×
29.03.2019
219.016.ef37

Результат интеллектуальной деятельности: МЕТАЛЛИЗИРОВАННАЯ ПЛАСТИНА АЛМАЗА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретения могут быть использованы для монтажа элементов электронной техники. Техническим результатом изобретения является обеспечение высоких электрофизических параметров путем исключения деградации свойств пластины алмаза, при сохранении высокой адгезии металла к алмазу. Сущность изобретения: в металлизированной пластине алмаза, содержащей промежуточный слой между пластиной алмаза и металлизацией в виде слоя материала промежуточного слоя и слоя соединения его с углеродом, обеспечивающий адгезию металла к алмазу, промежуточный слой выполнен в виде слоя кремния толщиной 0,04-0,1 мкм и слоя соединения кремния с углеродом с концентрацией кремния в нем 10-10 ат/см, а формируют промежуточный слой нанесением слоя кремния на пластину алмаза с последующим облучением его ускоренными ионами с массой, равной или большей массы атомов кремния, с энергией 30-200 кэВ и дозой облучения 100-1000 мкКл/см. 2 н. и 3 з.п. ф-лы, 1 ил.,, 1 табл.

Изобретения относятся к электронной технике и могут быть использованы, например, для монтажа диодов, транзисторов и других элементов электронной техники, требующих повышенного теплоотвода и электроизоляции.

Металлизированная пластина алмаза, в том числе и прежде всего искусственного алмаза, является перспективной с этой точки зрения, так как теплопроводность алмаза, в том числе и искусственного, значительно выше теплопроводности известных материалов, а сам он является изолятором.

Для металлизации обычно используют хорошо электропроводящие металлы - медь, золото, алюминий.

Однако непосредственная металлизация алмаза этими металлами не представляется возможной из-за слабой адгезии этих металлов к алмазу.

Известно, с целью повышения адгезии металла к алмазу, введение в металлизированную пластину алмаза промежуточного слоя между пластиной алмаза и хорошо электропроводящей металлизацией.

При этом роль промежуточного слоя состоит в том, что он образует соединение с углеродом, из атомов которого состоит алмаз, в частности в виде карбида металла, что и обеспечивает высокую адгезию металла к алмазу.

Известна металлизированная пластина алмаза и способ ее изготовления, в которой промежуточный слой выполнен из никеля и его химического соединения [1].

Данная металлизированная пластина алмаза изготовлена осаждением никеля на активированную в высокочастотной плазме кислорода и органических соединениях поверхность пластины алмаза. Такая обработка способствует образованию активных атомных групп на поверхности пластины алмаза, которые и позволяют реализовать процесс хемосорбции осажденного никеля и создать промежуточный слой между металлом и алмазом в виде химического соединения, которое и обеспечивает повышенную адгезию металла к алмазу.

Данная металлизированная пластина алмаза, изготовленная данным способом, выдерживает испытание на отрыв лентой Scotch ТМ.

Преимуществом данного способа изготовления металлизированной пластины алмаза является то, что он проводится без нагрева.

Однако во многих случаях, например, при использовании данной металлизированной пластины алмаза в электронной технике, такая адгезия металла к алмазу недостаточна.

Известна металлизированная пластина алмаза и способ ее изготовления, в которой промежуточный слой выполнен в виде слоя одного из металлов, таких как титан, ванадий, хром, ниобий, и слоя соединения соответствующего металла с углеродом [2].

Данная металлизированная пластина алмаза изготовлена в результате обработки пластины алмаза с нанесенным на нее слоем одного из указанных выше металлов, при температуре 500°С и выше в течение 18-48 часов.

Такая высокая температура и длительное время обработки приводят к образованию карбидов металлов, что и обеспечивает достаточно высокую адгезию металла к алмазу в металлизированой пластине алмаза.

Но, с другой стороны, высокая температура ее изготовления может приводить к деградации свойств пластины алмаза, а именно графитизации и, как следствие, изменению электрофизических параметров металлизированной пластины алмаза, что также недопустимо в случае использования ее в электронной технике.

Кроме того, процесс изготовления очень длительный.

Известна металлизированная пластина алмаза и способ ее изготовления - прототип, в которой промежуточный слой выполнен из вольфрама и слоя соединения вольфрама с углеродом [3].

Данная металлизированная пластина алмаза изготовлена в результате прогрева алмазной пластины с нанесенным на нее слоем вольфрама, в бескислородной среде при температуре 700-1200°С в течение 5-60 минут.

Данная металлизированная пластина алмаза обладает высокой адгезией вольфрама к алмазу, более 700 кгс/см2.

Процесс ее изготовления не является столь длительным, как предыдущий.

Однако еще более высокая температура изготовления может приводить и к более глубоким процессам деградации свойств пластины алмаза - графитизации, а следовательно, и изменению основных электрофизических параметров, таких как теплопроводность и удельное сопротивление.

Техническим результатом изобретений является обеспечение высоких электрофизических параметров путем исключения деградации свойств пластины алмаза, при сохранении высокой адгезии металла к алмазу.

Технический результат достигается тем, что в известной металлизированной пластине алмаза, содержащей промежуточный слой между пластиной алмаза и металлизацией в виде слоя материала промежуточного слоя и слоя соединения его с углеродом пластины алмаза, обеспечивающий адгезию металла к алмазу, промежуточный слой выполнен в виде слоя кремния толщиной 0,04-0,1 мкм и слоя соединения кремния с углеродом с концентрацией кремния в нем 1019-1021 ат/см3..

Металлизированная пластина алмаза может быть выполнена как из натурального, так и искусственного (CVD) алмаза.

Металлизированная пластина алмаза может быть металлизирована с обеих сторон.

Вышеуказанный технический результат достигается тем, что в известном способе изготовления металлизированной пластины алмаза, включающем формирование промежуточного слоя между пластиной алмаза и металлизацией, обеспечивающего адгезию металла к алмазу, и нанесение металлизации, промежуточный слой формируют нанесением слоя кремния толщиной менее 0,1 мкм на пластину алмаза с последующим облучением его ускоренными ионами с массой, равной или большей массы атомов кремния с энергией 30-200 кэВ и дозой облучения 100-1000 мкКл/см2.

В качестве ускоренных ионов используют ионы аргона.

Выполнение промежуточного слоя в виде слоя кремния толщиной 0,04-0,1 мкм и слоя соединения кремния с углеродом с концентрацией кремния в нем 1019-1021 ат/см3 позволяет перейти от контакта металл - алмаз к контакту металл - кремний, который, как правило, реализуются при низкой температуре, порядка 150-200°С, что исключает вероятность деградации свойств металлизированной пластины алмаза, а именно графитизации, а следовательно, обеспечивает высокие электрофизические параметры металлизированной алмазной пластины, такие как теплопроводность и удельное сопротивление.

Толщина слоя кремния, указанная в формуле изобретения, обусловлена, во-первых, необходимостью обеспечения минимального влияния промежуточного слоя на теплопроводность металлизированной пластины алмаза и, во-вторых, способом изготовления.

Толщина слоя кремния должна быть близка к величине среднего проективного пробега ионов (Rp), так как при этом достигается максимальная эффективность создания так называемых атомов отдачи, в данном случае атомов кремния, которые образуют слой соединения с углеродом пластины алмаза. При толщине кремния 0,04-0,1 мкм энергия ионов, при которых величина среднего проективного пробега ионов лежит в этом интервале, составляет 30-200 кэВ, что обеспечивается большинством типов промышленных установок - имплантеров.

Такая толщина обеспечивает и минимальное влияние промежуточного слоя на теплопроводность металлизированной пластины алмаза.

Так, например, при стандартной толщине пластины искусственного (CVD) алмаза 100-1000 мкм толщина слоя кремния составляет менее 0,1 процента от толщины пластины алмаза, что обуславливает практически отсутствие его влияния на теплопроводность металлизированной пластины алмаза.

Толщина слоя кремния менее 0,04 мкм ограничена, во-первых, технической сложностью его получения и контроля, а во-вторых, учетом неизбежного его окисления при попадании в атмосферу. При этом образуется естественный окисел толщиной около 0,02 мкм.

А толщина слоя кремния более 0,1 мкм ограничена, во-первых, существенным ухудшением теплопроводящих свойств металлизированной пластины алмаза, а во-вторых, как было сказано выше, возможностью имплантеров.

Экспериментально доказано, что концентрация атомов кремния в слое соединения кремния с углеродом, находящаяся в диапазоне 1019-1021 ат/см3, достаточна для обеспечения высокой адгезии металла к алмазу.

Концентрация атомов кремния в слое соединения кремния с углеродом менее 1019 ат/см2 недостаточна для получения высокой адгезии металла к алмазу, а более 1021 ат/см2 нецелесообразна, так как ее увеличение, во-первых, практически не повышает адгезию металла к алмазу, а во-вторых, ограничено возможностью обеспечения большинством типов имплантеров.

Контакт металл - кремний позволяет использовать известные технологические способы создания металлизации, обеспечивающие изготовление металлизированной пластины алмаза с высокой адгезией металла к алмазу, порядка 700 кгс/см2 и выше.

Это, например, металлизация кремния с подслоем титана с последующим напылением молибдена и никеля, с последующим гальваническим нанесением золота.

В процессе формирования промежуточного слоя, нанесения слоя кремния и последующего его облучения ускоренными ионами на границе кремний - алмаз происходит насыщение приповерхностного слоя алмаза атомами кремния - атомами отдачи.

При этом энергия атомов отдачи трансформируется в тепло -"тепловые пики торможения", в результате локальная температура может достигать тысяч градусов, которая и обеспечивает в этих местах образование химических соединений углерода с кремнием, в том числе и карбида кремния, обеспечивающих высокую адгезию металла к алмазу, порядка 700-800 кгс/см2 в металлизированной пластине алмаза.

Возможность локального, мгновенного, в течение менее 10-11 секунд, повышения температуры до нескольких тысяч градусов исключает необходимость высокотемпературного прогрева всей пластины алмаза, при этом ее температура в целом не превышает 50-100°С, и тем самым исключается процесс деградации свойств пластины алмаза, а именно графитизации, а следовательно, обеспечивается получение высоких электрофизических параметров металлизированной пластины алмаза, таких как теплопроводность и удельное сопротивление, при сохранении высокой адгезии металла к алмазу.

Наиболее эффективно для создания атомов отдачи использовать ионы с массой, равной или большей массы атомов кремния, которая равна 28 а.е.м., например, ионы аргона, масса ионов которого равна 40 а.е.м.

Изобретения поясняются чертежами.

На фиг.1 дан разрез металлизированной пластины алмаза, где алмазная пластина 1, слой соединения кремния с углеродом 2 и слой кремния 3, которые образуют промежуточный слой, металлизация 4.

Пример 1.

Проводят расчеты соответствия толщины слоя кремния 3 и концентрации атомов кремния в слое соединения кремния с углеродом 2 с энергией облучения ускоренными ионами и дозой облучения.

На пластине искусственного (CVD) алмаза 1 размером 0,3×15×15 мкм формируют промежуточный слой, для этого на пластину искусственного (CVD) алмаза 1 напыляют слой кремния 3 на установке вакуумного осаждения УВН РЭ.Э-60 толщиной 0,07 мкм, после чего проводят облучение слоя кремния 3 ионами аргона, масса ионов которого равна 40 а.е.м. с энергией 100 кэВ и дозой облучения 200 мкКл/см2 на имплантере "Лада-30", для формирования слоя соединения кремния с углеродом 2 с концентрацией кремния в этом слое, равной 1020 ат/см3, а затем наносят металлизацию 4, для чего последовательно напыляют слои Ti-Mo-Ni толщиной 0,1, 0,1, 0,2 мкм соответственно на установке вакуумного осаждения УВН РЭ.Э-60.

Примеры 2-3.

Аналогично примеру 1 были изготовлены металлизированные пластины искусственного (CVD) алмаза, но с толщиной слоя кремния 0,04 и 0,1 мкм, с концентрацией кремния 1019 и 1021 ат/см3 в слое соединения кремния с углеродом, с энергией облучения ускоренными ионами 30 и 200 кэВ, дозой облучения 100 и 1000 мкКл/см2 соответственно.

На изготовленных образцах металлизированных пластин алмаза были измерены электрофизические параметры - теплопроводность и удельное сопротивление.

Предварительно вышеуказанные параметры были измерены на исходных пластинах алмаза, перед формированием промежуточного слоя и нанесения металлизации.

Изготовленные образцы металлизированных пластин алмаза были также испытаны на отрыв на разрывной установке.

Данные сведены в таблицу.

Таблица.
№ п/пТолщина слоя кремния, мкмКонцентрация кремния в слое соединения кремния с углеродом, ат/см3Энергия ускоренных ионов, кэВДоза облучения, мкКл/см2Электрофизические параметры пластины алмазаАдгезия к алмазу, кГс/см2
неметаллизированнойметаллизированной
Теплопроводность, Вт/мКУдельное сопротивление, Ом·смТеплопроводность, Вт/мКУдельное сопротивление, Ом·см
17010201002501200-1500>10131200-1500>1013810
2401019301001200-1500>10131200-1500>1013780
3100102120010001200-1500>10131200-1500>1013810

Как видно из таблицы, металлизированные пластины алмаза как до металлизации, так и после имеют высокие электрофизические параметры - теплопроводность порядка 1200-1500 Вт/мК и удельное сопротивление более 1013 Ом·см, что подтверждает отсутствие деградации свойств пластины алмаза, а именно графитизации, в процессе изготовления металлизации.

При этом металлизированные пластины алмаза имеют высокую адгезию металла к алмазу около 800 кгс/см2.

Предлагаемые изобретения - металлизированная пластина алмаза и способ ее изготовления позволят по сравнению с прототипом обеспечить высокие электрофизические параметры металлизированной пластины алмаза - теплопроводность и удельное сопротивление при сохранении высокой адгезии металла к алмазу.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент США №6348240, опубл. 19.02.2002 г. НКИ 427/539.

2. Патент США №5853888, опубл. 29.12.1998 г. НКИ 428/408.

3. Патент США №5346719, опубл. 13.09.1994 г. НКИ 427/968.

1.Металлизированнаяпластинаалмаза,содержащаяпромежуточныйслоймеждупластинойалмазаиметаллизациейввидеслояматериалапромежуточногослояислоясоединенияегосуглеродом,обеспечивающийадгезиюметаллакалмазу,отличающаясятем,чтопромежуточныйслойвыполненввидеслоякремниятолщиной0,04-0,1мкмислоясоединениякремниясуглеродомсконцентрациейкремниявнем10-10ат/см.12.Металлизированнаяпластинаалмазапоп.1,отличающаясятем,чтопластинаалмазаможетбытьвыполненакакизнатуральноготакиискусственного(CVD)алмаза.23.Металлизированнаяпластинаалмазапоп.1,отличающаясятем,чтопластинаалмазаможетбытьметаллизированасобеихсторон.34.Способизготовленияметаллизированнойпластиныалмаза,включающийформированиепромежуточногослоямеждупластинойалмазаиметаллизацией,обеспечивающегоадгезиюметаллакалмазу,инанесениеметаллизации,отличающийсятем,чтопромежуточныйслойформируютнанесениемслоякремниянапластинуалмазаспоследующимоблучениемегоускореннымиионамисмассой,равнойилибольшеймассыатомовкремния,сэнергией30-200кэВидозойоблучения100-1000мкКл/см.45.Способизготовленияметаллизированнойпластиныалмазапоп.4,отличающийсятем,чтовкачествеускоренныхионовиспользуютионыаргона.5
Источник поступления информации: Роспатент

Showing 11-20 of 62 items.
10.10.2013
№216.012.7411

Устройство для контроля толщины проводящей пленки изделий электронной техники

Изобретение относится к электронной технике. Сущность изобретения: устройство для контроля толщины проводящей пленки изделий электронной техники непосредственно в технологическом процессе ее формирования в вакууме путем измерения электрического сопротивления содержит подложку из...
Тип: Изобретение
Номер охранного документа: 0002495370
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7438

Устройство для определения коэффициента теплопроводности материала

Изобретение относится к области технической физики и может быть использовано при прогнозировании эксплуатационных характеристик композиционных материалов. Заявлено устройство для определения коэффициента теплопроводности материала методом плоского горизонтального слоя, содержащее элемент,...
Тип: Изобретение
Номер охранного документа: 0002495409
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.833e

Устройство для определения шумовых параметров четырехполюсника свч

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с перестраиваемыми параметрами, вход которой соединен с генератором шума посредством центрального проводника в виде отрезка линии передачи, выход которого соединен с входом измеряемого...
Тип: Изобретение
Номер охранного документа: 0002499274
Дата охранного документа: 20.11.2013
20.03.2014
№216.012.ad20

Устройство для измерения полного сопротивления и шумовых параметров двухполюсника на свч

Изобретение относится к измерительной технике на СВЧ. Устройство для измерения полного сопротивления и шумовых параметров двухполюсника на СВЧ, содержащее измеритель частотных характеристик и интегральную схему в составе центральной линии передачи, отрезка линии передачи, соединенного с...
Тип: Изобретение
Номер охранного документа: 0002510035
Дата охранного документа: 20.03.2014
20.02.2019
№219.016.bcd4

Зонд для измерения электрических характеристик планарных элементов интегральных схем

3онд содержит коаксиальный разъем, коаксиальную линию передачи, воздушную копланарную линию передачи из плоских упругих проводников. Проводники воздушной копланарной линии передачи имеют выступы для контактирования с контактными площадками планарных элементов интегральных схем. На торцах...
Тип: Изобретение
Номер охранного документа: 0002285930
Дата охранного документа: 20.10.2006
20.02.2019
№219.016.be6f

Гибридная интегральная схема свч-диапазона

Изобретение относится к электронной технике СВЧ. Сущность изобретения: в гибридной интегральной схеме СВЧ-диапазона, содержащей диэлектрическую подложку, на лицевой стороне которой расположен топологический рисунок металлизации, а на обратной стороне - экранная заземляющая металлизация, по...
Тип: Изобретение
Номер охранного документа: 0002390877
Дата охранного документа: 27.05.2010
20.02.2019
№219.016.c09b

Диск из алмазосодержащего материала для обработки материалов электронной техники и изделий из них

Изобретение относится к электронной технике, а именно к механической обработке материалов электронной техники и изделий из них, в том числе полупроводниковых и ферритовых материалов. Технический результат изобретения - повышение выхода годных путем повышения качества обработки, а именно...
Тип: Изобретение
Номер охранного документа: 0002308118
Дата охранного документа: 10.10.2007
01.03.2019
№219.016.cf97

Усилитель мощности свч

Изобретение относится к электронной технике СВЧ. Технический результат: повышение надежности работы, выходной мощности, снижение коэффициентов отражения на входе и выходе усилителя мощности. Усилитель содержит два прямоугольных волновода, один - для входа, другой - для выхода, которые...
Тип: Изобретение
Номер охранного документа: 0002433524
Дата охранного документа: 10.11.2011
11.03.2019
№219.016.d693

Способ изготовления окна вывода энергии свч и квч электронных приборов

Изобретение относится к способам изготовления волноводных узлов устройств СВЧ и КВЧ диапазонов. Техническим результатом является снижение трудоемкости и стоимости изготовления, а также повышение надежности. Заданную конфигурацию диэлектрической пластины задают вакуумным напылением...
Тип: Изобретение
Номер охранного документа: 0002285313
Дата охранного документа: 10.10.2006
11.03.2019
№219.016.d7ea

Аттенюатор свч

Изобретение относится к электронной технике, а именно к аттенюаторам СВЧ на полупроводниковых приборах. Аттенюатор СВЧ состоит, по крайней мере, из одного разряда, каждый из которых содержит резисторы, один из которых соединен последовательно, а другой - параллельно линиям передачи на входе и...
Тип: Изобретение
Номер охранного документа: 0002340048
Дата охранного документа: 27.11.2008
Showing 11-16 of 16 items.
13.01.2017
№217.015.7907

Алмазный теплоотвод

Изобретение относится к твердотельной электронике, в частности к теплоотводам полупроводниковых приборов повышенной мощности, а также может быть использовано в различных теплотехнических устройствах, работающих с большими удельными тепловыми нагрузками. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002599408
Дата охранного документа: 10.10.2016
10.05.2018
№218.016.3aec

Электронная отпаянная пушка для вывода электронного потока и рентгеновского излучения из вакуумной области в атмосферу

Изобретение относится к электронной технике и рентгенотехнике, а именно к электронным пушкам, предназначенным для инжекции высокоэнергетических электронов и рентгеновского излучения из вакуумной области пушки в атмосферу или иную среду, и может быть использовано в плазмохимии, биологии,...
Тип: Изобретение
Номер охранного документа: 0002647489
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b78

Электронная отпаянная пушка для вывода электронного потока из вакуумной области пушки в атмосферу или иную газовую среду

Изобретение относится к электронной технике, а именно к электронным пушкам, предназначенным для вывода электронного потока из вакуумной области пушки наружу: в атмосферу или иную газовую среду, и может быть использовано в полупроводниковой электронике для создания мощных миниатюрных структур, в...
Тип: Изобретение
Номер охранного документа: 0002647487
Дата охранного документа: 16.03.2018
01.03.2019
№219.016.c87d

Электронная отпаянная пушка для вывода электронного потока в атмосферу или иную газовую среду

Изобретение относится к электронной технике, а именно к электронным отпаянным пушкам и ускорителям электронов, предназначенным для вывода электронного потока из вакуумной области пушки и ускорителя в атмосферу или иную газовую среду, и может быть использовано в полупроводниковой электронике для...
Тип: Изобретение
Номер охранного документа: 0002680823
Дата охранного документа: 27.02.2019
19.06.2019
№219.017.8a9a

Металлизированная пластина алмаза для изделий электронной техники

Изобретение относится к электронной технике и может быть использовано для монтажа и одновременно для отвода тепла от активных элементов как отдельных изделий электронной техники, так и радиоэлектронных устройств различного назначения. Сущность изобретения: металлизированная пластина алмаза для...
Тип: Изобретение
Номер охранного документа: 0002436189
Дата охранного документа: 10.12.2011
10.07.2019
№219.017.b01b

Способ обработки поверхности детали из композиционного материала алмаз - карбид кремния - кремний

Изобретение относится к способам обработки поверхности деталей из композиционных материалов типа «алмаз - карбид кремния - кремний» и может быть использовано, в частности, при изготовлении инструмента и конструкционных деталей для машиностроения. Способ обработки характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002402509
Дата охранного документа: 27.10.2010
+ добавить свой РИД