип: Изобретение
Номер охранного документа: 0002653190
Дата охранного документа: 07.05.2018
25.06.2018
№218.016.660c

Способ восстановления кожного покрова

Изобретение относится к медицине, а именно к дерматологии, и может быть использовано для восстановления кожного покрова. Для этого в область повреждения кожи последовательно вводят биорезорбируемый носитель с культурой клеток фибробластов и биорезорбируемый носитель с культурой кераноцитов, где...
Тип: Изобретение
Номер охранного документа: 0002658707
Дата охранного документа: 22.06.2018
08.07.2018
№218.016.6d8f

Способ получения минерализованных композитных микроскаффолдов для регенерации костной ткани

Группа изобретений относится к химико-фармацевтической промышленности и представляет собой способ получения минерализованного композитного микроскаффолда для регенерации костной ткани и применение минерализованного микроскаффолда, полученного данным способом. При этом способ включает стадии...
Тип: Изобретение
Номер охранного документа: 0002660558
Дата охранного документа: 06.07.2018
28.02.2019
№219.016.c867

Способ исследования трехмерных структур посредством сканирующей оптической зондовой нанотомографии

Изобретение относится к нанотехнологии и может быть использовано для исследования образцов, например биоматериалов и изделий медицинского назначения, методами сканирующей зондовой микроскопии. Способ исследования трехмерных структур посредством сканирующей оптической зондовой нанотомографии...
Тип: Изобретение
Номер охранного документа: 0002680726
Дата охранного документа: 26.02.2019
08.03.2019
№219.016.d56a

Производные 13(1)-n-{2-[n-(клозо-монокарбадодекаборан-1-ил)-метил]аминоэтил}амид-15(2),17(3)-диметилового эфира хлорина e, проявляющие свойства фотосенсибилизатора

Изобретение относится к производным 13(1)-N-{2-[N-(клозо-монокарбадодекаборан-1-ил)-метил]аминоэтил}амид-15(2),17(3)-диметилового эфира хлорина е общей формулы где M=Cs, Na, проявляющим свойства фотосенсибилизатора. Заявляемые соединения могут быть использованы в медицине в качестве агентов...
Тип: Изобретение
Номер охранного документа: 0002406726
Дата охранного документа: 20.12.2010
17.04.2019
№219.017.14dc

Композиция для изготовления биодеградируемых скаффолдов и способ ее получения

Изобретение относится к области биотехнологии, в частности к композиции для изготовления биодеградируемых скаффолдов, и способу ее получения. Способ включает смешение суспензии микрочастиц межклеточного матрикса размером менее 0,5 мм одной ткани млекопитающего с водным раствором фиброина шелка...
Тип: Изобретение
Номер охранного документа: 0002684769
Дата охранного документа: 12.04.2019
27.06.2019
№219.017.9869

Имплантат для регенерации костной ткани и способ его получения

Группа изобретений относится к медицине. Имплантат для регенерации костной ткани состоит из композитных микрочастиц, характеризующихся пористой структурой с размером пор от 10 до 85 мкм, содержанием фиброина шелка от 65 до 75 мас.%, содержанием желатина от 25 до 35 мас.%, а также показателем...
Тип: Изобретение
Номер охранного документа: 0002692578
Дата охранного документа: 25.06.2019
+ добавить свой РИД