×
29.03.2019
219.016.f747

Результат интеллектуальной деятельности: ОСУШИТЕЛЬ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для осушки газов. Осушитель на основе оксида алюминия содержит, масс.%: χ-АlО и рентгеноаморфная фаза - 35-95; γ-AlО и η-АlО - 5-65, имеет объем пор 0,25-0,6 см/г, эффективный средний диаметр пор 2,5-10 нм и удельную поверхность 200-400 м/г, причем удельная площадь поверхности микропор диаметром менее 2 нм от 100 до 300 м/г. Для получения осушителя продукт центробежной термической активации ЦТА гидраргиллита и/или термохимической активации ТХА гидраргиллита гидратируют в щелочном или кислом растворе, сушат, размалывают, пластифицируют, формуют полученную пасту методом экструзии, сушат и прокаливают в токе осушенного воздуха. Гидратацию измельченного продукта в щелочном или кислом растворе проводят при интенсивном перемешивании и соотношении «жидкость»:«твердое» от 1 до 4 в течение 4-8 ч. Гидратацию неразмолотого продукта в щелочном или кислом растворе проводят в шаровой мельнице при соотношении «жидкость»:«твердое» от 1 до 2 в течение 4-24 ч. Прокаливание экструдатов ведут в течение 2-6 ч при 350-600°С, объемная скорость подачи воздуха составляет 1000-10000 ч, а скорость разогева до температуры прокалки - 20-50°С/ч. Технический результат - повышение динамической емкости адсорбента-осушителя. 2 н. и 17 з.п. ф-лы, 1 табл., 16 пр.

Изобретение относится к способам получения гранулированного высокоактивного нанопористого оксида алюминия, используемого в качестве адсорбента-осушителя в процессах осушки газов: водородсодержащего, природного и др.

В процессах осушки различных газов в промышленности наиболее часто используют динамическую сорбцию. Осушку проводят в сорбционных колоннах, заполненных слоями сформованного активного оксида алюминия, через который пропускают газ под давлением. Динамическая емкость осушителей на основе активного оксида алюминия напрямую зависит от таких параметров как: величина его удельной поверхности; объем емкостных и транспортных пор и их соотношение; парциальное давление поглощаемого адсорбтива (например, паров воды) и его температура; линейная скорость осушаемого потока.

Известен способ получения γ-оксида алюминия с целью повышения сорбционной емкости оксида алюминия путем осаждения гидроксида алюминия из раствора алюмината натрия азотной кислотой при рН=8.5-8.9 [SU 1658563, C01F 7/02, 28.09.89]. Полученный гидроксид алюминия псевдобемитной структуры подсушивают, обрабатывают азотной кислотой до величины кислотного модуля Mk=0.003-0.01

г-м/г-м Al2O3, формуют в экструдаты, далее сушат и прокаливают при температуре 500-600°С. Этот способ позволяет получать γ-оксид алюминия с достаточно высокой удельной поверхностью 320-400 м2/г и суммарным объемом пор 0,25-0,62 см3/г. Недостатком данного способа является наличие стадии осаждения с большим количеством экологически вредных стоков.

Известен способ получения более дешевого осушителя, когда для приготовления активного оксида алюминия на первой стадии пептизируют технический гидрат глинозема, а на второй стадии вводят связующее вещество в количестве 10-40 мас.%, которое представляет собой активный гидроксид алюминия (предпочтительно используют переосажденный гидроксид алюминия) [RU 2097328, C01F 7/02, 27.11.1997]. Полученную смесь перемешивают не более 1 ч, формуют, сушат и проводят термообработку при различных температурах. Полученный осушитель характеризуется низкой удельной поверхностью (менее 200 м2/г). Образец, полученный по данному способу, характеризуется низкой динамической сорбционной емкостью по парам воды (при температуре точки росы -36°С - 1,2 г H2O/100 г адсорбента, а при точке росы -5,5°С - 2,2 г Н2O/100 г адсорбента).

Известен способ получения осадка гидроксида алюминия, применяемого в качестве катализатора, адсорбента и носителя с высоким расчетным суммарным объемом пор 0,55-0,72 см3/г и удельной поверхностью 200-270 м2/г [SU 524768, C01F 7/02, 16.11.76]. Сущность изобретения состоит в том, что малогидратированные соединения алюминия - ρ-Al2О3 или аморфный гидроксид алюминия - гидратируют в слабощелочной среде при рН=8-11 и температуре, преимущественно, 50-80°С, в течение 20-80 ч. Полученный осадок отмывают от растворимых примесей натрия. Осадок, содержащий после отжатия на фильтре 50-60% влаги, разбавляют водой до содержания 200-250 г/л Аl2О3, пластифицируют азотной кислотой и греют в автоклаве при повышенном давлении и температуре 100-140°С. Из массы после охлаждения получают гранулы методом жидкостного формования, сушат и прокаливают при 500-550°С в течение 4 ч. Основной объем пор приходится на долю мезо- и макропор, поэтому образцы обладают малой насыпной плотностью ~0,6 г/см3 и незначительным объемом емкостных пор (микропор), из-за чего динамическая емкость образцов по парам воды при точке росы -36°С - 2,3 г Н2O/100 г адсорбента, а при точке росы

-5,5°С - 3,9 г H2O/100 г адсорбента, что недостаточно для процесса динамической осушки газов. Недостатком данного способа также является использование дорогостоящей и трудоемкой автоклавной технологии.

Наиболее близким по достигаемому эффекту и технической сущности является способ, в котором к гидроксиду алюминия в форме псевдобемита и/или его смеси с аморфной составляющей или бемитом, полученному осаждением из алюминийсодержащего раствора, добавляют порошок байерита, полученный осаждением из растворов нитрата алюминия и аммиака, при их соотношении по массе (70-95):(30-5). Полученную смесь пластифицируют в смесителе с Z-образными лопастями, формуют на шнековом экструдере, высушивают при температуре 110°С и прокаливают при температуре 350-400°С. Образцы активного оксида алюминия (смесь η- и γ-Al2О3), полученные данным способом, имеют удельную поверхность в диапазоне от 410 до 620 м2/г [SU 1731729, C01F 7/34, 07.05.92]. Динамическая емкость по парам воды у наиболее активного образца, полученного по прототипу из смеси байерита с псевдобемитом в соотношении 95:5 с удельной поверхностью 530 м2/г и высокой насыпной плотностью 0,86 см3/г, составляет при температуре точки росы (т.р.) -36°С=2,7 г Н2О/100 г осушителя, а при температуре т.р. -5.5°С=4,1 г Н2О/100 г осушителя. Низкие показатели динамической емкости прототипа по парам воды при столь высоких значениях удельной поверхности образцов объясняются отсутствием транспортных пор.

Изобретение решает задачу получения без стадий осаждения алюмооксидного адсорбента с высокой динамической емкостью по парам воды для процесса динамической осушки водородсодержащего, природного и других газов.

Задача по повышению динамической емкости алюмооксидного сорбента, пригодного для осушки различных газов, по экологически безопасной технологии, решается путем создания алюмооксидного адсорбента-осушителя с бидисперсной пористой структурой, состоящего из транспортных (мезопор) и емкостных пор (микропор), который содержит в своем составе χ-, η-, γ-Аl2О3 и рентгеноаморфную фазу оксида алюминия в количестве: χ-Аl2О3 + рентгеноаморфная фаза 35-95, γ-Al2О3+η-Al2О3 5-65.

Адсорбент-осушитель имеет удельную поверхность 200-400 м2/г, причем удельная площадь поверхности микропор диаметром менее 2 нм может быть от 100 до 300 м2/г, объем пор 0,25-0,6 см3/г и эффективный средний размер пор в диапазоне 2,5-10 нм.

Задача решается также способом приготовления адсорбента-осушителя, по которому продукт центробежной термической активации ЦТА гидраргиллита и/или термохимической активации ТХА гидраргиллита гидратируют в щелочном или кислом растворе, сушат, размалывают и пластифицируют, формуют полученную пасту методом экструзии, сушат и прокаливают в токе осушенного воздуха, полученный адсорбент-осушитель содержит в своем составе χ-, η-, γ-Al2О3 и рентгеноаморфную фазу в количестве, мас.%: χ-Аl2О3 + рентгеноаморфная фаза 35-95, γ-Al2О3+n-Al2О3 5-65.

Измельченный до размера 5-15 мкм продукт центробежной термической активации гидраргиллита и/или термохимической активации гидраргиллита гидратируют в щелочном или кислом растворе при интенсивном перемешивании и соотношении «жидкость»:«твердое» от 1 до 4 в течение 4-8 ч.

Неразмолотый продукт центробежной термической активации гидраргиллита и/или термохимической активации гидраргиллита гидратируют в шаровой мельнице в щелочном или кислом растворе и соотношении «жидкость»:«твердое» от 1 до 2 в течение 4-24 ч при комнатной температуре в мягких условиях.

Продукт центробежной термической активации и/или термохимической активации гидраргиллита гидратируют в кислом растворе при кислотном модуле или гидратируют в щелочном растворе при рН=8-11.

Продукт гидратации не подвергают фильтрации.

Для получения кислых растворов используют растворы органических и неорганических кислот, таких как муравьиная, азотная, серная, уксусная, ортофосфорная, борная, щавелевая и яблочная.

Для получения щелочных растворов с рН=8-11 используют раствор аммиака.

Пластификацию компонентов проводят растворами кислот, таких как азотная, уксусная или муравьиная при кислотном модуле .

С целью удешевления продукта на стадии пластификации компонентов продукты гидратации центробежной термической активации гидраргиллита или термохимической активации гидраргиллита и продукты центробежной термической активации гидраргиллита или термохимической активации гидраргиллита берут в массовом соотношении 80-20/20-80.

На стадии пластификации к продуктам гидратации центробежной термической активации гидраргиллита или термохимической активации гидраргиллита можно добавлять гидраргиллит в количестве 20-80 мас.%.

Гидратацию продуктов центробежной термической активации гидраргиллита и/или термохимической активации гидраргиллита можно проводить с добавлением раствора поверхностно-активного вещества, такого как поливиниловый спирт, этиленгликоль, этиловый спирт, при концентрации раствора 1-10 мас.%.

На стадии пластификации гидратированного продукта центробежной термической активации гидраргиллита и/или термохимической активации гидраргиллита добавляют раствор поверхностно-активного вещества, такого как поливиниловый спирт, этиленгликоль, этиловый спирт, при концентрации раствора 1-10 мас.%.

Прокаливание экструдатов проводят при температурах 350-600°С в токе осушенного воздуха при объемной скорости подачи воздуха 1000-10000 ч-1, скорости разогрева до температуры прокалки 20-50°С/ч и длительности прокалки 2-6 ч.

Таким образом приготовление адсорбента-осушителя осуществляют в несколько стадий.

На первой стадии нарабатывают исходное вещество для приготовления компонентов осушителя - продукт центробежной термической активации (ЦТА) гидраргиллита (синонимы: технический гидрат глинозема, гидраргиллит). Получение продукта ЦТА с различивши физико-химическими свойствами проводят в центробежном флаш-реакторе барабанного типа (ЦЕФЛАРТМ), разработанном Институтом катализа СО РАН им. Г.К.Борескова [RU 2264589, F26B 7/00, 20.11.2005]. Продукт ЦТА является результатом импульсной дегидратации и закалки гидраргиллита в центробежном флаш-реакторе. Средний размер частиц гидраргиллита - 80-100 мкм. В зависимости от условий протекания процесса (скорость нагрева до температуры реакции, парциальное давление паров воды, время контакта) продукт ЦТА в том или ином количестве может содержать следующие компоненты: кристаллический тригидроксид (неразложившийся гидраргиллит) с температурой дегидратации по данным дифференциально-термического анализа 290-320°С; окристаллизованный или мелкокристаллический бемит с температурой дегидратации 430-520°С и рентгеноаморфную активную фазу - гидроксиоксид с брутто-составом Аl2О3·nН2O (где n - количество моль воды, =0.1-0.4). Высокоактивная рентгеноамфорная фаза (с размером первичных частиц менее 4 нм) выделяет воду в широком диапазоне температур, вплоть до 700-800°С. При этом содержание рентгеноаморфной фазы в продукте ЦТА гидраргиллита может достигать 100%. Потери после прокаливания при 800°С (ППП) продукта ЦТА составляют от 3 до 20 мас.%. Дегидратация кристаллов гидраргиллита в центробежном флаш-реакторе имеет характер псевдоморфного перехода (с сохранением неизменными формы и размера исходных частиц).

На следующей стадии проводят гидратацию ЦТА продукта (активного гидроксиоксида алюминия) либо «флаш-продукта» Ачинского глиноземного комбината в щелочной среде при рН=8-11 или в кислой среде при рН менее 7 одновременно с размолом в шаровой мельнице в течение 4-24 ч при комнатной температуре. Также на стадии гидратации и пластификации для улучшения свойств осушителя может быть добавлен раствор поверхностно-активного вещества. Возможен вариант проведения гидратации продукта ЦТА в щелочной среде по способу, описанному в патенте RU 2237018, C01F 7/02, 27.09.2004. Гидратацию продукта ЦТА по данному способу проводят в реакторе с мешалкой при интенсивном перемешивании и соотношении жидкости к твердому, равном 1-10:1, и температуре 10-80°С в течение 6-168 ч.

Далее продукт гидратации, не отфильтровывая, выгружают в емкости из нержавеющей стали и помещают в сушильный шкаф, где проводят сушку при температуре 105-120°С в течение 24 ч. Затем высушенный гидроксид алюминия размалывают в шаровой мельнице в течение 4-24-х ч либо в роторно-инерционной мельнице до частиц размером 5-15 мкм. В результате гидратации продукта ЦТА или «флаш-продукта» в щелочной среде образуется до 80 мас.% байерита, а в кислой среде - до 75 мас.% псевдобемита.

На третьей стадии (пластификации) производят смешение продуктов гидратации ЦТА гидраргиллита или «флаш-продукта» (байеритсодержащего связующего или псевдобемитсодержащего связующего) с продуктом ЦТА или «флаш-продуктом» или гидраргиллитом при соотношении 80:20=20:80. Причем в ряде случаев могут пластифицировать только связующее вещество, в этом случае соотношение «наполнитель»:«связующее» будет 0:100. К смеси, состоящей из одного или нескольких компонентов, добавляют пептизатор, преимущественно раствор азотной кислоты. Также могут быть использованы следующие кислоты: уксусная, соляная, серная, муравьиная и т.д. Смесь при непрерывном перемешивании в течение 5-30 мин доводят до пластичного состояния. Пластичную массу экструдируют в черенки цилиндрической формы диаметром 2-12 мм и длиной 2-10 мм, гранулы сушат на воздухе при комнатной температуре и при необходимости досушивают в сушильном шкафу при температуре 105-120°С до прекращения потери веса.

На заключительной, четвертой, стадии проводят прокалку сформованных гранул в токе осушенного воздуха. Условия прокалки: температура воздуха 350-600°С, объемная скорость подачи воздуха 1000-10000 ч-1 скорость разогрева до температуры прокалки 20-50°С/ч, длительность прокалки 2-6 ч.

В результате прокалки в токе осушенного воздуха получают адсорбент-осушитель, который содержит в своем составе в различной пропорции χ-, η-, γ-Аl2О3 и рентгеноаморфную фазу.

Определение динамической емкости по парам воды проводят при температурах точки росы -36°С и -5,5°С. Сущность метода измерения динамической влагоемкости адсорбента заключается в определении времени защитного действия слоя и количества поглощенных при этом паров воды при пропускании через слой адсорбента V=50 см3, находящегося в адсорбере, потока насыщенного водяным паром газа. Слой адсорбента состоит из цилиндрических эструдатов диаметром 4 мм и длиной 4-10 мм (наиболее востребованным промышленностью размером). Время защитного действия слоя адсорбента определяется как время от начала адсорбции до начала превышения концентрации паров воды на выходе из адсорбера, требуемой для заданной степени осушки газа. Конструкция испытательного стенда позволяет определять адсорбционную динамическую емкость адсорбента в зависимости от состава исходной смеси и получать выходные кривые изменения концентраций адсорбатов во времени. Установка позволяет непрерывно готовить исходную паровоздушную смесь с различными концентрациями паров воды и углеводородов. Анализ паров воды проводят в конечной смеси термогигрометром «ИВА-6Б». В процессе работы обеспечивается автоматическое регулирование основных технологических параметров (скорости осушаемого потока, температуры).

Сравнения образцов проводят по величинам динамической емкости по парам воды, выраженных в массе поглощенного адсорбтива, отнесенной к 100 г осушителя при температуре точки росы -36°С и -5,5°С (температуры точки росы газового потока на выходе из адсорбера).

Основные преимущества адсорбента-осушителя, получаемого по предложенному способу, заключаются в следующем.

Способ позволяет получать алюмооксидный адсорбент-осушитель с ярко выраженным гидрофильным характером, высокой удельной поверхностью 200-400 м2/г и бипористым распределением пор, благодаря которому обеспечивается легкий транспорт адсорбтива к емкостным порам. При этом осушитель обладает большим объемом микропор (диаметром менее 2 нм) - 0,12-0,2 см3/г. Такие поры могут сорбировать пары воды по механизму капиллярной конденсации. На долю микропор может приходиться до 40-50% от всего объема поглощенных паров воды. Объем мезопор, размером 2-100 нм, может достигать 0,3 см3/г, которые, с одной стороны, являются для паров воды транспортом к микропорам, а с другой стороны, вследствие своего малого размера (сильно приближенного к микропорам) при определенных условиях - высокое давление потока и большая влажность - могут также адсорбировать воду по механизму капиллярной конденсации. Эффективный (средний) диаметр пор у адсорбента-осушителя в зависимости от способа приготовления находится в диапазоне от 2,5 до 10 нм. Суммарный объем пор - 0,25-0,6 см3/г. Наличие транспортных пор и большого объема емкостных пор позволяет значительно повысить динамическую емкость алюмооксидного осушителя по парам воды: при точке росы -36°С - 6,7 г Н2О на 100 г адсорбента, при точке росы -5,5°С - 11,6 г Н2О/100 г адсорбента.

Предлагаемый способ получения адсорбента-осушителя обеспечивает значительное снижение стоков и потребление воды на производство сорбентов (до 17-25 раз) по сравнению с описанными ранее способами и прототипом за счет отсутствия стадии осаждения и отмывки (фильтрации) в процессе получения компонентов сорбента. Потребление воды на производство 1 т сорбента по предлагаемому способу составляет 10-15 м3 вместо 250 м3.

Сущность изобретения иллюстрируется следующими примерами и таблицей.

Пример 1.

В емкость с 2000 мл дистиллированной воды при интенсивном перемешивании добавляют 500 г продукта ЦТА гидраргиллита с ППП (800°С) 3% и средним размером частиц 5-15 мкм. Затем в емкость постепенно приливают раствор муравьиной кислоты до достижения величины кислотного модуля . Гидратацию ведут при постоянном перемешивании и без внешнего подогрева в течение 4 ч. Полученную суспензию, не отфильтровывая, помещают в сушильный шкаф и сушат при температуре 110°С в течение 24-х ч, после чего измельчают в шаровой мельнице также в течение 24-х ч до частиц средним размером 5-15 мкм.

Полученное в количестве 590 г связующее вещество - гидроксид алюминия со структурой псевдобемита и небольшими примесями байерита - помещают в смеситель с Z-образными лопастями и пластифицируют раствором муравьиной кислоты при кислотном модуле .

Смесь перемешивают в течение 25 мин.

Приготовленную пластичную массу формуют в шнеке-грануляторе с диаметром фильеры 4 мм, экструдаты сушат в сушильном шкафу в течение 6 ч при температуре 120°С, затем помещают в трубчатую печь для прокалки в токе осушенного воздуха. Прокалку ведут в течение 300 мин при температуре 550°C с объемной скоростью подачи осушенного воздуха 5000 ч-1. Разогрев до температуры прокалки производят со скоростью 40°С/ч.

Далее часть образца объемом 50 см3 отбирают в термостойкую колбу с крышкой и помещают в вакуумный эксикатор над осушителем, например осушителем на основе цеолита NaX. Остывший до комнатной температуры образец загружают в адсорбер и проводят его испытание на динамическую емкость по парам воды.

Пример 2.

Навеску неразмолотого продукта ЦТА гидраргиллита (средний размер частиц 80-100 мкм) массой 1100 г смешивают с раствором азотной кислоты до достижения величины кислотного модуля и объеме раствора 10 дм3. Полученную суспензию помещают в бак объемом 30 дм3 и загружают шары диаметром 20-30 мм. Бак размещают на валках шаровой мельницы и проводят гидратацию продукта ЦТА в условиях мокрого размола в течение 24 ч.

Суспензию, не отфильтровывая, помещают в сушильный шкаф и сушат при температуре 110°С в течение 24-х ч, после чего измельчают в шаровой мельнице также в течение 24-х ч до частиц с фракционным составом 5-15 мкм.

Полученное связующее (вещество со структурой псевдобемита) помещают в смеситель с Z-образными лопастями и пластифицируют раствором азотной кислоты при кислотном модуле .

Формовку, прокалку осушителя в токе воздуха и испытания на динамическую емкость проводят, как и в примере 1.

Пример 3.

Аналогичен примеру 2, за исключением того, что гидратацию продукта ЦТА гидраргиллита проводят в условиях мокрого размола в течение 4 ч.

Пример 4.

Аналогичен примеру 2, за исключением того, что для гидратации вместо продукта ЦТА гидраргиллита берут навеску неразмолотого «флаш-продукта» массой 1050 г, а гидратацию проводят в растворе уксусной кислоты при кислотном модуле .

Пример 5.

Аналогичен примеру 2, за исключением того, что гидратацию продукта ЦТА гидраргиллита проводят в растворе ортофосфорной кислоты при кислотном модуле .

Пример 6.

Аналогичен примеру 2, за исключением того, что гидратацию продукта ЦТА гидраргиллита проводят в растворе борной кислоты при кислотном модуле .

Пример 7.

Аналогичен примеру 2, за исключением того, что гидратацию продукта ЦТА гидраргиллита проводят в растворе серной кислоты при кислотном модуле .

Пример 8.

Аналогичен примеру 2, за исключением того, что гидратацию продукта ЦТА гидраргиллита проводят в растворе щавелевой кислоты при кислотном модуле .

Пример 9. Аналогичен примеру 2, за исключением того, что гидратируют «флаш-продукт» в растворе яблочной кислоты при кислотном модуле .

Пример 10.

В емкость с 500 мл дистиллированной воды при интенсивном перемешивании добавляют 500 г «флаш-продукта» с ППП (800°С) 8% и фракционным составом 5-15 мкм. Затем в емкость постепенно приливают раствор аммиака до получения рН=11. Гидратацию ведут при постоянном перемешивании и без внешнего подогрева в течение 8 ч. Полученную суспензию, не отфильтровывая, помещают в сушильный шкаф и сушат при температуре 110°С в течение 24-х ч, после чего измельчают в шаровой мельнице также в течение 24-х ч до частиц размером 5-15 мкм.

Полученное в количестве 580 г связующее вещество - гидроксид алюминия со структурой байерита и примесями псевдобемита - помещают в смеситель с Z-образнымй лопастями и пластифицируют раствором уксусной кислоты при кислотном модулем .

Смесь перемешивают в течение 25 мин.

Приготовленную пластичную массу формуют в шнеке-грануляторе с диаметром фильеры 2-12 мм, экструдаты сушат в сушильном шкафу при температуре 120°С в течение 6 часов и помещают в трубчатую печь для прокалки в токе осушенного воздуха. Прокалку ведут в течение 120 мин при температуре 600°C с объемной скоростью подачи осушенного воздуха 10000 ч-1. Разогрев до температуры прокалки производят со скоростью 50°С/ч.

Испытание осушителя на динамическую емкость по парам воды проводят так же, как и в примере 1.

Пример 11.

Навеску неразмолотого «флаш-продукта» в количестве 1100 г (средний размер частиц 80-100 мкм) смешивают с раствором поливинилового спирта (10%) и раствором аммиака до получения рН=8. Полученную суспензию помещают в бак объемом 30 дм3 и загружают шары диаметром 20-30 мм. Бак размещают на валках шаровой мельницы и проводят гидратацию «флаш-продукта» в условиях мокрого размола в течение 24 ч.

Суспензию, не отфильтровывая, помещают в сушильный шкаф и сушат при температуре 110°С в течение 24-х ч, после чего измельчают в шаровой мельнице также в течение 24-х ч до частиц размером 5-15 мкм.

Полученное связующее (вещество со структурой байерита) пластифицируют в смесителе при постоянном перемешивании. Для этого к 1100 г связующего вещества добавляют раствор уксусной кислоты и перемешивают смесь в течение 25 мин при кислотном модуле .

Приготовленную пластичную массу формуют в шнеке-грануляторе с диаметром фильеры 2-12 мм, экструдаты сушат в сушильном шкафу при температуре 120°С в течение 6 ч и помещают в трубчатую печь для прокалки в токе осушенного воздуха. Прокалку ведут в течение 360 мин при температуре 350°C с объемной скоростью подачи осушенного воздуха 10000 ч-1. Разогрев до температуры прокалки производят со скоростью 30°С/ч.

Испытание осушителя на динамическую емкость по парам воды проводят так же как и в примере 1.

Пример 12.

Аналогичен примеру 11, за исключением того, что в шаровой мельнице гидратируют «флаш-продукт» в щелочном растворе при рН=11 с добавлением раствора поливинилового спирта (1%).

Пример 13.

Аналогичен примеру 11, за исключением того, что вместо «флаш-продукта» для гидратации берут 1100 г продукта ЦТА гидраргиллита.

Пример 14.

Берут 800 г «флаш-продукта» Ачинского глиноземного комбината, размолотого в ротороно-инерционной мельнице до частиц средним размером 5-15 мкм и 200 г связующего из примера 4. Связующее вещество помещают в смеситель и при непрерывном перемешивании пластифицируют раствором азотной кислоты и при кислотном модуле . Пластификация длится в течение 10-25 мин, во время которой приливают 10% раствор поливинилового спирта. Затем малыми порциями добавляют наполнитель - «флаш-продукт». Перемешивание связующего вещества с наполнителем длится не менее 15-20 мин.

Пластичную массу формуют в виде цилиндрических экструдатов диаметром 2-12 мм на шнеке-грануляторе, прокаливают в токе осушенного воздуха и испытывают на динамическую емкость как и в примере 1.

Берут 200 г «флаш-продукта» Ачинского глиноземного комбината, предварительно размолотого на роторно-инерционной мельнице до частиц средним размером 5-15 мкм, и 800 г связующего, полученного по примеру 4.

Связующее вещество помещают в смеситель и при непрерывном перемешивании пластифицируют раствором азотной кислоты при кислотном модуле Перемешивание длится в течение 10-25 мин. Затем малыми порциями добавляют наполнитель - гидраргиллит. Пластификация связующего вещества с наполнителем длится не менее 15-20 мин.

Формовку, прокалку в токе воздуха и испытания на динамическую емкость проводят, как и в примере 1.

Пример 16.

Берут 800 г гидраргиллита Ачинского глиноземного комбината, предварительно размолотого на роторно-инерционной мельнице до частиц средним размером 5-15 мкм, и 200 г псевдобемитсодержащего связующего, полученного по примеру 1. Связующее вещество помещают в смеситель и при непрерывном перемешивании пластифицируют раствором азотной кислоты при кислотном модуле . Перемешивание длится в течение 10-25 мин, во время которого приливают 1% раствор поливинилового спирта. Затем малыми порциями добавляют наполнитель - гидраргиллит. Пластификация связующего вещества с наполнителем длится не менее 15-20 мин.

Полученную пластичную массу формуют в виде цилиндрических экструдатов, прокаливают в токе воздуха при температуре 400°С и испытывают на динамическую емкость как и в примере 1.

Характеристики продуктов, полученных по примерам 1-16, представлены в таблице.

Источник поступления информации: Роспатент

Showing 1-10 of 18 items.
10.01.2013
№216.012.1a01

Способ определения массовой концентрации люизита в воде, содержащей иприт, газохроматографическим методом с применением пламенно-ионизационного детектора

Изобретение относится к области анализа небиологических материалов физическими и химическими методами и может быть использовано при решении задач экологического мониторинга на объектах хранения и уничтожения химического оружия на бывших предприятиях по производству отравляющих веществ. При...
Тип: Изобретение
Номер охранного документа: 0002472149
Дата охранного документа: 10.01.2013
20.04.2013
№216.012.3637

Способ изготовления многослойной композитной оболочки двоякой кривизны

Изобретение относится к судостроению и другим отраслям транспортного машиностроения, а именно к способам формирования оболочек двойной кривизны из многослойных композитных материалов, включающих слои из высокоэластичных полимеров. Техническим результатом заявленного изобретения является...
Тип: Изобретение
Номер охранного документа: 0002479432
Дата охранного документа: 20.04.2013
20.08.2013
№216.012.5fff

Способ получения активированного угля

Изобретение относится к технологическим процессам получения активного угля на основе древесины. Способ получения активированного угля заключается в сушке, карбонизации и активации сырьевого материала в реакторе и в последующей выгрузке полученного продукта. В качестве сырья используют древесную...
Тип: Изобретение
Номер охранного документа: 0002490207
Дата охранного документа: 20.08.2013
29.03.2019
№219.016.f3b4

Порошковый жаропрочный никелевый сплав

Изобретение относится к порошковой металлургии, в частности к жаропрочным никелевым сплавам. Может использоваться в газотурбинных двигателях для изготовления тяжело нагруженных деталей, работающих при повышенных температурах. Порошковый жаропрочный никелевый сплав содержит, мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002368683
Дата охранного документа: 27.09.2009
29.03.2019
№219.016.f643

Способ получения олефинов с-с и катализатор для его осуществления

Изобретение относится к области органического синтеза, а именно к получению олефиновых и диеновых углеводородов дегидрированием парафиновых углеводородов. Описан способ получения олефинов С-С дегидрированием парафиновых углеводородов в присутствии катализатора, содержащего оксид хрома, оксид...
Тип: Изобретение
Номер охранного документа: 0002402514
Дата охранного документа: 27.10.2010
10.04.2019
№219.017.0701

Способ производства проката с повышенным сопротивлением водородному и сероводородному растрескиванию

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для производства сероводородостойких газонефтепроводных труб. Для обеспечения повышенных показателей прочности при одновременном повышении хладостойкости, низкотемпературной вязкости и...
Тип: Изобретение
Номер охранного документа: 0002471003
Дата охранного документа: 27.12.2012
29.04.2019
№219.017.40a7

Самолет и его стреловидное крыло

Группа изобретений относится к авиационной технике. Самолет содержит фюзеляж, стреловидное крыло, оперение и реактивные двигатели. Фюзеляж характеризуется выбором координат точек контуров наружной поверхности. Стреловидное крыло содержит консольные части и центроплан, которые заданы...
Тип: Изобретение
Номер охранного документа: 0002398709
Дата охранного документа: 10.09.2010
29.04.2019
№219.017.40e9

Устройство выдвижения закрылка крыла самолета

Изобретение относится к авиастроению, а именно к устройствам выдвижения закрылка крыла самолета. Устройство содержит балку, неподвижно закрепленную на силовом каркасе крыла, установленный на балке прямолинейный рельс с кареткой, отклоняемый обтекатель и жестко связанный с закрылком кронштейн....
Тип: Изобретение
Номер охранного документа: 0002394722
Дата охранного документа: 20.07.2010
29.04.2019
№219.017.41fe

Система открытия аварийного выхода

Изобретение относится к области авиации, более конкретно к средствам открытия аварийного выхода самолета. Система открытия аварийного выхода содержит дверь, соединенный с ней штоком пневмоцилиндр, соединенный трубопроводом через спусковой механизм с, как минимум, одним источником сжатого газа,...
Тип: Изобретение
Номер охранного документа: 0002376206
Дата охранного документа: 20.12.2009
29.04.2019
№219.017.43ef

Механизм привода передних створок ниши шасси самолета

Изобретение относится к авиационной технике и касается механизма, осуществляющего открытие и закрытие створок ниши шасси самолета в процессе выпуска и уборки передней опоры шасси. Механизм привода передних створок ниши шасси самолета содержит подкос, составленный из верхнего и нижнего звеньев,...
Тип: Изобретение
Номер охранного документа: 0002427502
Дата охранного документа: 27.08.2011
Showing 1-10 of 179 items.
20.01.2013
№216.012.1bb3

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Группа изобретении относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам приготовления носителей для этих катализаторов. Описан катализатор, имеющий объем пор 0,3-0,7 см/г, удельную поверхность 170-300 м/г,...
Тип: Изобретение
Номер охранного документа: 0002472585
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1f1d

Литий-кобальт-оксидный материал и способ его приготовления

Изобретение может быть использовано в химической промышленности. Литий-кобальт-оксидный материал имеет состав LiCoO, где х может принимать значения от+0,2 до -0,2, постоянную сумму коэффициентов атомного содержания X+Y=2,0 и представляет собой диамагнитную матрицу на основе кристаллитов LiCoO,...
Тип: Изобретение
Номер охранного документа: 0002473466
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.230c

Катализатор, способ его приготовления и способ получения малосернистого дизельного топлива

Изобретение относится к катализаторам гидроочистки дизельного топлива, способам приготовления таких катализаторов и способам получения малосернистого дизельного топлива. Описан катализатор, содержащий соединение [Со(СНО)][МоО(СНО)] в количестве 30-45 мас.%, диоксид титана 0,8-6,0 мас.%, AlO -...
Тип: Изобретение
Номер охранного документа: 0002474474
Дата охранного документа: 10.02.2013
10.03.2013
№216.012.2d7e

Способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота

Изобретение относится к способу обезвреживания закиси азота, в том числе и низкоконцентрированных выбросов закиси азота, например, в отходящих газах производства азотной кислоты с использованием катализатора на основе железосодержащего цеолита. Описан способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002477177
Дата охранного документа: 10.03.2013
10.04.2013
№216.012.3255

Катализатор гидроочистки углеводородного сырья, носитель для катализатора гидроочистки, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки, способам приготовления таких катализаторов, носителям для катализаторов, способам приготовления носителей и способам получения нефтепродуктов с низким содержанием серы. Описан катализатор, содержащий, мас.%: Мо - 8,0-15,0; Со или Ni - 2,0-5,0;...
Тип: Изобретение
Номер охранного документа: 0002478428
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.503d

Способ получения фотокаталитически активного диоксида титана

Изобретение может быть использовано в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, катализаторов. Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана включает осаждение диоксида титана одновременным сливанием в воду...
Тип: Изобретение
Номер охранного документа: 0002486134
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
+ добавить свой РИД