×
20.03.2019
219.016.e3b8

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ МОЩНЫХ ТРАНЗИСТОРОВ СВЧ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электронной технике, а именно к способам изготовления мощных транзисторов СВЧ и МИС на их основе. Сущность изобретения: способ изготовления мощных транзисторов СВЧ, заключающийся в формировании на лицевой стороне полупроводниковой пластины топологии транзисторов, напылении металлов, нанесении и травлении диэлектриков, гальванического осаждения золота, формировании канавок на лицевой стороне пластины вне топологии транзисторов для задания размера кристаллов транзисторов, утонении полупроводниковой пластины, формировании на обратной стороне пластины канавок непосредственно под канавками на лицевой стороне, формировании сквозных заземляющих отверстий для выводов транзисторов, формировании интегральных теплоотводов кристаллов транзисторов на базе интегрального теплоотвода с последующим разделением полупроводниковой пластины на кристаллы транзисторов химическим травлением с использованием интегральных теплоотводов кристаллов транзисторов в качестве маски. Техническим результатом изобретения является повышение мощности путем снижения теплового сопротивления, повышение выхода годных и упрощение способа изготовления. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к электронной технике, а именно к способам изготовления мощных транзисторов СВЧ и МИС на их основе.

Известен способ изготовления мощных полевых транзисторов (ПТШ) СВЧ, включающий следующие операции:

- формирование на полупроводниковой пластине - эпитаксиальной структуре арсенида галлия топологии ПТШ с помощью электронной и фотолитографии, напыления металлов, нанесения и травления диэлектриков, гальванического осаждения золота;

- утонение полупроводниковой пластины до 60-80 мкм;

- формирование сквозных отверстий для заземления истоков транзисторов;

- гальваническое осаждение золота толщиной 2 мкм с обратной стороны полупроводниковой пластины;

- разделение полупроводниковой пластины на кристаллы транзисторов резкой алмазными дисками (1).

Недостатками этого способа являются невысокая мощность полевого транзистора из-за высокого теплового сопротивления вследствие большой толщины порядка 60-80 мкм полупроводниковой пластины арсенида галлия, низкий процент выхода годных из-за механических повреждений, сколов и трещин на операции разделения полупроводниковой пластины резкой алмазными дисками.

Известен способ изготовления мощных полевых транзисторов СВЧ и МИС на их основе - прототип, включающий следующие основные операции:

- формирование на полупроводниковой пластине - эпитаксиальной структуре арсенида галлия топологии ПТШ с помощью электронной и фотолитографии, напыления металлов, нанесения и травления диэлектриков, гальванического осаждения золота;

- утонение полупроводниковой пластины арсенида галлия до толщины порядка 25-30 мкм;

- гальваническое осаждение интегрального теплоотвода из золота толщиной порядка 30 мкм с обратной стороны полупроводниковой пластины арсенида галлия;

- разделение полупроводниковой пластины арсенида галлия на кристаллы транзисторов резкой алмазными дисками (2).

Утонение полупроводниковой пластины арсенида галлия до толщины 25-30 мкм позволило по сравнению с предыдущим способом снизить тепловое сопротивление ПТШ, а следовательно, повысить его мощность.

Однако, с другой стороны, при разделении полупроводниковой пластины на кристаллы транзисторов с целью обеспечения ее прочности требуется наклеивать тонкую полупроводниковую пластину на гибкий носитель, что усложняет способ.

А разделение полупроводниковой пластины на кристаллы транзисторов резкой алмазными дисками, как и в предыдущем способе, вызывает механические повреждения, сколы и трещины, что в том числе определяет низкий процент выхода годных.

Кроме того, в процессе разделения пластины на кристаллы, в том числе при резке интегрального теплоотвода из золота толщиной порядка 30 мкм происходит быстрое «засаливание» режущего инструмента и образование золотого «буртика» по периметру кристалла транзистора. Это вызывает затруднения при последующем монтаже кристалла транзистора в схему СВЧ, что может отрицательно отразиться как на выходе годных схем СВЧ, так и на их электрические характеристики.

Техническим результатом изобретения является повышение мощности путем снижения теплового сопротивления, повышение выхода годных и упрощение способа изготовления мощных транзисторов СВЧ.

Технический результат достигается тем, что в известном способе изготовления мощных транзисторов СВЧ, включающем формирование на лицевой стороне полупроводниковой пластины топологии транзисторов с помощью электронной и фотолитографии, напыления металлов, нанесения и травления диэлектриков, гальванического осаждения золота, утонение полупроводниковой пластины до толщины менее 30 мкм, травление в полупроводниковой пластине сквозных заземляющих отверстий для выводов транзисторов, гальваническое осаждение на обратной стороне полупроводниковой пластины интегрального теплоотвода из золота толщиной более 30 мкм, разделение полупроводниковой пластины на кристаллы транзисторов, перед утонением полупроводниковой пластины на ее лицевой стороне вне топологии транзисторов формируют канавки глубиной 5-10 мкм и шириной 70-100 мкм для задания размера кристаллов транзисторов, а после утонения полупроводниковой пластины формируют канавки на ее обратной стороне глубиной 5-10 мкм непосредственно под канавками на лицевой стороне, при этом соотношение их ширины равно 3-2, а формируют канавки с помощью фотолитографии и травления, после формирования интегрального теплоотвода формируют интегральные теплоотводы кристаллов транзисторов фотолитографией по интегральному теплоотводу с последующим его травлением в местах расположения канавок на обратной стороне полупроводниковой пластины, а разделение полупроводниковой пластины на кристаллы транзисторов осуществляют химическим травлением, при этом интегральные теплоотводы кристаллов транзисторов служат маской.

В качестве полупроводниковой пластины используют, например, пластину арсенида галлия.

Формирование канавок на лицевой и обратной стороне полупроводниковой пластины напротив друг друга и с заданными размерами в совокупности с иной последовательностью операций позволило:

- во-первых, разделять полупроводниковую пластину на кристаллы транзисторов при возможности использования интегральных теплоотводов кристаллов транзисторов в качестве маски, химическим травлением и тем самым исключить механические повреждения, сколы и трещины в случае использования при разделении резку алмазными дисками и, как следствие, увеличить выход годных,

- во-вторых, повысить воспроизводимость размеров кристаллов, что позволяет снизить допуски при монтаже кристалла транзистора в схему СВЧ и тем самым уменьшить потери в подводящих цепях, а следовательно, повысить мощность,

- в-третьих, повысить качество монтажа вследствие уменьшения толщины припоя или клея, используемого при монтаже кристалла транзистора в схему СВЧ, что стало возможным благодаря устранению золотого «буртика» по периметру кристалла транзистора, возникающего при резке полупроводниковой пластины алмазными дисками, и тем самым снизить тепловое сопротивление и, как следствие, дополнительно к вышесказанному повысить мощность,

- в-четвертых, обеспечить воспроизводимость размеров кристаллов транзистора благодаря заданным размерам канавок на лицевой и обратной стороне полупроводниковой пластины и устранения золотого «буртика», а следовательно, дополнительно увеличить выход годных,

- в-пятых, упростить способ изготовления благодаря разделению полупроводниковых пластин химическим травлением и исключения резки алмазными дисками.

Формирование канавки как на лицевой стороне полупроводниковой пластины, так и на обратной ее стороне глубиной менее 5 мкм недостаточно для последующего задания размера кристалла, а более 10 мкм нежелательно из-за возможного разрушения пластины на последующих технологических операциях.

Формирование канавки на лицевой стороне полупроводниковой пластины шириной менее 70 мкм недопустимо, так как при указанном соотношении их ширины ширина канавки на обратной стороне столь мала, что проведение последующих операций - формирование интегральных теплоотводов кристаллов транзисторов и разделение полупроводниковой пластины на кристаллы транзисторов - становится затруднительным, а более 100 мкм нецелесообразно из-за неоправданного расхода полупроводникового материала.

Соотношение ширины канавок на лицевой и обратной стороне полупроводниковой пластины определяется остаточной ее толщиной под канавками и соотношением скорости травления в боковом и вертикальном направлении.

Исходя из вышесказанного, для указанной толщины полупроводниковой пластины менее 30 мкм это соотношение составляет 3-2.

Изобретение поясняется чертежом,

где дан этап разделения фрагмента полупроводниковой пластины на кристаллы транзистора, где

- полупроводниковая пластина - 1,

- топология транзистора - 2,

- канавка на лицевой стороне полупроводниковой пластины - 3,

- канавка на обратной стороне полупроводниковой пластины - 4,

- заземляющее отверстие выводов транзистора - 5,

- интегральный теплоотвод кристалла транзистора - 6,

- кристалл мощного транзистора СВЧ - 7

Пример конкретного выполнения:

- на лицевой стороне полупроводниковой пластины 1, например арсенида галлия, толщиной 520 мкм формируют топологию транзистора 2 известными методами: электронной и фотолитографии, напыления металлов, нанесения и травления диэлектриков, гальванического осаждения золота,

- далее на лицевой стороне полупроводниковой пластины 1 вне топологии транзистора 2 формируют канавки 3 глубиной 8 мкм и шириной 85 мкм для задания размера кристалла транзистора также известными методами фотолитографии и травления,

- далее утоняют полупроводниковую пластину 1, для чего ее наклеивают на носитель, например, стекло с плоскопараллельностью менее 1 мкм и методами механической шлифовки доводят ее толщину до 120 мкм, затем переклеивают полупроводниковую пластину на носитель из сапфира и химико-динамической полировкой утоняют ее до толщины 25-30 мкм,

- формируют канавки 4 глубиной 8 мкм и шириной 56 на обратной стороне полупроводниковой пластины также известными методами фотолитографии и травления,

- формируют сквозные заземляющие отверстия 5 для выводов транзисторов также методами фотолитографии и химического травления,

- формируют интегральный теплоотвод гальваническим осаждением золота толщиной 25-30 мкм,

- формируют интегральный теплоотвод кристалла транзистора 6 фотолитографией по интегральному теплоотводу с последующим травлением в месте расположения канавок 4 на обратной стороне полупроводниковой пластины 1,

- разделяют полупроводниковую пластину 1 на кристаллы транзисторов 7, для чего используя интегральный теплоотвод кристалла транзистора 6 в качестве маски, травят полупроводниковую пластину арсенида галлия 1 в местах расположения канавок 4 на ее обратной стороне.

Таким образом, мы имеем на носителе из сапфира разделенные кристаллы мощных транзисторов СВЧ, которые снимают с носителя в органических растворителях.

Примеры 2-3.

Аналогично примеру 1 изготовлены мощные транзисторы СВЧ, но с канавками на лицевой и обратной стороне глубиной 5 и 10 мкм и шириной на лицевой стороне 70 и 100 мкм и обратной стороне 46 и 66 соответственно.

Примеры 4-5.

Аналогично примеру 1 изготовлены мощные транзисторы СВЧ, но с канавками на лицевой и обратной стороне глубиной менее 5 и более 10 мкм и шириной на лицевой стороне менее 70 и более 100 мкм и шириной на обратной стороне 40 и 74 соответственно.

На изготовленных образцах мощных транзисторов СВЧ был проведен визуальный анализ под микроскопом LEICA INM 100 на предмет механических повреждений, сколов, трещин, воспроизводимости размеров кристаллов транзисторов.

На изготовленных образцах мощных транзисторов СВЧ была измерена мощность.

Данные сведены в таблицу.

Как видно из таблицы транзисторы СВЧ, изготовленные по предлагаемому способу (примеры 1-3) имеют мощность, превышающую мощность транзистора СВЧ - прототипа порядка 10 процентов и воспроизводимость размеров кристаллов транзистора порядка 90 процентов против 70 процентов в прототипе.

При формировании канавок на лицевой и обратной стороне полупроводниковой пластины глубиной, выходящей за пределы, указанные в формуле изобретения наблюдается:

либо низкая воспроиводимость (пример 4) и, как следствие, снижение мощности и выхода годных,

либо разрушение пластины (пример 5).

Таким образом, предлагаемый способ изготовления мощных транзисторов СВЧ позволит по сравнению с прототипом:

- во-первых, снизить тепловое сопротивление и тем самым повысить мощность транзистора СВЧ порядка десяти процентов,

- во-вторых, повысить выход годных, благодаря исключению механических повреждений, сколов, трещин и увеличения воспроизводимости размеров кристаллов.

- в-третьих, упростить способ изготовления благодаря исключению резки алмазными дисками.

Предлагаемый способ изготовления мощных транзисторов СВЧ может быть использован при изготовлении МИС СВЧ на их основе.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Иващук А.В., Босый В.И., Ковальчук В.Н. СВЧ полевые транзисторы средней мощности миллиметрового диапазона длин волн. Технология и конструирование в электронной аппаратуре. №6, 2003 г., стр.27-31.

2. Handbook of Microwave and Optical Component Vol 2, 1990 г., Fabrication processes, p.518-523.

№ п/пГлубина канавки на лицевой стороне полупроводниковой подложки, мкмГлубина канавки на обратной стороне полупроводниковой подложки, мкмШирина канавки на лицевой стороне полупроводниковой подложки, мкмШирина канавки на обратной стороне, мкм при соотношении их ширины 3-2Мощность транзисторовВыход годных
1888556Увеличение мощности порядка 10%Воспроизводимость размеров кристаллов порядка 90%. Отсутствуют механические повреждения, сколы, трещины
2557046Увеличение мощности порядка 10%То же самое
3101010066Увеличение мощности порядка 10%То же самое
4336040Снижение мощностиУменьшение процента выхода порядка 10%
5121211074Разрушение пластины
6прототип100%Воспроизводимость размеров кристаллов не превышает 70%. Наблюдаются механические повреждения, сколы, трещины

1.СпособизготовлениямощныхтранзисторовСВЧ,включающийформированиеналицевойсторонеполупроводниковойпластинытопологиитранзисторовспомощьюэлектроннойифотолитографии,напыленияметаллов,нанесенияитравлениядиэлектриков,гальваническогоосаждениязолота,утонениеполупроводниковойпластиныдотолщиныменее30мкм,травлениевполупроводниковойпластинесквозныхзаземляющихотверстийдлявыводовтранзисторов,гальваническоеосаждениенаобратнойсторонеполупроводниковойпластиныинтегральноготеплоотводаиззолотатолщинойболее30мкм,разделениеполупроводниковойпластинынакристаллытранзисторов,отличающийсятем,чтопередутонениемполупроводниковойпластинынаеелицевойстороневнетопологиитранзисторовформируютканавкиглубиной5-10мкмишириной70-100мкмдлязаданияразмеракристалловтранзисторов,апослеутоненияполупроводниковойпластиныформируютканавкинаееобратнойсторонеглубиной5-10мкмнепосредственноподканавкаминалицевойстороне,приэтомсоотношениеихшириныравно3-2,аформируютканавкиспомощьюфотолитографииитравления,послеформированияинтегральноготеплоотводаформируютинтегральныетеплоотводыкристалловтранзисторовфотолитографиейпоинтегральномутеплоотводуспоследующимеготравлениемвместахрасположенияканавокнаобратнойсторонеполупроводниковойпластины,аразделениеполупроводниковойпластинынакристаллытранзисторовосуществляютхимическимтравлением,приэтоминтегральныетеплоотводыкристалловтранзисторовслужатмаской.12.СпособизготовлениямощныхтранзисторовСВЧпоп.1,отличающийсятем,чтовкачествеполупроводниковойпластиныиспользуют,например,пластинуарсенидагаллия.2

Источник поступления информации: Роспатент

Showing 11-20 of 62 items.
10.10.2013
№216.012.7411

Устройство для контроля толщины проводящей пленки изделий электронной техники

Изобретение относится к электронной технике. Сущность изобретения: устройство для контроля толщины проводящей пленки изделий электронной техники непосредственно в технологическом процессе ее формирования в вакууме путем измерения электрического сопротивления содержит подложку из...
Тип: Изобретение
Номер охранного документа: 0002495370
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.7438

Устройство для определения коэффициента теплопроводности материала

Изобретение относится к области технической физики и может быть использовано при прогнозировании эксплуатационных характеристик композиционных материалов. Заявлено устройство для определения коэффициента теплопроводности материала методом плоского горизонтального слоя, содержащее элемент,...
Тип: Изобретение
Номер охранного документа: 0002495409
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.833e

Устройство для определения шумовых параметров четырехполюсника свч

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с перестраиваемыми параметрами, вход которой соединен с генератором шума посредством центрального проводника в виде отрезка линии передачи, выход которого соединен с входом измеряемого...
Тип: Изобретение
Номер охранного документа: 0002499274
Дата охранного документа: 20.11.2013
20.03.2014
№216.012.ad20

Устройство для измерения полного сопротивления и шумовых параметров двухполюсника на свч

Изобретение относится к измерительной технике на СВЧ. Устройство для измерения полного сопротивления и шумовых параметров двухполюсника на СВЧ, содержащее измеритель частотных характеристик и интегральную схему в составе центральной линии передачи, отрезка линии передачи, соединенного с...
Тип: Изобретение
Номер охранного документа: 0002510035
Дата охранного документа: 20.03.2014
20.02.2019
№219.016.bcd4

Зонд для измерения электрических характеристик планарных элементов интегральных схем

3онд содержит коаксиальный разъем, коаксиальную линию передачи, воздушную копланарную линию передачи из плоских упругих проводников. Проводники воздушной копланарной линии передачи имеют выступы для контактирования с контактными площадками планарных элементов интегральных схем. На торцах...
Тип: Изобретение
Номер охранного документа: 0002285930
Дата охранного документа: 20.10.2006
20.02.2019
№219.016.be6f

Гибридная интегральная схема свч-диапазона

Изобретение относится к электронной технике СВЧ. Сущность изобретения: в гибридной интегральной схеме СВЧ-диапазона, содержащей диэлектрическую подложку, на лицевой стороне которой расположен топологический рисунок металлизации, а на обратной стороне - экранная заземляющая металлизация, по...
Тип: Изобретение
Номер охранного документа: 0002390877
Дата охранного документа: 27.05.2010
20.02.2019
№219.016.c09b

Диск из алмазосодержащего материала для обработки материалов электронной техники и изделий из них

Изобретение относится к электронной технике, а именно к механической обработке материалов электронной техники и изделий из них, в том числе полупроводниковых и ферритовых материалов. Технический результат изобретения - повышение выхода годных путем повышения качества обработки, а именно...
Тип: Изобретение
Номер охранного документа: 0002308118
Дата охранного документа: 10.10.2007
01.03.2019
№219.016.cf97

Усилитель мощности свч

Изобретение относится к электронной технике СВЧ. Технический результат: повышение надежности работы, выходной мощности, снижение коэффициентов отражения на входе и выходе усилителя мощности. Усилитель содержит два прямоугольных волновода, один - для входа, другой - для выхода, которые...
Тип: Изобретение
Номер охранного документа: 0002433524
Дата охранного документа: 10.11.2011
11.03.2019
№219.016.d693

Способ изготовления окна вывода энергии свч и квч электронных приборов

Изобретение относится к способам изготовления волноводных узлов устройств СВЧ и КВЧ диапазонов. Техническим результатом является снижение трудоемкости и стоимости изготовления, а также повышение надежности. Заданную конфигурацию диэлектрической пластины задают вакуумным напылением...
Тип: Изобретение
Номер охранного документа: 0002285313
Дата охранного документа: 10.10.2006
11.03.2019
№219.016.d7ea

Аттенюатор свч

Изобретение относится к электронной технике, а именно к аттенюаторам СВЧ на полупроводниковых приборах. Аттенюатор СВЧ состоит, по крайней мере, из одного разряда, каждый из которых содержит резисторы, один из которых соединен последовательно, а другой - параллельно линиям передачи на входе и...
Тип: Изобретение
Номер охранного документа: 0002340048
Дата охранного документа: 27.11.2008
Showing 1-7 of 7 items.
20.06.2013
№216.012.4e47

Способ изготовления мощного транзистора свч

Изобретение относится к электронной технике. Способ изготовления мощного транзистора СВЧ включает формирование на лицевой стороне полупроводниковой подложки топологии, по меньшей мере, одного кристалла транзистора, формирование электродов транзистора, формирование, по меньшей мере, одного...
Тип: Изобретение
Номер охранного документа: 0002485621
Дата охранного документа: 20.06.2013
10.03.2016
№216.014.bff0

Способ селективного реактивного ионного травления полупроводниковой гетероструктуры

Изобретение относится к электронной технике СВЧ. Способ селективного реактивного ионного травления полупроводниковой гетероструктуры, имеющей, по меньшей мере, последовательность слоев GaAs/AlGaAs с заданными характеристиками, включает расположение полупроводниковой гетероструктуры на...
Тип: Изобретение
Номер охранного документа: 0002576412
Дата охранного документа: 10.03.2016
20.02.2019
№219.016.be6f

Гибридная интегральная схема свч-диапазона

Изобретение относится к электронной технике СВЧ. Сущность изобретения: в гибридной интегральной схеме СВЧ-диапазона, содержащей диэлектрическую подложку, на лицевой стороне которой расположен топологический рисунок металлизации, а на обратной стороне - экранная заземляющая металлизация, по...
Тип: Изобретение
Номер охранного документа: 0002390877
Дата охранного документа: 27.05.2010
29.03.2019
№219.016.f121

Способ изготовления транзистора свч с управляющим электродом т-образной конфигурации субмикронной длины

Изобретение относится к электронной технике СВЧ. Сущность изобретения: способ изготовления транзистора СВЧ с управляющим электродом Т-образной конфигурации субмикронной длины включает формирование на лицевой стороне полуизолирующей полупроводниковой пластины с активным слоем заданной структуры...
Тип: Изобретение
Номер охранного документа: 0002390875
Дата охранного документа: 27.05.2010
09.06.2019
№219.017.7f7c

Способ изготовления мощных транзисторов свч

Изобретение относится к электронной технике. Сущность изобретения: в способе изготовления мощных транзисторов СВЧ, включающем формирование на лицевой стороне полупроводниковой подложки топологии транзисторов посредством методов электронной и фотолитографии, напыления металлов, нанесения и...
Тип: Изобретение
Номер охранного документа: 0002463683
Дата охранного документа: 10.10.2012
16.05.2023
№223.018.5ed8

Способ изготовления омических контактов мощных электронных приборов

Способ изготовления омических контактов мощных электронных приборов на полупроводниковой гетероструктуре на основе нитрида галлия, включающий формирование заданной топологии омических контактов на заданном наружном слое упомянутой полупроводниковой гетероструктуры, нанесение материала омических...
Тип: Изобретение
Номер охранного документа: 0002756579
Дата охранного документа: 01.10.2021
27.05.2023
№223.018.7099

Способ изготовления мощного полевого транзистора свч на полупроводниковой гетероструктуре на основе нитрида галлия

Изобретение относится к электронной технике СВЧ. Способ изготовления мощного полевого транзистора СВЧ на полупроводниковой гетероструктуре на основе нитрида галлия согласно изобретению включает формирование на лицевой поверхности подложкиполупроводниковой гетероструктуры на основе нитрида...
Тип: Изобретение
Номер охранного документа: 0002787550
Дата охранного документа: 10.01.2023
+ добавить свой РИД