×
29.03.2019
219.016.f017

СПОСОБ КОРРЕКЦИИ КОМАНДНОГО СИГНАЛА НА РАКЕТЕ, ВРАЩАЮЩЕЙСЯ ПО УГЛУ КРЕНА, И СИСТЕМА НАВЕДЕНИЯ РАКЕТЫ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002257523
Дата охранного документа
27.07.2005
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области вооружения, а именно к ракетной технике и, в частности к ракетам, вращающимся по углу крена, и может быть использовано в системах наведения ракет, в которых применяются, например, лучевые системы наведения. Технический результат - повышение надежности за счет использования угловой скорости вращения ракеты по крену в качестве регулирующей величины, которой корректируют величину командного сигнала на ракете. Предложен способ коррекции командного сигнала на ракете, вращающейся по углу крена, в котором электромагнитное излучение с пункта управления преобразуют на ракете в составляющие командного сигнала, корректируют их и из корректированных значений формируют командный сигнал. При этом на ракете вырабатывают креновый сигнал в виде электрических импульсов, длительности которых формируют равные по величине угловые интервалы, образуемые при вращении ракеты по углу крена, преобразуют длительность каждого импульса в двоичное число, величиной которого корректируют величины составляющих командного сигнала. Введение в систему наведения ракеты последовательно включенных датчика угла крена и преобразователя “длительность-код” повысило надежность за счет использования угловой скорости вращения ракеты по крену для коррекции величины командного сигнала на ракете. 2 н.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к области вооружения, а именно к ракетной технике и, в частности, к ракетам, вращающимся по углу крена, и может быть использовано в системах наведения ракет, в которых применяются, например, лучевые системы теленаведения.

Известны способ коррекции на ракете командного сигнала и система наведения ракеты для его реализации [“Основы радиоуправления”, под ред. Вейцеля В.А. и Типугина В.Н., Москва, “Советское радио”, 1973 г., стр.276, 277, рис.5.3]. Способ коррекции командного сигнала (Uk) на ракете заключается в том, что преобразуют электромагнитное излучение с пункта управления на ракете в составляющие командного сигнала (Ukz и Uky), измеряют величину скорости полета ракеты, которой корректируют величину составляющих командного сигнала, и из корректированных составляющих вырабатывают командный сигнал управления ракетой.

Система наведения ракеты содержит аппаратуру пункта управления, а на ракете - последовательно включенные приемник и блок выделения координат, выходы по курсу и тангажу которого через корректирующий блок (блок поправки на скорость) соединены, соответственно, с первым и вторым входами автопилота, при этом третий вход корректирующего блока подключен к устройству измерения скорости полета ракеты.

В блок выделения координат входят канал сигнала ошибки, блок поправки на угол крена, опорный канал и преобразователь координат, а в автопилот - устройство формирования команд. Такая функциональная разбивка блоков в известном устройстве позволяет объединять системы теленаведения по лучу, основанные на круговом сканировании в пространстве диаграммы направленности луча, на сканировании в пространстве информационного луча в вертикальной и горизонтальной плоскостях, на проецировании в пространство "информационных" картинок, сформированных растрами, при котором отсутствует сканирование луча и т.д.

В этом известном способе коррекции на ракете командного сигнала и системе наведения ракеты, основанной на нем, изменяют величины координат Ukz и U, а значит и командного сигнала управления ракетой в зависимости от величины скорости полета ракеты (υ), оказывающей влияние на эффективность рулей.

Величину скорости полета ракеты получают, например, путем интегрирования сигнала линейного ускорения, измеряемого с помощью акселерометра [“Основы радиоуправления”, под ред. Вейцеля В.А. и Типугина В.Н., Москва, “Советское радио”, 1973 г., стр.52, 53, рис.1.31], основанного на перемещении груза m относительно корпуса снаряда, механически связанного с токосъемником потенциометра.

Следовательно, недостатком известного способа коррекции на ракете командного сигнала и системы наведения ракеты, его реализующей, является сложность, а главное - необходимость наличия на борту ракеты дополнительного нового устройства, которое должно измерять только скорость полета ракеты, что снижает надежность.

Задачей настоящего изобретения является повышение надежности за счет использования датчика крена на ракете, вращающейся по углу крена, дополнительно для измерения угловой скорости вращения ракеты вокруг своей оси, пропорциональной скорости полета, и корректировки по величине угловой скорости величины командного сигнала управления ракетой.

Поставленная задача решается в способе коррекции командного сигнала на ракете, вращающейся по углу крена, за счет того, что электромагнитное излучение с пункта управления преобразуют на ракете в составляющие командного сигнала, корректируют их и из корректированных значений формируют командный сигнал, при этом на ракете вырабатывают креновый сигнал в виде электрических импульсов, длительности которых формируют равные по величине угловые интервалы, образуемые при вращении ракеты по углу крена, преобразуют длительность каждого импульса в двоичное число, величиной которого корректируют величины составляющих командного сигнала.

Система наведения ракеты, основанная на этом способе, содержит аппаратуру пункта управления, а на ракете - последовательно включенные приемник и блок выделения координат, выходы по курсу и тангажу которого через первый и второй корректирующие блоки соединены, соответственно, с первым и вторым входами автопилота; в нее введены последовательно включенные датчик угла крена и преобразователь “длительность-код”, при этом выход датчика угла крена соединен с третьим входом автопилота, а выход преобразователя “длительность-код” подключен ко вторым входам первого и второго корректирующих блоков.

В предлагаемом изобретении заявленный способ реализуется следующим образом. Электромагнитное излучение с пункта управления на ракете преобразуют в составляющие командного сигнала, например электрические сигналы (напряжения), соответствующие величинам координат по курсу и тангажу (Ukz и Uky, соответственно) относительно нуля декартовой системы координат пункта управления, при этом нуль координат соответствует точке прицеливания. Затем корректируют значения величин составляющих командного сигнала, например, путем изменения коэффициентов передачи. Поскольку ракета в полете вращается по углу крена, например, за счет разворота лопастей стабилизаторов, то датчиком угла крена на ракете формируют креновый сигнал, который преобразует электрические сигналы корректированных величин составляющих командного сигнала Ukz и Uky, т.е. координаты ракеты по курсу и тангажу, из декартовой системы координат пункта управления в декартовые либо полярные координаты ракеты, вращающиеся вместе с ракетой.

Таким образом, при формировании командного сигнала используют вырабатываемый на ракете креновый сигнал. Этот сигнал представляет собой электрические импульсы. Длительности импульсов формируют равные по величине угловые интервалы ϕ, образуемые при вращении ракеты по углу крена, при этом

где ω - угловая скорость вращения ракеты вокруг своей оси,

t - время, в течение которого формируется угол ϕ, т.е. длительность креновых импульсов.

Поскольку траектория полета ракеты представляет собой винтовое движение, слагаемое из прямолинейного поступательного движения со скоростью υ и вращением с угловой скоростью ω то

где р - параметр винта (стабилизаторов), создающих вращательное движение.

Таким образом, с учетом (1),

Поскольку р=const и ϕ=const, то

где k=p·ϕ=const, следовательно, скорость полета ракеты υ обратно пропорциональна длительности креновых импульсов t.

Длительность креновых импульсов t преобразуют в двоичное число, которым корректируют величины составляющих командного сигнала, например увеличивают коэффициент передачи при увеличении двоичного числа. Из корректированных значений величин координат формируют командный сигнал (команду управления ракетой) с учетом крена ракеты.

Предлагаемое изобретение поясняется чертежами (фиг.1 и 2). На фиг.1 представлена структурная электрическая схема системы наведения ракеты, где 1 - аппаратура пункта управления (АПУ), 2 - ракета (P), 3 - преобразователь “длительность-код” (ПР), 4 - приемник (П), 5а, 5б и 5в - соответственно, первый (ФИ1), второй (ФИ2) и третий (ФИ3) формирователи импульсов, 6 - “RS”-триггер (Т), 7 - блок выделения координат (БВК), 8 - регистр (РГ), 9 - счетчик импульсов (СИ), 10 - логическая схема “И” (ЛС), 11а и 11б - соответственно, первый (КБ1) и второй (КБ2) корректирующие блоки, 12 - генератор импульсов (ГИ), 13 - автопилот (АП), 14 - датчик угла крена (ДУК).

На фиг.2 представлены эпюры сигналов, где а - сигнал на выходе датчика угла крена 14, б - сигнал на выходе третьего формирователя импульсов 5в, в - сигнал на выходе “RS”-триггера 6, г - сигнал на выходе второго формирователя импульсов 5б, д - сигнал на выходе первого формирователя импульсов 5 а, е - сигнал на выходе счетчика импульсов 9 (в аналоговом виде), ж - сигнал на выходе регистра 8 (в аналоговом виде).

На ракете 2 последовательно включены приемник 4 и блок выделения координат 7, выходы по курсу “Z” и тангажу “Y” которого через первый 11а и второй 11б корректирующие блоки соединены, соответственно, с первым и вторым входом автопилота 13. Последовательно включены датчик угла крена 14 и преобразователь “длительность-код” 3. Выход датчика крена 14 соединен с третьим входом автопилота 13. Выход преобразователя “длительность-код” 3 подключен ко вторым входам первого 11а и второго 11б корректирующих блоков.

Аппаратура пункта управления 1 может быть выполнена как в известной системе наведения при сканировании диаграммы направленности, например, поочередно в двух взаимно перпендикулярных направлениях (по курсу и тангажу). Приемник 4 и блок выделения координат 7 могут быть выполнены по схеме приемного тракта, например, с времяимпульсной модуляцией (ВИМ) при оптической линии связи или с дополнительной амплитудной модуляцией (ВИМ-АМ) при радиолинии [“Основы радиоуправления”, под ред. Вейцеля В.А. и Типугина В.Н., Москва, “Советское радио”, 1973 г., стр.246-248, рис.4.28]. Соответственно с данным видом модуляции должна быть выполнена аппаратура пункта управления 1.

Пример выполнения преобразователя “длительность-код” 3 приведен на фиг.1. Первый 5а и второй 5б формирователи импульсов представляют собой, например, два последовательно включенных ждущих мультивибратора, второй из которых срабатывает по заднему фронту сигнала, формируемого первым ждущим мультивибратором. Третий формирователь импульсов 5в можно выполнить в виде двух параллельно включенных по входу ждущих мультивибраторов, первый из которых срабатывает по переднему фронту входного сигнала, а второй - по заднему, выходы первого и второго ждущих мультивибраторов подключены, соответственно, к первому и второму входам логической схемы “ИЛИ”. “RS”-триггер 6, регистр 8, счетчик импульсов 9 и логическая схема “И” 10 - обычные микросхемы, например, 564-й серии. Генератор импульсов 12, - например, стабилизированный по частоте генератор импульсов, выполненный на кварцевом резонаторе.

Первый и второй корректируемые блоки 11а и 11б могут быть выполнены идентично как программно-запоминающие устройства, например, на микросхемах 556РТ7, при этом цифровые сигналы с блоков 7 и 8 подают, соответственно, на адреса строк и столбцов этой микросхемы. Автопилот 9 выполнен как автопилот для ракеты, вращающейся по углу крена [В.А.Павлов, С.А.Понырко, Ю.М.Хованский. “Стабилизация летательных аппаратов и автопилоты”, Москва, Высшая школа, 1964 г., стр.209, рис.6.11], при этом потенциометр заменяют на преобразователь “угол-число” [В.П.Демидов, Н.Ш.Кутыев. “Управление зенитными ракетами”, Москва, Военное издательство, 1989 г., стр.286, 287, рис.10.4], который входит в состав датчика угла крена 14. Таким образом, датчик угла крена 14 может быть выполнен на гироскопе [“Основы радиоуправления”, под ред. Вейцеля В.А. и Типугина В.Н., Москва, “Советское радио”, 1973 г., стр.51, 52, рис.1.29], где вместо потенциометра используют преобразователь “угол-число”.

Заявленная система наведения ракеты работает следующим образом. Аппаратура пункта управления 1, расположенная, например, на земле, формирует поле управления, например, по закону ВИМ, при этом при изменении направления сканирования с вертикального на горизонтальное меняют рабочие сигналы с РС1 на РС2 [“Основы радиоуправления”, под ред. Вейцеля В.А. и Типугина В.Н., Москва, “Советское радио”, 1973 г., стр.246-248, рис.4.29]. При вводе ракеты 2 в луч приемник 4 преобразует электромагнитное излучение в электрические импульсы, которые поступают на вход блока выделения координат 7. Этот блок выделяет по курсу “Z” и тангажу “Y” координаты ракеты, т.е. электрический сигнал, соответствующий отклонению ракеты 2 от точки прицеливания.

С выходов по курсу “Z” и тангажу “Y” блока выделения координат 7 сигналы в двоичном параллельном коде поступают на первые входы, соответственно, первого 11а и второго 11б корректирующих блоков, с выходов которых они поступают, соответственно, на первый и второй входы (цифровые) автопилота 13.

Датчик угла крена 14 формирует, например, два импульсных сигнала, период повторения которых равен периоду вращения ракеты по углу крена, т.е. 360°. Длительности единичного и нулевого логических уровней этих сигналов равны 180°, а сдвиг по фазе между этими сигналами равен 90°. Из этих двух сигналов формируют, например, с помощью логической схемы “исключающее ИЛИ” сигнал, приведенный на фиг.2 (эпюра а). Длительности единичного и нулевого логических уровней этого сигнала одинаковы и равны 90°. Данный сигнал привязан передним фронтом первого или второго сигнала (на соответствующих входах логической схемы “исключающее ИЛИ”) к исходной фазировке командного сигнала на ракете, т.е. в каждую четверть разворота ракеты по углу крена (90°) автопилот 13 осуществляет коммутацию электрических сигналов Y и Z, например в первую четверть будет “Y”, во вторую - “Z”, в третью - “минус Y” и в четвертую - “минус Z”, в соответствие с которыми отклоняются рули ракеты 2.

В преобразователе “длительность-код” 3 сигнал с выхода датчика крена 14 (эпюра а на фиг.2) третьим формирователем импульсов 5в преобразуется в импульсы (эпюра б на фиг.2). Эти импульсы поступают на вход установки в нуль (вход “R”) “RS”-триггера 6 и устанавливают на его выходе нулевой логический уровень (эпюра в на фиг.2). Одновременно импульсы с выхода третьего формирователя импульсов 5в поступают на вход первого формирователя импульсов 5а, на выходе которого формируются задержанные импульсы (эпюра г на фиг.2). Эти импульсы поступают на вход записи регистра 8 и записывают в него информацию в двоичном параллельном коде с выхода счетчика импульсов 9. Импульсы с выхода первого формирователя импульсов 5а поступают также на вход второго формирователя импульсов 5б, импульсы с выхода которого (эпюра д на фиг.2) поступают на вход установки счетчика импульсов 9 в исходное (нулевое) состояние (эпюра е на фиг.2). Эти же импульсы поступают также на вход “S” “RS”-триггера 6 и устанавливают на его выходе единичный логический уровень (эпюра в на фиг.2)

Единичный логический уровень с выхода “RS”-триггера 6 поступает на первый вход логической схемы “И” 10, которая начинает пропускать на счетный вход счетчика импульсов 9 импульсы с выхода генератора импульсов 12. Далее весь процесс повторяется вновь.

Как следует из изложенного выше, в первоначальный момент времени исходная информация, хранимая в регистре 8, не соответствует действительной скорости полета ракеты, поэтому для ее исключения требуется вводить задержку на управление ракетой, например на раскрытие рулей.

Сигнал с выхода регистра 8 в двоичном параллельном коде поступает на объединенные вторые входы первого 11а и второго 11б корректирующих блоков и, соответственно, изменяет величины координат по курсу “Z” и тангажу “Y” на их выходах.

Следовательно, в способе коррекции командного сигнала на ракете, вращающейся по углу крена, за счет того, что на ракете вырабатывают креновый сигнал в виде электрических импульсов, длительности которых формируют равные по величине угловые интервалы, образуемые при вращении ракеты по углу крена, преобразуют длительность каждого импульса в двоичное число, величиной которого корректируют величины составляющих командного сигнала, повышена надежность за счет измерения угловой скорости вращения ракеты по крену, которой корректируют коэффициенты передачи на борту ракеты.

Введение в систему наведения ракеты последовательно включенных датчика угла крена и преобразователя “длительность-код”, при этом выход датчика угла крена соединен с третьим входом автопилота, а выход преобразователя “длительность-код” подключен ко вторым входам первого и второго корректирующих блоков, повысило надежность за счет отслеживания угловой скорости вращения ракеты по крену.

1.Способкоррекциикомандногосигналанаракете,вращающейсяпоуглукрена,согласнокоторомуэлектромагнитноеизлучениеспунктауправленияпреобразуютнаракетевсоставляющиекомандногосигнала,корректируютихиизкорректированныхзначенийформируюткомандныйсигнал,отличающийсятем,чтонаракетевырабатываюткреновыйсигналввидеэлектрическихимпульсов,длительностикоторыхформируютравныеповеличинеугловыеинтервалы,образуемыепривращенииракетыпоуглукрена,преобразуютдлительностькаждогоимпульсавдвоичноечисло,величинойкоторогокорректируютвеличинысоставляющихкомандногосигнала.12.Системанаведенияракеты,содержащаяаппаратурупунктауправления,анаракете-последовательновключенныеприемникиблоквыделениякоординат,выходыпокурсуитангажукоторогочерезпервыйивторойкорректирующиеблокисоединенысоответственноспервымивторымвходамиавтопилота,отличающаясятем,чтовведеныпоследовательновключенныедатчикуглакренаипреобразователь“длительность-код”,приэтомвыходдатчикауглакренасоединенстретьимвходомавтопилота,авыходпреобразователя“длительность-код”подключенковторымвходампервогоивторогокорректирующихблоков.2
Источник поступления информации: Роспатент

Showing 1-10 of 438 items.
10.01.2013
№216.012.19c9

Ударно-спусковой механизм автоматического стрелкового оружия

Изобретение относится к области оружейной техники. Ударно-спусковой механизм содержит курок с боевым взводом и взводом автоспуска, боевую пружину, подпружиненное шептало, кинематически связанное со спусковым крючком, шептало одиночной стрельбы и подпружиненный автоспуск с шепталом автоспуска....
Тип: Изобретение
Номер охранного документа: 0002472093
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.19cd

Действующая модель миниатюрного полуавтоматического пистолета

Изобретение относится к области действующих моделей миниатюрного оружия, преимущественно образцов оружия, действие автоматики которого основано на отдаче ствола с коротким ходом. Действующая модель миниатюрного полуавтоматического пистолета содержит корпус, в котором размещены ствол, затвор,...
Тип: Изобретение
Номер охранного документа: 0002472097
Дата охранного документа: 10.01.2013
27.03.2013
№216.012.315f

Автоматическое стрелковое оружие

Изобретение относится к оружейной технике и может быть использовано при разработке автоматического стрелкового оружия многофункционального назначения. Автоматическое стрелковое оружие содержит ствольную коробку с закрепленным в ней стволом, затворную раму с затвором и возвратной пружиной,...
Тип: Изобретение
Номер охранного документа: 0002478177
Дата охранного документа: 27.03.2013
20.10.2013
№216.012.76d4

Прицельное приспособление гранатомета

Изобретение относится к оружейной технике, а именно к прицельному приспособлению гранатомета, используемому, в основном, в качестве дополнительных к основному оптическому прицелу. Прицельное устройство гранатомета содержит целик с прорезью или диоптром и мушку, установленную в основании мушки,...
Тип: Изобретение
Номер охранного документа: 0002496080
Дата охранного документа: 20.10.2013
20.02.2019
№219.016.c4a3

Способ юстировки излучателя лазерной системы прицел-прибора наведения

Изобретение относится к области ракетной техники, в частности к управляемым ракетным комплексам. Техническим результатом изобретения является повышение выходной мощности лазерного луча прицел-прибора наведения, уменьшение его веса и габаритов, снижение трудоемкости при сборке и юстировке,...
Тип: Изобретение
Номер охранного документа: 02148234
Дата охранного документа: 27.04.2000
20.02.2019
№219.016.c4ba

Способ проверки качества функционирования рулевых приводов и автопилотов управляемых снарядов и стенд для его осуществления

Изобретение относится к испытаниям деталей машин. Стенд содержит генератор импульсных сигналов, пульт управления и контроля, регистрирующий блок, источники электро- и пневмопитания, основание для закрепления проверяемого блока воздушно-динамического рулевого привода (автопилота) с раскрытыми...
Тип: Изобретение
Номер охранного документа: 02182702
Дата охранного документа: 20.05.2002
01.03.2019
№219.016.caee

Способ наведения оптического прицела на цель

Изобретение относится к вооружению и может быть использовано в войсках противовоздушной обороны. Технический результат - повышение точности наведения оптического прицела (ОП) на цель и уменьшение зависимости эффективности боевой машины от уровня профессиональной подготовленности наводчика....
Тип: Изобретение
Номер охранного документа: 02217681
Дата охранного документа: 27.11.2003
08.03.2019
№219.016.d5c1

Орудийная установка

Изобретение относится к технике вооружения, в частности к башенным орудийным установкам. Оно позволяет повысить точность стрельбы за счет уменьшения влияния вибраций ствола на баллистику снаряда в момент его вылета из канала ствола. Орудийная установка содержит автоматическую пушку, размещенную...
Тип: Изобретение
Номер охранного документа: 02165575
Дата охранного документа: 20.04.2001
11.03.2019
№219.016.d69b

Боевая машина

Изобретение относится к бронетанковой технике, а именно к конструкциям боевых машин пехоты и десанта. Сущность изобретения заключается в том, что боевая машина содержит гусеничный носитель и боевое отделение, установленное на переходном кольце, которое закреплено на подбашенном листе...
Тип: Изобретение
Номер охранного документа: 0002288427
Дата охранного документа: 27.11.2006
11.03.2019
№219.016.d69d

Складывающееся крыло ракеты

Изобретение относится к области вооружения. Складывающееся крыло ракеты содержит лопасть, корневая часть которой совместно с шарнирно соединенными с ней вкладышами размещена в выемке жестко закрепленного на корпусе ракеты основания, устройство раскрытия в виде взаимодействующей с вкладышами...
Тип: Изобретение
Номер охранного документа: 0002288434
Дата охранного документа: 27.11.2006
Showing 1-10 of 49 items.
20.02.2019
№219.016.bc99

Заряд ракетного твердого топлива

Заряд ракетного твердого топлива содержит корпус, жесткоскрепленный с корпусом топливный заряд и защитно-крепящий слой. Защитно-крепящий слой представляет собой листовой каландрованный материал и изготовлен на основе высокопрочного этиленпропилендиенового каучука с порошкообразными...
Тип: Изобретение
Номер охранного документа: 0002262612
Дата охранного документа: 20.10.2005
29.04.2019
№219.017.4015

Способ установки в исходное состояние аппаратуры и аппаратура ракеты для его осуществления

Изобретение относится к оборонной технике, в частности к средствам борьбы с малоразмерными целями, и может быть использовано в системах управления снарядами, формирующих на борту ракеты команды управления движением. Сущность изобретения: величину напряжения источника питания уменьшают и...
Тип: Изобретение
Номер охранного документа: 02220401
Дата охранного документа: 27.12.2003
29.04.2019
№219.017.404a

Способ выделения команд и устройство для его осуществления

Изобретение относится к технике управления летательными аппаратами. Технический результат заключается в обеспечении максимально высокой чувствительности при исключении искажений. Для этого выставляют величину порога пропускания выше максимальной амплитуды собственного темнового шума, регулируют...
Тип: Изобретение
Номер охранного документа: 02212761
Дата охранного документа: 20.09.2003
29.04.2019
№219.017.46f6

Зенитная управляемая ракета

Изобретение относится к ракетной технике. Зенитная управляемая ракета состоит из отделяемой стартовой ступени и маршевой ступени с аппаратурой радиокомандного управления и блоком светового излучателя в задней части ступени. В блоке светового излучателя в качестве светового элемента установлен...
Тип: Изобретение
Номер охранного документа: 02167390
Дата охранного документа: 20.05.2001
29.04.2019
№219.017.470f

Управляемый снаряд

Изобретение относится к реактивным артиллерийским боеприпасам. Управляемый снаряд выполнен по схеме "утка" с аэродинамическими рулями. Сопла маршевого двигателя расположены на боковой поверхности корпуса снаряда перед стабилизатором на расстоянии, равном двум-трем размахам одной его консоли от...
Тип: Изобретение
Номер охранного документа: 02166724
Дата охранного документа: 10.05.2001
29.04.2019
№219.017.4728

Способ проверки качества функционирования рулевых приводов и автопилотов управляемых снарядов и устройство для его осуществления

Изобретение относится к испытаниям силовых систем летательных аппаратов, преимущественно малогабаритных управляемых снарядов. Предлагаемый способ основан на замере времени запаздывания рулевого привода или автопилота при подаче на входы их каналов управления сигналов прямоугольной формы. При...
Тип: Изобретение
Номер охранного документа: 02181681
Дата охранного документа: 27.04.2002
29.04.2019
№219.017.473a

Устройство формирования релейных сигналов управления вращающейся по углу крена ракетой

Изобретение относится к области разработки систем наведения ракет и может быть использовано в комплексах ПТУР и ЗУР. Технический результат - повышение точности наведения вращающихся по углу крена ракет с релейными приводами рулевых органов. Устройство согласно изобретению содержит формирователи...
Тип: Изобретение
Номер охранного документа: 02184921
Дата охранного документа: 10.07.2002
29.04.2019
№219.017.4766

Прицел-прибор наведения и способ юстировки параллельности оптических осей информационного и визирного каналов

Изобретение относится к оптико-механическим приборам, в частности к прицелам-приборам наведения управляемого вооружения в составе противотанкового ракетного комплекса. Техническим результатом изобретения является повышение качества прибора и его эффективности за счет дополнительной юстировки...
Тип: Изобретение
Номер охранного документа: 02195624
Дата охранного документа: 27.12.2002
18.05.2019
№219.017.542e

Управляемый снаряд

Изобретение относится к области вооружения. Управляемый снаряд содержит боевую часть, состоящую из блоков осколочно-фугасного действия, расположенных по оси снаряда и соединенных посредством разъемного соединения по плоскости, перпендикулярной его оси. Каждый блок содержит корпус и заряд...
Тип: Изобретение
Номер охранного документа: 0002262065
Дата охранного документа: 10.10.2005
18.05.2019
№219.017.542f

Управляемый снаряд

Изобретение относится к области вооружения. Управляемый снаряд содержит взрывательное устройство с датчиком цели и предохранительно-исполнительными механизмами, лидирующий кумулятивный заряд, кумулятивную боевую часть, размещенный между ними отсек управления, имеющий центральный канал,...
Тип: Изобретение
Номер охранного документа: 0002262066
Дата охранного документа: 10.10.2005
+ добавить свой РИД