×
20.03.2019
219.016.e7a3

Результат интеллектуальной деятельности: СТЕНД ДЛЯ ВЫСОТНЫХ ИСПЫТАНИЙ ДВУХКОНТУРНЫХ ТУРБОРЕАКТИВНЫХ ДВИГАТЕЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области испытания турбореактивных двигателей на стенде в условиях, близких к полетным. Стенд для высотных испытаний двухконтурных турбореактивных двигателей содержит шахту всасывания и трубопровод подвода осушенного и охлажденного воздуха с регулируемым дросселем, термобарокамеру с разделяющей перегородкой, на которой размещены автоматически регулируемые дросселя тонкой настройки высоты и скорости, и размещенный внутри термобарокамеры испытываемый двигатель, к входу которого через лабиринтное уплотнение присоединен расходомерный коллектор с лемнискатным насадком и защитной сеткой на шаровидном каркасе, при этом расходомерный коллектор закреплен к неподвижным упорам термобарокамеры, на входе которой установлен трубопровод с выравнивателем воздушного потока, а на выходе технологический эксгаустер, на разделяющей перегородке установлен выхлопной эжектирующий насадок, входное сечение которого закрыто диском с центральным отверстием, в котором расположено с зазором сопло испытываемого двигателя. Диаметр эжектирующего насадка соответствует расходу воздуха, проходящего через двигатель и равен 2-2,5 диаметра сопла, а зазор между эжектирующим насадком и выходным сечением сопла равен 0,5 мм. Изобретение позволяет при высотных испытаниях ТРДД повысить точность измерения тяги двигателя, расширить диапазон имитируемых высот и скоростей при сохранении существующей энергетики высотно-компрессорной станции. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области испытания турбореактивных двигателей на стенде в условиях, близких к полетным.

Известен стенд для высотных испытаний двухконтурных турбореактивных двигателей, содержащий барокамеру с испытываемым двигателем, холодильную и эксгаустерную установки. От выхлопного диффузора ко входу в двигатель установлен возвратный трубопровод с расположенным в нем дросселем и инжектором, регулирующих заданные параметры и расход воздуха второго контура (авторское свидетельство СССР №249002 от 20.03.1968 г., кл. МПК G01M, «Стенд для высотных испытаний двухконтурных двигателей» - аналог).

Основным недостатком данного устройства является его сложность, оно перегружено вспомогательным оборудованием и требует значительных дополнительных энергетических затрат. Кроме того, при испытании двухконтурных двигателей термостатирование самого двигателя снаружи невозможно, что приводит к неточности измерений.

Известен также способ и стенд высотных испытаний двухконтурных турбореактивных двигателей (патент Российской Федерации №2336514 от 22.03.2007 г., по классу МПК G01M 15/14 - прототип), содержащий термостатическую, эксгаустерную установки, термобарокамеру (ТБК) с размещенным внутри нее испытываемым двигателем, внутренняя полость которой разделена перегородками, установленными соответственно в зоне входного устройства испытываемого двигателя и в зоне его выхлопа, передняя перегородка имеет регулируемые отверстия, а задняя - перепускные клапаны.

Однако точность измерения тяги ТРДД недостаточна, так как не обеспечивается силовая развязка элементов крепления двигателя от динамометрической платформы (ДМП), обслуживающей ТБК, и самое главное, для расширения диапазона имитируемых высот и скоростей при проведении испытаний требуется расширение энергетики технологического оборудования.

Целью изобретения является повышение точности измерения тяги ТРДД и расширение диапазона имитируемых высот и скоростей при проведении испытаний при сохранении существующей энергетики высотно-компрессорной станции.

Поставленная цель достигается тем, что стенд для высотных испытаний двухконтурных турбореактивных двигателей, содержащий шахту всасывания, трубопровод подвода осушенного и охлажденного воздуха с регулируемым дросселем, термобарокамеру с разделяющей перегородкой с автоматически регулируемыми дросселями тонкой настройки высоты и скорости, и с закрепленным на ней выхлопным эжектирующим насадком, а также размещенный внутри термобарокамеры испытываемый двигатель, выхлопной трубопровод и технологический эксгаустер. Входное сечение эжектирующего насадка закрыто диском с центральным отверстием, в которое с зазором входит сопло испытываемого двигателя. Диаметр эжектирующего насадка равен 2-2,5 диаметра сопла, а зазор между эжектирующим насадком и выходным сечением сопла равен 0,5 мм. Ко входу двигателя через лабиринтное уплотнение присоединен расходомерный коллектор с лемнискатным насадком и защитной сеткой на шаровидном каркасе. Расходомерный коллектор прикреплен к неподвижным упорам термобарокамеры, а на входе в термобарокамеру установлен трубопровод с устройством для выравнивания воздушного потока типа «Хонейкомб». Испытываемый двигатель закреплен на подвижной динамометрической платформе.

На фиг.1 представлена схема компоновки стенда. На фиг.2 - сечение стенда по А-А. На фиг.3 представлен выносной элемент Б в масштабе М2:1. На фиг.4 представлен выносной элемент В в масштабе М2:1.

Термобарокамера 1 круглого сечения состоит из двух отсеков с разделяющей перегородкой 2. На входе в первый отсек установлен участок трубопровода с выравнивателем воздушного потока типа «Хонейкомб» 10.

На разделяющей перегородке размещены дополнительные регулируемые дроссели 11, 12 и 13 для тонкой настройки высоты и скорости, а также закреплен выхлопной эжектирующий насадок 3. Входное сечение эжектирующего насадка закрыто диском 14, в центральное отверстие которого входит сопло 15 с зазором 0,5 (минимально допустимый тепловой зазор). В первом отсеке на подвижной динамометрической платформе 4 установлена подмоторная рама 5. На подмоторной раме устанавливается и крепится двигатель 6. Подмоторная рама жестко крепится к динамометрической платформе К входу двигателя 16 через лабиринтное уплотнение 7 пристыковывается расходомерный коллектор 8 с лемнискатным насадком и защитной сеткой на шаровидном каркасе 9. Крепление расходомерного коллектора производится к неподвижным упорам термобарокамеры.

Точность определения тяги двигателя обеспечивается силовой развязкой лемнискатного и эжектирующего насадков от ДМП, а также тем, что при вычислении аэродинамической силы по методу «универсального» контрольного объема исключается составляющая, действующая на лемнискатный и эжектирующий насадки. Поскольку точное вычисление результирующей силы, действующей на лемнискатный насадок входного устройства, вызывает технологические сложности (установка аэродинамических гребенок, определение геометрии лемнискатного насадка и положения аэродинамических гребенок, обработка результатов замера), а ее доля в величине аэродинамической силы существенна, то очевиден положительный результат от силовой развязки существующего технологического оборудования.

Диаметр эжектирующего насадка подбирается под диаметр выходного сопла и определяется величиной расхода воздуха, проходящего через двигатель. Поэтому величина диаметра подбирается под конкретный испытываемый двигатель. Диаметр насадка лежит в пределах 2÷2,5 диаметра сопла двигателя.

Эжектирующий насадок используется для дополнительного снижения статического давления на срезе сопла двигателя. За счет использования эффекта эжектирования в данной компоновке стало возможным исключить использование дополнительно технологического эксгаустера, что уменьшило энергозатраты на проведение эксперимента. Автоматизация регулируемых дросселей тонкой настройки на режим работы позволяет воспроизводить требуемые установки по высоте (Н) и скорости полета (Мп) для всего диапазона режимов работы двигателя от минимального режима (МГ) до максимального режима работы двигателя (МАКСИМАЛ).

Использование эжектирующего насадка совместно с двухступенчатой схемой эжектирования позволяет расширить диапазон имитируемых условий (по высоте и скорости) для испытаний ТРДД большей размерности (при сохранении существующей энергетики технологического оборудования).

Для проведения испытаний двигатель устанавливают в ТБК в соответствии с предлагаемой схемой компоновки. Газовоздушный контур ТБК подключается по входу и выходу к технологическому оборудованию подвода (отвода) воздуха. Внутри ТБК имитируются требуемые полетные условия по высоте полета (Н), скорости полета (Мп) и температуре воздуха на входе в двигатель (Твх). Выполняется запуск двигателя с выходом на режим МГ, после прогрева двигателя производится изменение режима работы двигателя в соответствии с требуемым по программе испытаний. В течение эксперимента выполняется регулирование дросселей на разделяющей перегородке (прикрытие или открытие) для поддержания постоянных по величине значений Н и Мп.

Источник поступления информации: Роспатент

Showing 131-140 of 204 items.
23.02.2019
№219.016.c60b

Способ определения истинного объёмного газосодержания

Изобретение относится к способам определения физических свойств двухфазных потоков, а именно к способам определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе, в частности в системах смазки газотурбинных двигателей. Способ заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002680416
Дата охранного документа: 21.02.2019
23.02.2019
№219.016.c6f3

Реактивное метательное устройство

Изобретение относится к боеприпасам, а именно к устройствам ствольного сверхзвукового разгона реактивных снарядов кинетического действия. Технический результат - обеспечение разгона снаряда кинетического действия в стволе реактивного метательного устройства за счет полного сгорания заряда...
Тип: Изобретение
Номер охранного документа: 0002680568
Дата охранного документа: 22.02.2019
26.02.2019
№219.016.c811

Турбомашина с надроторным устройством

Изобретение относится к энергетическому машиностроению и может быть использовано в осевых турбокомпрессорах для газотурбинных двигателей и установок. Турбомашина с надроторным устройством содержит корпус с проточным трактом, рабочее колесо с лопатками, установленное в проточном тракте между...
Тип: Изобретение
Номер охранного документа: 0002680634
Дата охранного документа: 25.02.2019
26.02.2019
№219.016.c81f

Система охлаждения многоконтурной газотурбинной установки

Изобретение относится к газотурбостроению и может быть использовано в системах охлаждения авиационных многоконтурных газотурбинных двигателей. Система охлаждения многоконтурной газотурбинной установки содержит многосекционный кольцевой рекуперативный теплообменник, размещенный в потоке...
Тип: Изобретение
Номер охранного документа: 0002680636
Дата охранного документа: 25.02.2019
01.03.2019
№219.016.c905

Способ регистрации воспламенения топливовоздушной смеси в форсажной камере

Изобретение относится к области авиационной техники, в частности авиационного двигателестроения. Для правильного функционирования автоматики авиационного газотурбинного двигателя, контроля за режимами его работы и надежности эксплуатации необходимо иметь объективную информацию о включении или...
Тип: Изобретение
Номер охранного документа: 0002263808
Дата охранного документа: 10.11.2005
08.03.2019
№219.016.d4bc

Способ отсечки и регулирования тяги прямоточных воздушно-реактивных двигателей на твердом топливе и устройство для его осуществления

Способ отсечки и регулирования тяги прямоточных воздушно-реактивных двигателей на твердом топливе заключается в том, что в зону циркуляционного течения со стабилизированным пламенем, образующуюся за стабилизатором пламени, осуществляют подачу инертного газа. Инертный газ подают в виде кольцевой...
Тип: Изобретение
Номер охранного документа: 0002316668
Дата охранного документа: 10.02.2008
08.03.2019
№219.016.d500

Способ определения прочностных свойств высокотемпературных теплозащитных покрытий деталей и устройство для его осуществления

Изобретение относится к области машиностроения, а именно к испытаниям высокотемпературных покрытий деталей, преимущественно ГТД. В процессе нагрева, при достижении заданной максимальной температуры в цикле, к рабочей лопатке или модели с теплозащитным покрытием, преимущественно столбчатой...
Тип: Изобретение
Номер охранного документа: 0002339930
Дата охранного документа: 27.11.2008
11.03.2019
№219.016.dc29

Устройство для оценки качества смазочных масел

Изобретение относится к испытательной технике для оценки качества смазочных масел, преимущественно авиационных моторных масел, в частности к оценке их коррозионной активности на конструкционные и уплотнительные материалы, и может быть использовано в химической и авиационной промышленности для...
Тип: Изобретение
Номер охранного документа: 0002455629
Дата охранного документа: 10.07.2012
13.03.2019
№219.016.deb1

Способ стендовых испытаний турбореактивного двухконтурного двигателя

Изобретение относится к области техники испытаний газотурбинных двигателей, а именно к способам стендовых испытаний турбореактивных двухконтурных двигателей (ТРДД) с проверкой отсутствия автоколебаний рабочих лопаток вентилятора двигателя. В способе стендовых испытаний турбореактивного...
Тип: Изобретение
Номер охранного документа: 0002681548
Дата охранного документа: 11.03.2019
13.03.2019
№219.016.dec2

Способ стендовых испытаний турбореактивного двухконтурного двигателя

Изобретение относится к области техники испытаний газотурбинных двигателей, а именно к способам стендовых испытаний турбореактивных двухконтурных двигателей (ТРДД) с проверкой отсутствия автоколебаний рабочих лопаток вентилятора двигателя. В способе стендовых испытаний турбореактивного...
Тип: Изобретение
Номер охранного документа: 0002681550
Дата охранного документа: 11.03.2019
Showing 1-2 of 2 items.
09.05.2019
№219.017.505c

Стенд для высотных испытаний двухконтурных турбореактивных двигателей и способ его функционирования (варианты)

Изобретение относится к области испытаний турбореактивных двигателей на стенде в условиях, близких к полетным. Стенд для высотных испытаний двухконтурных турбореактивных двигателей содержит термостатическую и эксгаустерную установки, термобарокамеру с размещенным внутри нее испытуемым...
Тип: Изобретение
Номер охранного документа: 0002467302
Дата охранного документа: 20.11.2012
10.07.2019
№219.017.ab11

Способ защиты газотурбинного двигателя и устройство для его осуществления (варианты)

Изобретение относится к области газотурбинных двигателей. Технический результат - повышение эффективности системы защиты турбореактивного двигателя при потере газодинамической устойчивости достигается за счет селективного управления исполнительными органами двигателя в зависимости от типа...
Тип: Изобретение
Номер охранного документа: 0002295654
Дата охранного документа: 20.03.2007
+ добавить свой РИД