×
29.03.2019
219.016.ed9b

Результат интеллектуальной деятельности: Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к авиадвигателестроению, а именно к конструкциям сопловых аппаратов ТВД и трактам воздушного охлаждения сопловых лопаток авиационных газотурбинных двигателей ГПА. Сопловый аппарат включает сопловый венец. Сопловый венец выполнен из 14 сопловых блоков. Каждый блок содержит три лопатки, выполненных за одно целое с большой и малой полками и наделенных каждая радиально ориентированной перегородкой, разделяющей внутренний объем пера лопатки на переднюю и заднюю полости. Полости снабжены дефлекторами с образованием поликанального тракта воздушного охлаждения теплонапряженных элементов соплового блока. В состав СА входят наружное и внутреннее кольца, охватывающие полки блоков, а также большое и малое воздухозаборные кольца, примыкающие к кольцам на входе. В состав СА входит аппарат закрутки воздуха из вторичного потока камеры сгорания, подаваемого на охлаждение теплонапряженных элементов СА и далее через СА и аппарат закрутки на охлаждение ротора ТВД. Сопловая лопатка выполнена с выпуклой спинкой и вогнутым корытом, соединенными входной и выходной охлаждаемыми кромками. Хорда профиля в корневом сечении расположена под углом β к фронтальной плоскости β≥39°. Лопатки установлены в сопловом блоке с осевым навалом под углом ω=(3,28÷4,83)°, а также с окружным навалом под углом ω=(7,98÷11,75)°. При этом лопатка имеет парусность, нарастающую по высоте лопатки с градиентом G=(0,19÷0,28). Стенка корыта лопатки выполнена на (2-5)% тоньше стенки спинки. Обе стенки выполнены с убыванием толщины в поперечном сечении от входной до выходной кромки не менее чем в 3,5 раза. В передней полости стенки лопатки наделены перфорационными отверстиями, сгруппированными в ряды, для выхода охлаждающего воздуха в общий поток рабочего тела. Технический результат группы изобретений состоит в повышении работы и ресурса соплового аппарата и ТВД в целом, технологической простоты изготовления без увеличения материало- и энергоемкости. 5 н. и 4 з.п. ф-лы, 11 ил.

Группа изобретений относится к области авиадвигателестроения, а именно, к сопловым аппаратам турбины высокого давления газотурбинного двигателя (ГТД) в составе газотурбинной установки газоперекачивающего агрегата.

Известен сопловый аппарат, включающий систему охлаждения турбины двигателя, содержащий многоканальный воздуховод, проходящий через внутренние полости сопловых лопаток, сопловый аппарат закрутки и каналы охлаждения, при этом каждый канал воздуховода образован перфорированным дефлектором, установленным в сопловой лопатке вдоль ее внутренней поверхности (RU 2196239 С2, опубл. 10.01.2003).

Известен сопловый аппарат, включающий сопловые лопатки газовой турбины, которые установлены верхними полками в наружном кольце и образуют с ним переднюю и заднюю полости, которые на входе через каналы сообщаются с полостью подвода охлаждающего воздуха, а на выходе - с полостями сопловых лопаток (RU 2211926 С2, опубл. 10.09.2003).

Известен сопловый аппарат, включающий охлаждаемую сопловую лопатку газовой турбины, содержащую разделенные перегородкой первую полость со стороны входной кромки и вторую полость со стороны выходной кромки. Во второй полости установлен дефлектор (RU 2237811 С1, опубл. 10.10.2004).

Известен сопловый аппарат, включающий сопловую лопатку охлаждаемой турбины, выполненную в виде конструктивного элемента, ограниченного верхней и нижней полками. Лопатки выполнены с вогнутой и выпуклой стенками пера, содержат раздаточные полости и дефлекторы с образованием охлаждающих каналов. Стенки лопатки и охлаждающий дефлектор выполнены с перфорационными отверстиями (RU 2514818 С1, опубл. 10.05.2014).

К недостаткам известных решений относятся повышенная конструктивная сложность соплового аппарата, недостаточная конструктивная проработанность системы охлаждения наиболее теплонапряженных участков соплового аппарата, неадаптированность конкретно к техническим решениям ГТД газоперекачивающего агрегата, сложность получения компромиссного сочетания повышенных значений КПД и ресурса двигателя с одновременным повышением компактности и снижением материало- и энергоемкости.

Задача, решаемая группой изобретений, объединенных единым творческим замыслом, состоит в повышении эффективности работы и ресурса соплового аппарата стационарного газотурбинного двигателя авиационного типа в составе газоперекачивающих агрегатов для транспортировки газа или в газотурбинной электростанции.

Поставленная задача решается тем, что сопловый аппарат (СА) турбины высокого давления (ТВД) газотурбинного двигателя (ГТД) в составе газотурбинной установки (ГТУ) газоперекачивающего агрегата (ГПА), согласно изобретению, включает сопловый венец, наружное и внутреннее кольца и примыкающие к ним на входе большое и малое воздухозаборные кольца, а также аппарат закрутки воздуха, при этом сопловый венец выполнен из сопловых блоков, установленных в последнем с угловой частотой γбл., определенной в диапазоне значений γбл.=(1,91÷2,70) [ед/рад], а каждый блок содержит не менее трех лопаток, выполненных полыми, за одно целое с большой и малой полками и наделенных каждая радиально ориентированной перегородкой, разделяющей внутренний объем пера лопатки на переднюю и заднюю полости, причем большая полка блока СА выполнена в виде выпукло-изогнутого корыта, выходящего днищем в проточную часть СА с радиусом днища, равным радиусу межлопаточного канала соплового венца СА, и обрамлена по краям выполненными за одно целое с днищем дуговыми фронтальной и тыльной стенками и соединенными со спирально скошенными по условной цилиндрической поверхности днища торцевыми стенками, образующими в плоской развертке острый угол αб.п. относительно фронтальной плоскости полки, определенный в диапазоне значений αб.п.=(45÷67)°, при этом большая полка снабжена двумя рядами фигурных отверстий количественно по числу лопаток в блоке, разнесенных по площади днища, и комплиментарных по форме и расположению во фронтальном ряду с передними полостями лопаток блока, а отверстия другого ряда аналогично согласованы с задними полостями лопаток блока, а малая полка блока СА выполнена совмещенной с участком проточной части СА ТВД, обрамлена по контуру, включающему спирально скошенные по условной цилиндрической поверхности полки торцевые, а также фронтальную и тыльную стенки, параллельные фронтальной плоскости СА, с дуговой длиной, меньшей длины днища большой полки в проточной части СА в Np раз пропорционально отношению, определенному в диапазоне значений

где - радиус днища большой полки; Нл. - высота пера лопатки;

причем малая полка блока СА ограничена снизу крышкой и на участке осевой ширины крышки со стороны, примыкающей к фронтальной стенке полки, крышка снабжена выполненным за одно целое с ней патрубком для введения в ответную втулку внутреннего кольца СА, а полость малой полки дополнительно разделена кольцевым диагонально скошенным элементом, включающем в поперечном сечении средний диагональный участок, обрамленный по концам радиальными участками, при этом фронтальная из образованных полостей сообщена через щелевое отверстие, общее для блока, и фигурное отверстие в цилиндрически изогнутом элементе малой полки на проток с каналами и отверстиями системы охлаждения в каждой лопатке блока.

При этом в большой полке блока СА могут быть выполнены два ряда по три бобышки, разнесенные с приливами соответственно к фронтальной и тыльной стенкам полки, с отверстиями под крепежные элементы для разъемного соединения с наружным кольцом СА, при этом бобышки тыльной стенки выполнены за одно целое с входными патрубками формой, согласующейся с конфигурацией задней полости лопатки, кроме того большая полка блока СА также снабжена с внутренней стороны системой перфорационных отверстий для отвода избыточной теплоты от теплонапряженных участков полки.

Торцы стенок малой полки блока СА с внутренней стороны могут быть снабжены парным посадочным местом для крышки полки, имеющей минимальный внешний радиус, а стенки выполнены за одно целое с полкой и соединены с аналогично выполненными торцевыми стенками, снабженными с внешней стороны открытыми канавками С-образного профиля для соединительных пластин, а торцевые стенки малой полки образуют в плоской развертке острый угол αм.п., обращенный вершиной навстречу вращению рабочего колеса ротора ТВД и равный αм.п.б.п. аналогичному углу αб.п. большой полки.

Поставленная задача в части соплового аппарата по второму варианту решается тем, что сопловый аппарат турбины высокого давления газотурбинного двигателя в составе ГТУ ГПА, согласно изобретению, включает сопловый венец, наружное и внутреннее кольца и примыкающие к ним на входе большое и малое воздухозаборные кольца, а также аппарат закрутки воздуха, при этом сопловый венец выполнен из сопловых блоков, установленных в последнем с угловой частотой γбл., определенной в диапазоне значений γбл.=(1,91÷2,70) [ед/рад], а каждый блок содержит не менее трех лопаток, выполненных полыми, за одно целое с большой и малой полками и наделенных каждая радиально ориентированной перегородкой, разделяющей внутренний объем пера лопатки на переднюю и заднюю полости, при этом наружное кольцо СА выполнено охватывающим большие полки сопловых блоков, разъемно прикрепленных к кольцу крепежными элементами, размещенными в два ряда по три на блок, причем наружное кольцо выполнено с осевой шириной, превышающей ширину большой полки соплового блока со стороны входа охлаждающего воздуха на осевую ширину цилиндрического осевого фланца, наделенного отверстиями под крепежные элементы для разъемного соединения с большим воздухозаборным кольцом СА, разнесенные по периметру фланца с угловой частотой γф.ф.нк, определенной в диапазоне значений γф.ф.нк=(3,82÷5,41) [ед/рад], а на выходе из соплового венца наружное кольцо пролонгировано в осевом направлении на большую часть ширины надроторного уплотнительного кольца ТВД и наделено кольцевым радиальным фланцем, который в свою очередь разъемно прикреплен к корпусу двигателя крепежными элементами, для чего фланец выполнен с отверстиями, разнесенными по периметру фланца с угловой частотой γр.ф.нк., определенной в диапазоне значений γр.ф.нк=(16,7÷23,5) [ед/рад], а внутреннее кольцо СА выполнено в виде цилиндроконического тела вращения, коническая часть которого образована оболочкой, имеющей форму усеченного конуса с образующей, наклоненной к оси ТВД под углом ϕк.вк., определенным в диапазоне значений ϕк.вк.=(0,61÷0,87) [рад], при этом малое основание указанной оболочки снабжено радиальным фланцем с отверстиями под разъемные крепежные элементы, которыми прикреплено к внутреннему корпусу камеры сгорания с угловой частотой γмо.вк., определенной в диапазоне значений γмо.вк.=(8,12÷11,45) [ед/рад], а большое основание конической оболочки выполнено за одно целое с двухветвевым цилиндром, фронтальная часть которого выполнена с радиальным расширением и завершена цилиндрическим фланцем с отверстиями под крепежные элементы для разъемного соединения внутреннего кольца с малым воздухозаборным кольцом, разнесенными по периметру фланца с угловой частотой γмо.вк.1, определенной в диапазоне значений γмо.вк.1=(3,82÷5,41) [ед/рад], а тыльная часть цилиндрической оболочки внутреннего кольца выполнена осевой протяженностью, перекрывающей диаметр вставной втулки под патрубок крышки малой полки соплового блока и завершена радиальным фланцем, наделенным отверстиями под разъемное соединение с ответным фланцем наружной конической оболочки аппарата закрутки воздуха крепежными элементами, разнесенными по периметру фланца с угловой частотой γбо.вк.2, определенной в диапазоне значений γбо.вк.2=(8,12÷11,45) [ед/рад];

Поставленная задача в части соплового аппарата по третьему варианту решается тем, что сопловый аппарат турбины высокого давления газотурбинного двигателя в составе ГТУ ГПА, согласно изобретению, включает сопловый венец, наружное и внутреннее кольца и примыкающие к ним на входе большое и малое воздухозаборные кольца, а также аппарат закрутки воздуха, при этом сопловый венец выполнен из сопловых блоков, установленных в последнем с угловой частотой убл., определенной в диапазоне значений убл.=(1,91÷2,70) [ед/рад], а каждый блок содержит не менее трех лопаток, выполненных полыми, за одно целое с большой и малой полками и наделенных каждая радиально ориентированной перегородкой, разделяющей внутренний объем пера лопатки на переднюю и заднюю полости, причем большое воздухозаборное кольцо расположено под фланцем наружного кольца СА и выполнено в виде моноэлемента с фронтальным фланцем с приливами, имеющими отверстия под крепежные элементы для разъемного соединения с наружным кольцом СА, разнесенных по периметру фланца с угловой частотой γбвзк, определенной в диапазоне значений γбвзк=(3,824-5,41) [ед/рад], при этом между приливами во фланце большого воздухозаборного кольца выполнены с той же частотой щелевые воздухозаборные отверстия для пропуска охлаждающего воздуха в промежуточную полость кольца с коэффициентом Ка.п. аэродинамической прозрачности, определенным в диапазоне значений Ка.п.=(0,63÷0,85), имеющую на уровне низа днища большой полки соплового венца прерывистые двухсторонние щелевые выходы для охлаждения с фронтальной стороны стыка телескопического соединения с торцом корпуса жаровой трубы, а с другой стороны для охлаждения настильными воздушными струями днища большой полки блока в проточной части соплового венца СА, а малое воздухозаборное кольцо выполнено сборным, содержит кольцевой элемент, имеющий Z-образную форму поперечного сечения, выполненный за одно целое с фронтальным кольцевым выступом для телескопического соединения с торцом внутренней ветви корпуса жаровой трубы, и торцевое опорно-упорное кольцо, выполненное с профилем в форме уголка в поперечном сечении, радиально пролонгированная стенка которого содержит разнесенные по контуру щели для пропуска в переднюю полость пера лопатки охлаждающего воздуха и снабжена двойным кольцевым уплотнением, а полка опорно-упорного кольца развита вдоль оси ТВД и выполнена в виде цилиндрического фланца с отверстиями под два вида крепежных элементов для разъемного соединения полки с ответным фланцем внутреннего кольца СА, разнесенных по периметру с угловой частотой γ1мвзк, определенной в диапазоне значений γ1мвзк=(1,91÷2,71) [ед/рад] и последующего соединения с Z-образным кольцевым элементом, разнесенных по периметру фланца с угловой частотой γ2мвк, определенной в диапазоне значений γ2мвзк=(3,82÷5,41) [ед/рад].

Поставленная задача в части соплового венца решается тем, что сопловый венец соплового аппарата ТВД газотурбинного двигателя в составе ГТУ ГПА, включающего наружное и внутреннее кольца, большое и малое воздухозаборные кольца, а также аппарат закрутки воздуха, согласно изобретению, выполнен из сопловых блоков, содержащих каждый не менее трех лопаток, выполненных полыми, за одно целое с большой и малой полками и наделенных каждая радиально ориентированной перегородкой, разделяющей внутренний объем пера лопатки на переднюю и заднюю полости, снабженные дефлекторами, с образованием поликанального тракта воздушного охлаждения теплонапряженных элементов соплового блока, включая канал охлаждения входной кромки лопатки, канал охлаждения стенок спинки и корыта пера лопатки в осевом интервале передней полости лопатки, канал охлаждения задней части лопатки с пропуском и направлением большей части потока воздуха на охлаждение ротора ТВД и каналы охлаждения полок соплового блока, в том числе со стороны проточной части СА настильными струями воздуха, при этом лопатки в сопловом венце расположены с угловой частотой γл,, определенной в диапазоне значений γл=(5,73÷8,12) [ед/рад]; сопловый венец занимает относительный радиальный интервал высотой ΔR=(Rб.п.-Rм.п.)/Rб.п.=(0,12÷0,17)⋅Rб.п., что в проекции на плоскость, нормальную к оси ТВД соответствует радиальному диапазону лопаток проточной части СА ТВД, и выполнен со средним относительным радиальным удалением от оси ТВД на величину

Rср.п.ч=[(Rб.п.-Rм.п.)/2+Rп.м.]/Rб.п.=(0,75÷0,90)⋅Rб.п.,

где Rср.п.ч - средний радиус проточной части соплового аппарата; причем сопловая лопатка выполнена с аэродинамическим профилем, наделенным выпуклой спинкой и вогнутым корытом, соединенными через входную по ходу рабочего тела кромку пера лопатки, имеющую в поперечном сечении относительный радиус входной кромки Rвх.кр.л., выполненный меньше величины миделя Сm поперечного сечения пера лопатки, определенный в диапазоне значений Rвх.кр.л.m=(0,26÷0,37) и аналогично соединены через выходную кромку лопатки, имеющую относительный радиус Rвых.кр.л., определенный в диапазоне значений Rвых.кр.л./Cm=(0,06÷0,09), при этом хорда профиля принята возрастающей по высоте лопатки с возрастанием парусности эффективной площади пера от прикорневого к периферийному сечению, а стенки лопатки выполнены дифференцированной толщины - стенка корыта выполнена тоньше спинки, достигая уменьшения толщины в поперечном сечении на отдельных участках до 13%, а обе стенки выполнены с убыванием толщины в поперечном сечении от входной до выходной кромки в (2,9÷3,7) раза, кроме того в передней полости стенки корыта и спинки пера наделены перфорационными отверстиями для выхода охлаждающего воздуха, сгруппированными в ряды, ориентированные вдоль направляющей профиля пера.

При этом входной участок трех каналов тракта охлаждения расположен в большой полке блока и обрамлен наружным кольцом СА, снабженным двумя отверстиями, фронтальное из которых выполнено с возможностью подачи охлаждающего воздуха вторичного потока камеры сгорания (КС) первого и второго каналов в надэкранную полость большой полки блока, сообщенного с передней полостью лопатки для съема избыточной теплоты с входной кромки пера лопатки и для съема избыточной теплоты с днища большой полки, тыльное отверстие наружного кольца выполнено для подачи охлаждающего воздуха от воздуховоздушного теплообменника (ВВТ) примыкающим по контуру непосредственно к входному патрубку третьего канала тракта, комплиментарно сообщенному с задней полостью лопатки, с последующим выходом из нее отработанного по теплосъему воздуха в общий поток рабочего тела и пропуска части потока воздуха на охлаждение малой полки и ротора ТВД, участок четвертого канала тракта охлаждения расположен в стенке малой полки блока и выполнен в виде общего для блока щелевого отверстия, сообщенного через фигурное отверстие в цилиндрически изогнутом элементе малой полки с передней полостью каждой лопатки блока с возможностью съема избыточной теплоты передней части стенок спинки и корыта пера лопатки и фронтальной части малой полки, кроме того в большом и малом воздухозаборных кольцах выполнены щелевые отверстия, выходящие в проточную часть СА для пропуска потока воздуха КС на охлаждение поверхности полок блоков соплового венца настильными струями с внутренней стороны.

Поставленная задача в части лопатки соплового аппарата ТВД газотурбинного двигателя в составе ГТУ ГПА, включающего сопловый венец, наружное и внутреннее кольца, большое и малое воздухозаборные кольца, а также аппарат закрутки воздуха решается тем, что согласно изобретению, лопатка выполнена с аэродинамическим профилем, образованным вогнутым корытом и выпуклой спинкой, сопряженными посредством входной и выходной кромок, и наделена радиально ориентированной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, причем сопловые лопатки объединены в сопловые блоки не менее чем по три, выполнены за одно целое с большой и малой полками и расположены под углом βх.к., образованным хордой лопатки с фронтальной плоскостью в проекции на осевую плоскость ТВД, нормальную в оси лопатки, принятым в прикорневом сечении не менее βх.к.≥39°, кроме того лопатка установлены в сопловом блоке с осевым навалом под углом ωо.н. навстречу потоку рабочего тела, определенным в диапазоне значений ωо.н.=(3,28÷4,83)°, а также с окружным навалом под углом ωн.х.в. в направлении по ходу вращения рабочей лопатки ТВД, определенным в диапазоне значений ωн.х.в.=(7,98÷11,75)°, при этом лопатка имеет парусность, определяемую разностью между величиной хорды профиля пера прикорневого и периферийного сечений лопатки и градиентом Gп.л. расхождения значений хорды, по меньшей мере, на большей части высоты лопатки, определенным в диапазоне значений

где Вх.п. и Вх.к. - длина хорды профиля лопатки прикорневого и периферийного сечений соответственно, Нл - высота пера лопатки.

При этом лопатка может быть выполнена с угловой закруткой профиля, по меньшей мере, на большей части высоты лопатки, определяемой разностью углов хорды прикорневого и периферийного сечений в проекции на условную плоскость, нормальную к радиусу, проведенному через центр масс прикорневого сечения лопатки, определяемой через градиент Gз.п.л. угловой закрутки проекций

где βх.п. и βх.к. - угол хорды профиля пера лопатки прикорневого и периферийного сечений соответственно, Нл - высота пера лопатки.

Технический результат, достигаемый группой изобретений, объединенных единым творческим замыслом, заключается в повышении эффективности работы и ресурса соплового аппарата ТВД за счет улучшения аэродинамических параметров конструктивных элементов и межлопаточных каналов проточной части СА, многоканального тракта воздушного охлаждения наиболее теплонапряженных элементов СА и конструктивной проработанности элементов СА, включая наружное и внутреннее кольца, большое и малое воздухозаборные кольца и сопловые блоки, достигая тем самым повышения жесткости соплового аппарата при большей точности соблюдения углов установки сопловых лопаток, снижения утечек воздуха и, как следствие, повышения КПД и ресурса соплового аппарата и ТВД в целом, технологической простоты изготовления без увеличения материало- и энергоемкости и технического обслуживания в процессе эксплуатации.

Сущность группы изобретений поясняется чертежами, где:

на фиг. 1 изображен сопловый аппарат ТВД ГТД, поперечный разрез;

на фиг. 2 - блок соплового аппарата, вид спереди по ходу рабочего тела;

на фиг. 3 - большая полка блока соплового аппарата, вид сверху;

на фиг. 4 - малая полка блока соплового аппарата, вид от оси ТВД;

на фиг. 5 - внутреннее кольцо соплового аппарата с малым воздухозаборным кольцом, продольный разрез;

на фиг. 6 - по вид по А на фиг. 5;

на фиг. 7 - вид Б на фиг. 5;

на фиг. 8 - фрагмент большого воздухозаборного кольца соплового аппарата, вид против потока рабочего тела;

на фиг. 9 - лопатка соплового аппарата, продольный разрез;

на фиг. 10 - лопатка соплового аппарата, поперечный разрез,

на фиг. 11 - профиль пера лопатки в поперечном сечении.

Сопловый аппарат 1 турбины 2 высокого давления (фиг. 1) газотурбинного двигателя в составе газотурбинной установки газоперекачивающего агрегата группы изобретений, объединенных единым творческим замыслом, включает сопловый венец. Сопловый венец выполнен из сопловых блоков 3 (фиг. 2), установленных в последнем с угловой частотой убл., определенной в диапазоне значений

γбл.=Nбл./2π=(1,91÷2,70) [ед/рад], где Nбл. - число сопловых блоков.

Каждый блок 3 содержит не менее трех лопаток 4, выполненных за одно целое с большой и малой полками 5 и 6. Лопатки 4 выполнены полыми и наделены каждая радиально ориентированной перегородкой 7, разделяющей внутренний объем пера на переднюю полость 8 и заднюю полость 9.

В состав СА входят наружное и внутреннее кольца 10 и 11, охватывающие соответственно большие и малые полки 5 и 6 блоков 3 соплового венца, а также большое и малое воздухозаборные кольца 12 и 13, примыкающие к кольцам 10 и 11 на входе. В состав СА входит аппарат 14 закрутки воздуха из вторичного потока камеры 15 сгорания, подаваемого на охлаждение теплонапряженных элементов СА и далее через СА и аппарат 14 закрутки на охлаждение теплонапряженных элементов ротора ТВД.

Большая полка 5 соплового блока 1 (фиг. 3) выполнена в виде выпукло-изогнутого корыта, выходящего днищем 16 в проточную часть СА с радиусом днища Rmin дн б.п., равным Rmax п.ч. межлопаточного канала соплового венца СА. Большая полка 3 обрамлена по краям выполненными за одно целое с днищем 16 дуговыми фронтальной и тыльной стенками 17 и 18. Стенки 17, 18 соединены торцевыми стенками 19, выполненными спирально скошенными по условной цилиндрической поверхности днища 16. Относительно фронтальной плоскости полки 5 торцевые стенки 19 образуют в плоской развертке острый угол αб.п., определенный в диапазоне значений αб.п.=(45÷67)° и обращенный вершиной навстречу вращению рабочего колеса ротора ТВД. Большая полка 5 снабжена двумя рядами фигурных отверстий 20, 21 количественно по числу лопаток 4 в блоке, разнесенных по площади днища 16. Отверстия 20 во фронтальном ряду по форме и расположению согласованы с передними полостями 8 лопаток 4. Отверстия 21 другого ряда аналогично согласованы с задними полостями 9 лопаток 4.

Малая полка 6 соплового блока 3 (фиг. 4) выполнена совмещенной с участком проточной части СА ТВД. Малая полка 6 обрамлена по контуру спирально скошенными по условной цилиндрической поверхности полки торцевыми стенками 22, а также фронтальной и тыльной стенками 23 и 24, параллельными фронтальной плоскости СА. Стенки 23, 24 выполнены с дуговой длиной, меньшей длины днища 16 большой полки 5 в проточной части СА в Np раз пропорционально отношению, определенному в диапазоне значений

где Rmin дн.б.п. - радиус днища большой полки; Нл - радиальная высота лопатки.

Малая полка 6 соплового блока 3 ограничена снизу крышкой 25. На участке осевой ширины крышки 25 со стороны, примыкающей к фронтальной стенке 23 полки 6, крышка 25 снабжена выполненным за одно целое с ней патрубком 26 для введения в ответную втулку 27 внутреннего кольца 11 СА. Полость малой полки 6 дополнительно разделена кольцевым диагонально скошенным элементом 28, включающем в поперечном сечении средний диагональный участок, обрамленный по концам радиальными участками. Фронтальная полость 29 малой полки 6 через щелевое отверстие 30, общее для блока, и фигурное отверстие 31 в цилиндрически изогнутом элементе малой полки 6 сообщена на проток с каналами и отверстиями системы охлаждения в каждой лопатке 4 блока 3.

В большой полке 5 соплового блока 3 выполнены два ряда по три бобышки 32. Бобышки 32 разнесены с приливами к фронтальной и тыльной стенкам 17, 18 полки и выполнены с отверстиями 33 под крепежные элементы для разъемного соединения с наружным кольцом 10. Бобышки 32 тыльной стенки 18 выполнены за одно целое с входными патрубками 34 формой, согласующейся с конфигурацией задней полости 9 лопатки 4. Большая полка 5 соплового блока 3 также снабжена с внутренней стороны системой перфорационных отверстий для отвода избыточной теплоты от теплонапряженных участков полки (на чертежах не показано).

Торцы стенок 23, 24 малой полки 6 блока с внутренней стороны снабжены парным посадочным местом для крышки 25 полки, имеющей минимальный внешний радиус Rmin.кр.м.п.. Стенки 23, 24 выполнены за одно целое с полкой и соединены с аналогично выполненными торцевыми стенками 22, снабженными с внешней стороны открытыми канавками С-образного профиля для соединительных пластин (на чертежах не показано). Торцевые стенки 22 малой полки 6 образуют в плоской развертке острый угол αм.п., обращенный вершиной навстречу вращению рабочего колеса ротора ТВД и равный αм.п.б.п. аналогичному углу αб.п. большой полки 5.

Наружное кольцо 10 соплового аппарата (фиг. 1) выполнено охватывающим большие полки 5 сопловых блоков 3. Наружное кольцо 10 выполнено с осевой шириной, превышающей ширину большой полки 5 блока 3 со стороны входа потоков охлаждающего воздуха - вторичного потока воздуха камеры 15 сгорания и потока воздуха от ВВТ (на чертежах не показано), на осевую ширину цилиндрического осевого фланца 35. Фланцем 35 наружное кольцо 10 разъемно соединено с большим воздухозаборным кольцом 12. Для чего фланец 35 наделен отверстиями под разъемные крепежные элементы 36, разнесенными по периметру фланца 35 с угловой частотой γф.ф.нк, определенной в диапазоне значений

где Nонк1 - число отверстий во фронтальном фланце наружного кольца.

На выходе из соплового венца СА наружное кольцо 10 пролонгировано в осевом направлении на большую часть ширины надроторного уплотнительного кольца 37 турбины 2 и наделено кольцевым радиальным фланцем 38. Фланцем 38 наружное кольцо 10 разъемно прикреплено к корпусу двигателя. Фланец 38 наделен отверстиями под крепежные элементы 39, разнесенными по периметру фланца с угловой частотой γр.ф.нк., определенной в диапазоне значений

γр.ф.нк=Nонк2/2π=(16,7÷23,5) [ед/рад],

где Nонк2 - число отверстий в радиальном фланце наружного кольца.

Внутреннее кольцо 11 соплового аппарата (фиг. 5) выполнено в виде цилиндроконического тела вращения, коническая часть которого образована оболочкой, имеющей форму усеченного конуса с образующей 40, наклоненной к оси турбины под углом фк.м.к., определенным в диапазоне значений ϕк.м.к.=(0,61÷0,87) [рад]. Малое основание 41 конической оболочки внутреннего кольца 11 снабжено радиальным фланцем 42 с отверстиями 43 под разъемные крепежные элементы, которыми прикреплено к внутреннему корпусу камеры 15 сгорания. Отверстия 43 разнесены по периметру фланца 42 с угловой частотой γмо.нк., определенной в диапазоне значений

γмо.нк.=Nмо/2π=(8,12÷11,45) [ед/рад],

где Nмо - число отверстий в радиальном фланце малого основания внутреннего кольца.

Большое основание 44 конической оболочки внутреннего кольца 11 выполнено за одно целое с двухветвевым цилиндром. Фронтальная часть большого основания 44 внутреннего кольца 11 выполнена с радиальным расширением и завершена цилиндрическим фланцем 45 с отверстиями под крепежные элементы, через которые внутреннее кольцо 11 соединено с малым воздухозаборным кольцом 13, разнесенными по периметру фланцу 45 с угловой частотой γбо.вк.1, определенной в диапазоне значений

γбо.кв.1=Nбо1/2π=(3,82÷5,41) [ед/рад],

где Nбо1 - число отверстий во фланце большого основания внутреннего кольца.

Тыльная часть большого основания 44 внутреннего кольца 11 выполнена осевой протяженностью, перекрывающей диаметр вставной втулки 27 под патрубок 26 крышки 25 малой полки 6 блока 4 и завершена радиальным фланцем 46 с отверстиями 47 под крепежные элементы для разъемного соединения с ответным фланцем 48 наружной конической оболочки аппарата 14 закрутки воздуха, разнесенными по периметру фланца 46 с угловой частотой γбо.вк.2, определенной в диапазоне значений

γбо.вк.2=Nбо2/2π=(8,12÷11,45) [ед/рад],

где Nбо2 - число отверстий во фланце большого основания внутреннего кольца.

Большое воздухозаборное кольцо 12 (фиг. 8) расположено под фланцем 35 наружного кольца 10. Большое воздухозаборное кольцо 12 выполнено в виде моноэлемента с фронтальным фланцем 49 с приливами 50, имеющими отверстия под крепежные элементы 36 для разъемного соединения с ответным фланцем 35 наружного кольца 10, разнесенных по периметру с угловой частотой γбвзк, определенной в диапазоне значений

γбвзк=Nбзвк/2π=(3,82÷5,41) [ед/рад],

где Nбзвк - число отверстий во фланце большого воздузаборного кольца.

Между приливами 50 во фланце 49 большого воздухозаборного кольца 12 (фиг. 8) выполнены с той же частотой щелевые воздухозаборные отверстия 51 для пропуска охлаждающего воздуха в промежуточную полость 52 кольца 12 с коэффициентом Ка.п. аэродинамической прозрачности, определенным в диапазоне значений Ка.п.=(0,63÷0,85). Промежуточная полость 52 кольца 12 имеет уровне низа днища 16 большой полки 5 соплового венца прерывистые двухсторонние щелевые выходы 53, 54 охлаждающего воздуха. Щелевой выход 53 предназначен для охлаждения с фронтальной стороны стыка телескопического соединения с торцом корпуса жаровой трубы 55. Щелевой выход 54 с другой стороны для охлаждения настильными воздушными струями днища 16 большой полки 5 блока 3 в проточной части соплового венца.

Малое воздухозаборное кольцо 13 (фиг. 7) выполнено сборным и содержит кольцевой элемент 56 и торцевое опорно-упорное кольцо 57. Кольцевой элемент 56, имеющий Z-образную форму поперечного сечения, выполнен за одно целое с фронтальным кольцевым выступом 58 для телескопического соединения с торцом внутренней ветви корпуса жаровой трубы 55. Торцевое опорно-упорное кольцо 57, выполненное с профилем в форме уголка в поперечном сечении. Радиально пролонгированная стенка 59 кольца 57 содержит разнесенные по контуру щели 60 для пропуска в переднюю полость 8 пера лопатки 4 охлаждающего воздуха из вторичного потока камеры сгорания и охлаждения стенок пера лопатки во фронтальной ее части. Стенка 59 кольца 57 снабжена двойным кольцевым уплотнением 61. Полка 62 опорно-упорного кольца 57 развита вдоль оси турбины и выполнена в виде цилиндрического фланца с отверстиями под два вида крепежных элементов 63, 64 - для разъемного соединения полки 62 с ответным фланцем 45 внутреннего кольца 11 и последующего соединения с кольцевым элементом 56 малого воздухозаборного кольца 13. Крепежные элемент 63 для разъемного соединения полки 62 с фланцем 45 внутреннего кольца 11 разнесены по периметру фланца с угловой частотой γ1мвзк, определенной в диапазоне значений

γ1мвзк=N1мвзк/2π=(1,91÷2,71) [ед/рад],

где Nмзвк - число крепежных элементов 63 во фланце малого воздузаборного кольца.

Крепежные элемент 64 для последующего соединения с Z-образным кольцевым элементом 56 разнесены по периметру фланца с угловой частотой γ2мвзк, определенной в диапазоне значений

γ2мвзк=N2мвзк/2π=(3,82÷5,41) [ед/рад] где Nмзвк - число крепежных элементов 64 во фланце малого воздузаборного кольца.

Сопловый венец соплового аппарата 1 турбины 2 высокого давления выполнен из сопловых блоков 3, содержащих каждый не менее трех лопаток 4. Лопатки выполнены полыми, за одно целое с большой и малой полками 5 и 6. Передняя и задняя полости 8 и 9 снабжены дефлекторами 65 и 66 с образованием поликанального тракта воздушного охлаждения теплонапряженных элементов соплового блока, включая канал охлаждения входной кромки лопатки, канал охлаждения стенок спинки и корыта пера лопатки в осевом интервале передней полости лопатки, канал охлаждения задней части лопатки с пропуском большей части потока воздуха на охлаждение ротора ТВД и каналы охлаждения полок соплового блока, в том числе с внутренней стороны проточной части СА настильными струями воздуха.

Лопатки 4 в сопловом венце расположены с угловой частотой ул., определенной в диапазоне значений

γл.=Nл./2π=(5,73÷8,12) [ед/рад], где Nл. - число лопаток.

Сопловый венец занимает относительный радиальный интервал высотой ΔR=(Rб.п.-Rм.п.)/Rб.п.=(0,12÷0,17)⋅Rб.п., что в проекции на плоскость, нормальную к оси ТВД соответствует радиальному диапазону лопаток 4 проточной части СА ТВД, и выполнен со средним относительным радиальным удалением от оси ТВД на величину

Rср.п.ч=[(Rб.п.-Rм.п.)/2+Rп.м.]/Rб.п.=(0,75÷0,90)⋅Rб.п.,

где Rср.п.ч - средний радиус проточной части соплового аппарата.

Сопловая лопатка 4 выполнена с аэродинамическим профилем, наделенным выпуклой спинкой 67 и вогнутым корытом 68. Спинка 67 и корыто 68 пера лопатки соединены через входную по ходу рабочего тела кромку 69. Относительный радиус входной кромки Rвх.кр.л. в поперечном сечении пера лопатки 4 выполнен меньше величины миделя Сm, определенный в диапазоне значений Rвх.кр.л.m=(0,26÷0,37). Аналогично соединены спинка 67 и корыто 68 пера лопатки через выходную кромку 70, имеющую относительный радиус Rвых.кр.л., определенный в диапазоне значений Rвых.кр.л./Cm=(0,06÷0,09).

Хорда 71 профиля принята возрастающей по высоте лопатки с возрастанием парусности эффективной площади пера от прикорневого к периферийному сечению. Стенки лопатки 4 выполнены дифференцированной толщины - стенка корыта 68 выполнена тоньше спинки 67, достигая уменьшения толщины в поперечном сечении на отдельных участках до 13%. Стенки лопатки выполнены с убыванием толщины в поперечном сечении от входной кромки 69 до выходной кромки 70 в (2,9÷3,7) раза. В передней полости 8 стенки спинки 67 и корыта 68 пера наделены перфорационными отверстиями 72 и 73, 74 для выхода охлаждающего воздуха, сгруппированными в ряды, ориентированные вдоль направляющей профиля пера.

Входной участок трех каналов тракта охлаждения соплового блока расположен в большой полке 5 блока 3 и обрамлен наружным кольцом 10 СА. Наружное кольцо снабжено двумя отверстиями 75 и 76 для подачи охлаждающего воздуха в каждый из указанных каналов. Фронтальное отверстие 75 выполнено с возможностью подачи охлаждающего воздуха вторичного потока камеры сгорания первого и второго каналов тракта в надэкранную полость 77 большой полки 5 блока, сообщенную с передней полостью 8 лопатки для съема избыточной теплоты с входной кромки 69 пера лопатки, и для съема избыточной теплоты с днища большой полки. Тыльное отверстие 76 наружного кольца 10 выполнено для подачи охлаждающего воздуха от ВВТ примыкающим по контуру непосредственно к входному патрубку 34 третьего канала тракта, комплиментарно сообщенному с задней полостью 9 лопатки, с последующим выходом из нее отработанного по теплосъему воздуха в общий поток рабочего тела и пропуска части потока воздуха на охлаждение малой полки 6 и ротора ТВД. Участок четвертого канала тракта охлаждения расположен в стенке малой полки 5 блока и выполнен в виде общего для блока щелевого отверстия 30, сообщенного через фигурное отверстие 31 в цилиндрически изогнутом элементе малой полки 6 с передней полостью 9 каждой лопатки блока с возможностью съема избыточной теплоты передней части стенок спинки 67 и корыта 68 пера лопатки и передней полости 29 малой полки 6. В большом и малом воздухозаборных кольцах 12 и 13 выполнены щелевые отверстия 54 и 78, выходящие в проточную часть СА для пропуска потока воздуха на охлаждение поверхности полок блоков соплового венца настильными струями с внутренней стороны.

Лопатка 4 соплового венца расположена под углом βх.к., образованным хордой 71 лопатки с фронтальной плоскостью в проекции на осевую плоскость ТВД, нормальную в оси лопатки 4, принятым в прикорневом сечении не менее βх.к.≥39°.

Лопатка 4 установлена в сопловом блоке 3 с осевым навалом под углом ωо.н. навстречу потоку рабочего тела - газового потока из жаровой трубы 55 камеры сгорания, определенным в диапазоне значений ωо.н.=(3,28÷4,83)°. Кроме того лопатка 4 установлена в сопловом блоке 3 с окружным навалом под углом ωн.х.в. в направлении по ходу вращения рабочей лопатки ТВД, определенным в диапазоне значений ωн.х.в.=(7,98÷11,75)°.

Лопатка имеет парусность, определяемую разностью между величиной хорды 71 профиля пера прикорневого и периферийного сечений и градиентом Gп.л. расхождения значений хорды, по меньшей мере, на большей части высоты лопатки, определенным в диапазоне значений

где Вх.к. и Вх.п. - длина хорды профиля лопатки прикорневого и периферийного сечений соответственно, Нл - высота пера лопатки.

Также лопатка 4 выполнена с угловой закруткой профиля, по меньшей мере, на большей части высоты лопатки, определяемой разностью углов хорды 71 прикорневого и периферийного сечений в проекции на условную плоскость, нормальную к радиусу, проведенному через центр масс прикорневого сечения лопатки, определяемой через градиент Gз.п.л. угловой закрутки проекций, определенный в диапазоне значений

где βх.к. и βх.п. - угол хорды профиля пера лопатки прикорневого и периферийного сечений соответственно, Нл - высота пера лопатки.

Работа соплового аппарата осуществляется следующим образом.

Сопловый венец выполняют из 14 трехлопаточных сопловых блоков 3. Для снижения перетеканий рабочего тела между блоками, их стыка уплотняют пластинами, вставленными в прорези торцевых стенок блоков. Лопатки 4 выполняют полыми, за одно целое с большой и малой полками 5 и 6.

Внутреннюю полость лопатки 4 разделяют перегородкой 7 на переднюю и заднюю полости 8 и 9. В каждой полости 8, 9 размещают дефлекторы 65, 66 с отверстиями, обеспечивающими струйное натекание охлаждающего воздуха на внутренние стенки лопатки 4. В большой полке 5 блока 3 выполняют шесть бобышек с резьбовыми отверстиями, в которые вворачиваются крепежные элементы 36 для разъемного соединения с наружным кольцом 10. Малая полка 6 соплового блока 3 ограничена снизу крышкой 25, которую выполняют за одно целое с ней патрубком 26 для введения в ответную втулку 27 внутреннего кольца 11 соплового аппарата.

К наружному и внутреннему кольцам 10 и 11 на входе устанавливают большое и малое воздухозаборные кольца 12 и 13. В большом воздухозаборном кольце 12 охлаждающий воздух из вторичного потока камеры сгорания через щелевые воздухозаборные отверстия 51 пропускают в промежуточную полость 52 кольца 12 с коэффициентом Ка.п. аэродинамической прозрачности Ка.п.=0,74. Через щелевой выход 53 в промежуточной полости 52 кольца 12 охлаждают стык телескопического соединения с торцом корпуса жаровой трубы 55. Через щелевой выход 54 с другой стороны настильными воздушными струями охлаждают днище 16 большой полки 5 блока 3 в проточной части соплового венца. Малое воздухозаборное кольцо 13 выполняют сборным из кольцевого элемент 56 и торцевого опорно-упорного кольца 57. Стенка 59 кольца 57 имеет щели 60 для пропуска в переднюю полость 8 пера лопатки 4 охлаждающего воздуха из вторичного потока камеры сгорания и охлаждения стенок пера лопатки во фронтальной ее части. Через щелевой выход 78 охлаждающего воздуха, образованный между стенкой 59 кольца 57 и кольцевым элементом 56, настильными воздушными струями охлаждают малую полку 6 блока 3 в проточной части соплового венца.

В большую полку 5 охлаждающий воздух поступает через отверстия 75 в наружном кольце 10, разделяясь на две части. Проходящий через отверстия 75 вторичный поток воздуха камеры 15 сгорания динамично на проток заполняет надэкранную полость 77 большой полки 5. Одной частью поток воздуха проникает через группы отверстий 79 в подэкранную полость, целенаправленно охлаждая наиболее теплонапряженные участки днища 16 большой полки 5. Далее нагретый воздух выходит через выпускные отверстия (на чертежах не показано) большой полки 5 в общий поток рабочего тела. Другой частью поток охлаждающего воздуха КС поступает в воздушный тракт передних полостей 8 сопловых лопаток 4, динамично заполняя объем дефлектора 65, и выходя из дефлектора 65 поток охлаждающего воздуха обдувает входную кромку 69 пера лопатки 4. Нагретый теплосъемом воздух через перфорационные отверстия 80 во входной кромке 69 выходит в общий поток рабочего тела. Съем избыточной теплоты с передней части лопатки 4 производят встречным потоком охлаждающего воздуха, который поступает через отверстия 30, 31 в малой полке 6 в переднюю полость 8 лопатки. Из передней полости 8 лопатки 4 нагретый теплосъемом воздух через перфорационные отверстия 72, 73 и 74 отводят в общий поток рабочего тела, охлаждая спинку и корыто пера лопатки.

Поток охлаждающего воздуха от ВВТ подают через отверстия 76 в наружном кольце 10 СА в задние полости 9 лопаток 4. В заднюю полость 9 лопатки 4 устанавливают дефлектор 66, выполняющий две функции: охлаждения меньшей частью потока задней полости 9 лопатки 4 и пропуска с минимальным нагревом большей части потока воздуха для охлаждения малой полки 5 и ротора ТВД. Для охлаждения поверхности полок 5 и 6 блоков 3 соплового венца, выходящих в проточную часть СА, охлаждающий воздух КС поступает через щелевые отверстия 54 и 78 соответственно большого и малого воздухозаборных колец 12 и 13, омывая полки настильными струями.

Таким образом, за счет улучшения конструктивных и аэродинамических параметров соплового аппарата и лопаток соплового венца в частности достигают повышение эффективности охлаждения теплонапряженных элементов соплового аппарата ТВД. Литая конструкция блоков, обладая высокой жесткостью, обеспечивает стабильность углов установки лопатки, снижение утечек воздуха и, следовательно, повышение КПД соплового аппарата и ТВД в целом без увеличения материалоемкости. Кроме того, такая конструкция соплового аппарата более технологична.


Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД
Сопловый аппарат турбины высокого давления (ТВД) газотурбинного двигателя (варианты), сопловый венец соплового аппарата ТВД и лопатка соплового аппарата ТВД
Источник поступления информации: Роспатент

Showing 41-50 of 71 items.
08.04.2019
№219.016.fe59

Газоперекачивающий агрегат (гпа), тракт всасывания воздуха гпа, воздуховод тракта всасывания гпа, камера всасывания воздуха гпа (варианты)

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу: тракт всасывания воздуха, включающий КВОУ, всасывающий воздуховод и двухсекционную камеру всасывания воздуха; газотурбинную установку с входным устройством...
Тип: Изобретение
Номер охранного документа: 0002684294
Дата охранного документа: 05.04.2019
08.04.2019
№219.016.feba

Газоперекачивающий агрегат (гпа), тракт выхлопа гпа (варианты), выхлопная труба гпа и блок шумоглушения выхлопной трубы гпа

Группа изобретений относится к нефтегазовой области. Газоперекачивающий агрегат (ГПА) содержит последовательно сообщенные по рабочему телу тракт всасывания воздуха, газотурбинную установку с входным устройством для подачи воздуха из камеры всасывания воздуха на вход в ГТД, тракт выхлопа...
Тип: Изобретение
Номер охранного документа: 0002684297
Дата охранного документа: 05.04.2019
19.04.2019
№219.017.1d3d

Опора двухвального газотурбинного двигателя

Изобретение относится к области газотурбинной техники и может использоваться в конструкциях двухвальных газотурбинных двигателей авиационного и стационарного назначения. Опора двухвального газотурбинного двигателя содержит подшипник опоры турбины высокого давления, установленный между роторами...
Тип: Изобретение
Номер охранного документа: 0002685154
Дата охранного документа: 16.04.2019
29.04.2019
№219.017.3e44

Тракт воздушного охлаждения лопатки соплового аппарата турбины высокого давления газотурбинного двигателя (варианты)

Тракт воздушного охлаждения сопловой лопатки выполнен трехканальным. Сопловая лопатка выполнена полой, с аэродинамическим профилем и наделена радиальной перегородкой, разделяющей внутренний объем пера на переднюю и заднюю полости, снабженные дефлекторами. Входной участок первого канала тракта...
Тип: Изобретение
Номер охранного документа: 0002686430
Дата охранного документа: 25.04.2019
20.05.2019
№219.017.5cdb

Способ охлаждения соплового аппарата турбины высокого давления (твд) газотурбинного двигателя (гтд) и сопловый аппарат твд гтд (варианты)

Способ охлаждения соплового аппарата турбины высокого давления осуществляют путем охлаждения наиболее теплонапряженные элементы в лопатках и полках сопловых блоков соплового аппарата двумя потоками воздуха - вторичного потока воздуха камеры сгорания и воздухом от воздуховоздушного...
Тип: Изобретение
Номер охранного документа: 0002688052
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5e98

Газодинамическое уплотнение клапана

Изобретение относится к конструкции клапанного узла, преимущественно газотурбинного двигателя, и касается конструкции уплотнения запорного элемента. Газодинамическое уплотнение клапана содержит корпус с установленным внутри него дисковым затвором с кольцевой проточкой в торцевой части,...
Тип: Изобретение
Номер охранного документа: 0002688607
Дата охранного документа: 21.05.2019
13.06.2019
№219.017.80c2

Центробежно-шестеренный насос

Изобретение относится к насосам, применяемым в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла. Центробежно-шестеренный насос содержит шестерни 2, размещенные в расточках корпуса 1 и установленные на валах 3, расположенных в опорных подшипниках 4, каналы 9,...
Тип: Изобретение
Номер охранного документа: 0002691269
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.80db

Способ регулирования авиационного турбореактивного двигателя

Способ регулирования авиационного двухроторного турбореактивного двигателя относится к области авиационного двигателестроения, а именно к системам регулирования, чувствительным к параметрам двигателя и окружающей среды, и позволяет повысить тяговые характеристики двигателя за счет оптимизации...
Тип: Изобретение
Номер охранного документа: 0002691287
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.83cf

Устройство для измерения параметров потока газа

Изобретение относится к области устройств для измерения параметров газового потока, преимущественно в турбомашиностроении, а именно к гребенкам замера параметров газового потока. Устройство для измерения параметров потока газа содержит обтекаемый корпус, с продольными и поперечными каналами,...
Тип: Изобретение
Номер охранного документа: 0002691664
Дата охранного документа: 17.06.2019
10.08.2019
№219.017.be16

Способ измерения динамических напряжений в трубопроводе турбомашины

Изобретение относится к области тензометрирования трубопроводов в турбомашиностроении, преимущественно в авиационных газотурбинных двигателях, а именно измерению динамических напряжений в трубопроводах при лабораторных, стендовых испытаниях или в условиях эксплуатации. Способ включает установку...
Тип: Изобретение
Номер охранного документа: 0002696943
Дата охранного документа: 07.08.2019
Showing 41-50 of 337 items.
20.03.2015
№216.013.3285

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не...
Тип: Изобретение
Номер охранного документа: 0002544408
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3286

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не...
Тип: Изобретение
Номер охранного документа: 0002544409
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3287

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от...
Тип: Изобретение
Номер охранного документа: 0002544410
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3288

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от...
Тип: Изобретение
Номер охранного документа: 0002544411
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3289

Способ доводки опытного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного...
Тип: Изобретение
Номер охранного документа: 0002544412
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.328b

Газотурбинный двигатель

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Газотурбинный двигатель выполнен двухконтурным, двухвальным. Двигатель содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, включая компрессор...
Тип: Изобретение
Номер охранного документа: 0002544414
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.328c

Способ эксплуатации турбореактивного двигателя и турбореактивный двигатель, эксплуатируемый этим способом

Изобретение относится к области авиадвигателестроения. В способе эксплуатации турбореактивного двигателя (ТРД) перед каждым запуском двигателя, выполненного двухконтурным, двухвальным, осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002544415
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.328d

Способ капитального ремонта турбореактивного двигателя (варианты) и турбореактивный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии, пополняемой группы турбореактивных двигателей и турбореактивный двигатель, отремонтированный этим способом

Изобретение относится к области авиадвигателестроения. В способе капитального ремонта турбореактивного двигателя (ТРД), вариантно осуществляемого способами, изложенными в группе изобретений, связанных единым творческим замыслом, последовательно выполняют операции, в совокупности вариантно...
Тип: Изобретение
Номер охранного документа: 0002544416
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3290

Способ доводки опытного газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к авиационным газотурбинным двигателям. Доводке подвергают опытный ГТД, выполненный двухконтурным, двухвальным. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым...
Тип: Изобретение
Номер охранного документа: 0002544419
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3365

Способ эксплуатации газотурбинного двигателя и газотурбинный двигатель, эксплуатируемый этим способом

Изобретение относится к области авиадвигателестроения. В способе эксплуатации турбореактивного двигателя (ТРД) типа АЛ-31Ф перед каждым запуском двигателя, выполненного двухконтурным, двухвальным, осуществляют проверку готовности двигателя к работе, производят запуск, прогрев и вывод двигателя...
Тип: Изобретение
Номер охранного документа: 0002544632
Дата охранного документа: 20.03.2015
+ добавить свой РИД