×
11.03.2019
219.016.d8ad

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ ГАЗОТУРБИННОЙ УСТАНОВКИ ОТ РАСКРУТКИ СИЛОВОЙ ТУРБИНЫ

Вид РИД

Изобретение

№ охранного документа
0002316665
Дата охранного документа
10.02.2008
Аннотация: Изобретение относится к системам управления газотурбинных установок, а именно к системам защиты газотурбинных установок для механического привода и привода электрогенератора от опасных забросов частоты вращения (раскрутки) свободной силовой турбины. Техническая задача, решаемая изобретением, заключается в повышении надежности, ресурса и эксплуатационной безопасности газотурбинной установки. Сущность изобретения заключается в том, что в способе защиты газотурбинной установки от раскрутки силовой турбины при внезапном сбросе нагрузки, включающем измерение частоты вращения силовой турбины n, определение ее первой производной по времени и приведенной по температуре воздуха на входе установки Т частоты вращения газогенератора n, формирование предельных значений n , n , и сравнение их с n, n, соответственно, согласно изобретению при n>n , n>n  и осуществляют перепуск газа за турбиной газогенератора в атмосферу. При выполнении условия n>n , n>n  и осуществляют перепуск газа за турбиной газогенератора в атмосферу, минуя силовую турбину с помощью клапанов перепуска газов. Тем самым обеспечивается уменьшение подвода энергии к силовой турбине и парирование «заброса» n.Кроме того, величину n  определяют по формуле n =n +Δ, где n  - уставочное значение частоты вращения силовой турбины, а Δ≥(5-7)δn, где δn - статическая погрешность регулирования частоты вращения силовой турбины газотурбинной установки. Величина n  получена опытным путем при переключениях сравнимых с мощностью ГТУ нагрузок в электрических сетях при работе в параллель с сетью «бесконечной» мощности. Уставочное значение частоты вращения силовой турбины ГТУ n  необходимо поддерживать для обеспечения требуемой мощности. Константа Δ, обеспечивающая требуемый запас на исключение ложного срабатывания, должна не менее чем в 5...7 раз превышать статическую погрешность регулирования частоты вращения силовой турбины ГТУ n (δn), и составлять ≈60...100 об/мин. 2 з.п. ф-лы, 1 ил.

Изобретение относится к системам управления газотурбинных установок, а именно к системам защиты газотурбинных установок для механического привода и привода электрогенератора от опасных забросов частоты вращения (раскрутки) свободной силовой турбины.

Известен однопараметрический способ защиты газотурбинной установки (ГТУ) от раскрутки силовой турбины по физическому значению частоты вращения силовой турбины nст, заключающийся в измерении величины nст, формировании первого и второго предельных значений частот nст, сравнении nст с первым предельным значением и при превышении nст первого предельного значения выдаче оператору информационно-предупредительного сигнала для принятия мер по устранению заброса. Затем осуществляли сравнение nст с вторым предельным значением и полностью прекращали подачу топлива в камеру сгорания ГТУ (аварийный останов, Gт=0) при превышении nст второго предельного значения частоты nст [«Функциональный модуль управления расходом топлива Series 5 центробежных и осевых компрессоров», Документ UM5421 (0.2.0), компания «Compressor Control Corporation», США, 2000, с.95...96].

Недостатком известного способа является возможность необоснованного выключения ГТУ, например, при сбросе нагрузки и кратковременном забросе nст, что приводит к перебоям в выработке электроэнергии, необходимости переключения ГТУ на другие источники энергии.

Известны также способы предотвращения раскрутки силовой турбины ГТУ, которые предусматривают измерение частоты вращения силовой турбины nст и определение первой производной по времени , уменьшение расхода топлива Gт в камеру сгорания ГТУ или кратковременный останов подачи топлива в зависимости от мощности, снимаемой с вала силовой турбины, или по наличию упреждающего сигнала о внезапном сбросе нагрузки [Патент США №5609465, F01D 17/06, 1997 г. Патент РФ №2225945, 7 F02С 9/46, 2002].

Однако указанные способы защиты при неблагоприятном сочетании эксплуатационных факторов и конструктивных особенностей ГТУ могут не обеспечить своевременную и надежную защиту силовой турбины от раскрутки в ситуации, когда частоты вращения силовой турбины nст и турбины газогенератора ГТУ nгг имеют максимальные значения и используется относительно «быстроходная» конструкция свободной силовой турбины (nст≥5000...7000 об/мин и более, вместо типовых 3000 об/мин). При этом происходит внезапное полное отключение нагрузки с вала силовой турбины, а упреждающий сигнал о сбросе нагрузки отсутствует.

Негативными последствиями возможных забросов nст может стать автоматическое отключение электрогенератора от потребителя или механическое разрушение силовой турбины и нелокализованная поломка ГТУ, и как следствие, повреждение дорогостоящего оборудования.

Другой известный способ управления газотурбинного двигателя учитывает режим работы и динамическое состояние его параметров и предусматривает измерение частоты вращения вращающегося узла двигателя (частоты вращения ротора газогенератора), формирование первого порогового значения, которое изменяется в зависимости от первой производной частоты вращения узла в определенном диапазоне. При этом, если фактическая частота вращения превышает не только первое, но и второе пороговое значение, которое больше первого, делают вывод о наличии «заброса» частоты вращения ротора газогенератора. После обнаружения заброса частоты расход топлива Gт в двигатель уменьшают путем изменения электрического тока в приводе топливного клапана по аналоговой схеме [Патент США №6321525 В1, F02C 9/28, 2001].

Однако при полном сбросе нагрузки указанный способ защиты также может не обеспечить надежную и своевременную защиту силовой турбины от раскрутки из-за недостаточного быстродействия, характерного для аналоговой схемы управления топливным краном. Так, в схемах регулирования подобного типа время полного перемещения дозатора топлива от максимального до минимального положения составляет Δт=1...1,5 секунды, что может оказаться недостаточным для парирования заброса nст в ситуации, когда темп увеличения nст до предельных значений nст существенно превышает возможный темп снижения подвода энергии (режима газогенератора).

Наиболее близким к заявляемому является способ предотвращения раскрутки силовой турбины, заключающийся в измерении частоты вращения силовой турбины nст и первой производной частоты nст, приведенной частоты вращения ротора газогенератора ГТУ nггпр, а также сигнала о сбросе нагрузки, формировании соответствующих пороговых значений параметров nст, и nггпр, сравнении параметров nст, и nггпр с их соответствующими пороговыми значениями, а при одновременном поступлении сигнала о превышении величины параметра nггпр над его пороговым значением (признак «высокого» режима работы) и сигнала о сбросе нагрузки, подают команду на отключение (полную отсечку) расхода топлива Gт в двигатель и включение агрегата зажигания на заданное время. После снижения частотных параметров ГТУ ниже соответствующих пороговых значений подают сигнал на включение подачи топлива в камеру сгорания [Патент РФ №2225945, F 02 С 9/46, 2004].

Однако в процессе работы ГТУ возможно несанкционированное отключение подачи топлива при внутренних и (или) внешних случайных воздействиях на устройство защиты, например, при штатном наличии признака «высокого» режима работы и ложном появлении сигнала сброса нагрузки (из-за наведенных электромагнитных помех или отказа входного узла, регистрирующего команду о сбросе нагрузки).

При кратковременной отсечке топлива и последующем восстановлении режима работы ГТУ наблюдаются значительные градиенты измерения термогазодинамических нагрузок на камеру сгорания и турбину газогенератора, следствием чего является ускоренная выработка ресурса ГТУ.

Последствиями упомянутых выше недостатков являются перебои в выработке электроэнергии, повышенная теплопередача на силовой турбине и, как следствие, низкая надежность, ресурс и эксплуатационная безопасность ГТУ.

Техническая задача, решаемая изобретением, заключается в повышении надежности, ресурса и эксплуатационной безопасности газотурбинной установки путем уменьшения теплоперепада на силовой турбине и устранения ее раскрутки за счет своевременного перепуска части газов, выходящих из турбины газогенератора, в атмосферу, минуя силовую турбину, с помощью клапанов перепуска газов.

Сущность изобретения заключается в том, что в способе защиты газотурбинной установки от раскрутки силовой турбины при внезапном сбросе нагрузки, включающем измерение частоты вращения силовой турбины nст, определение ее первой производной по времени и приведенной по температуре воздуха на входе установки Твх частоты вращения газогенератора nггпр, формирование предельных значений nггпрпред, nстпред, и сравнение их с nггпр, nст, соответственно, согласно изобретению при nггпр>nггпрпред, nст>nстпред и > осуществляют перепуск газа за турбиной газогенератора в атмосферу.

При выполнении условия nггпр>nггпрпред, nст>nстпред и > осуществляют перепуск газа за турбиной газогенератора в атмосферу, минуя силовую турбину с помощью клапанов перепуска газов. Тем самым обеспечивается уменьшение подвода энергии к силовой турбине и парирование «заброса» nст.

Кроме того, величину nстпред определяют по формуле nстпред=nстуст+Δ, где nстуст - уставочное значение частоты вращения силовой турбины, а Δ≥(5-7) δnст, где δnст - статическая погрешность регулирования частоты вращения силовой турбины газотурбинной установки. Величина nстпред получена опытным путем при переключениях сравнимых с мощностью ГТУ нагрузок в электрических сетях при работе в параллель с сетью «бесконечной» мощности.

Уставочное значение частоты вращения силовой турбины ГТУ nстуст необходимо поддерживать для обеспечения требуемой мощности. Константа Δ, обеспечивающая требуемый запас на исключение ложного срабатывания, должна не менее чем в 5...7 раз превышать статическую погрешность регулирования частоты вращения силовой турбины ГТУ nст (δnст) и составлять ≈60...100 об/мин.

В случае, если Δ<(5-7) δnст может наблюдаться колебательный процесс из-за снижения nст ниже nстуст и последующего восстановления величины nст до nстуст с целью поддержания заданной мощности.

Повышение надежности и эксплуатационной безопасности ГТУ обеспечивается за счет исключения несанкционированной раскрутки силовой турбины и осуществления режима плавного снижения теплоперепада на силовой турбине без «термошока», характерного для способа-прототипа.

На фигуре показан продольный разрез ГТУ с блок-схемой, иллюстрирующей порядок осуществления заявляемого способа.

Блок 1 - датчик измерения температуры воздуха Твх на входе в ГТУ.

Блок 2 - датчик измерения частоты вращения ротора газогенератора nгг.

В качестве датчика измерения nгг могут использоваться индукционные датчики типа ДЧВ-2500А или любого другого типа, обеспечивающие точность измерения на уровне 0,01...0,1%.

Блок 3 - арифметическое устройство, на вход которого поступают сигналы о величине nгг и Твх. На основе информации о величинах nгг и Твх в блоке 3 вычисляется приведенная частота вращения ротора газогенератора ГТУ:

Блок 4 - блок формирования предельного значения приведенной частоты вращения ротора газогенератора ГТУ nггпрпред.

Блок 5 - компаратор, в котором выполняется сравнение nггпр с nггпрпред.

Функциональное назначение блока заключается в том, чтобы исключить открытие клапана перепуска газов на «низких» режимах работы газогенератора ГТУ, когда в этом нет необходимости, т.к. парирование заброса nст удовлетворительно обеспечивается известным способом путем уменьшения подачи топлива в камеру сгорания газогенератора. Величину nггпрпред устанавливают ниже nггпр для номинального режима работы ГТУ. При nггпр>nггпрпред на выходе компаратора 5 формируется первый логический сигнал высокого уровня I1=1.

Блок 6 - датчик измерения частоты вращения nст силовой турбины ГТУ. В качестве датчика измерения nст могут использоваться индукционные датчики типа ДЧВ-2500А или любого другого типа, обеспечивающие точность измерения на уровне ±0,1%.

Блок 7 - дифференциатор, в котором осуществляется вычисление первой производной по времени параметра nст (nст).

Блок 8 - блок формирования предельного значения первой производной по времени (). Величина задается с учетом быстродействия открытия клапанов перепуска газов для газодинамического парирования «заброса» nст. В общем случае величина может быть константой, например =600...700 об/мин за 1 секунду и более, или функцией режима работы ГТУ, т.е. может зависеть от частоты вращения газогенератора nгг или величины снижения потребляемой мощности Р.

Блок 9 - компаратор, в котором выполняется сравнение с . При > на выходе компаратора формируется второй логический сигнал высокого уровня I2=1.

Блок 10 - блок формирования предельного значения частоты вращения nст (nстпред). Функциональное назначение блока состоит в том, чтобы исключить ложные срабатывания при кратковременных «забросах» первой производной частоты турбины, вызванных типовыми сбросами нагрузки (штатной перекоммутацией в электрических сетях), при которых величина может кратковременно (на Δт=0,01...0,05 с) достигать значений 600...700 об/мин за 1 секунду.

Блок 11 - компаратор, в котором выполняется сравнение nст с nстпред. При nст>nстпред на выходе компаратора формируется третий логический сигнал высокого уровня I3=1.

Блок 12 - логическое устройство И, имеет три входа и один выход. На первый вход блока 12 поступает логический сигнал I1, на второй вход - логический сигнал I2, на третий - логический сигнал I3. При одновременном наличии на трех входах блока 12 сигналов I1=1, I2=1 и I3=1 на выходе блока 12 формируется логический сигнал I4=1, который подается на вход блока 13 и обеспечивает открытие клапанов перепуска газа за турбиной газогенератора ГТУ.

Блок 13 - клапана перепуска газа за турбиной газогенератора ГТУ (на разрезе показан один клапан). Каждый клапан перепуска газов 13 соединен на входе с проточной частью кольцевого канала между турбиной газогенератора и свободной турбиной, а на выходе - с атмосферой.

При наличии сигнала I4=0 клапана перепуска 13 газотурбинной установки 14 находятся в закрытом состоянии. При формировании I4=1 клапана перепуска газов 13 открываются и обеспечивают частичный перепуск газа с выхода турбины газогенератора через соответствующие трубопроводы в атмосферу, минуя силовую турбину, обеспечивая уменьшение подвода энергии к силовой турбине и парирование заброса nст.

Способ осуществляется следующим образом.

До и в процессе запуска ГТУ клапана перепуска газа 13 за турбиной газогенератора находятся в открытом положении. После запуска газогенератора клапана перепуска газа 13 в ручном или автоматическом режиме закрывают.

При работе газогенератора ГТУ на «низких» режимах (nггпр<nггпрпред) на выходе блока 5 формируется логический сигнал низкого уровня I1=0. Поэтому при nст>600...700 об/мин за 1 секунду и nст>nстпред клапана перепуска газа 13 за турбиной газогенератора остаются в закрытом положении.

В случае внезапного сброса всей нагрузки при работе газогенератора ГТУ на «высоком» режиме (nггпр>nггпрпред, I1=1), параметры nст и существенно возрастают. При превышении величины предельного значения ≈600...700 об/мин за 1 секунду, а также при nст>nстпред на всех трех входах блока 12 формируются логические сигналы Ii=1. На выходе блока 12, работающего по логике И, также формируется логический сигнал высокого уровня I4=1. Сигнал I4=1 поступает на вход блока 13 и клапана перепуска газов открываются, обеспечивая перепуск газов газогенератора в атмосферу через трубопроводы и выходное устройство, минуя силовую турбину. Исходя из термодинамической схемы ГТУ, теплоперепад на силовой турбине уменьшается и частота вращения силовой турбины nст снижается.

Заявляемое изобретение было реализовано в цифровой электронной системе автоматического управления и проверено испытаниями в составе энергетической ГТУ мощностью 12 МВт, выполненной на базе авиационного двигателя ПС-90А и включающей свободную силовую турбину с номинальной частотой вращения nст≥5000 об/мин (ГТУ-12П). Результаты стендовых испытаний полностью подтвердили своевременную и надежную защиту силовой турбины от раскрутки, в том числе, необходимую динамическую точность измерения параметра nст. По результатам испытаний, дополненных математическим моделированием работы ГТУ, также установлено, что для эффективного парирования забросов частоты nст целесообразно, чтобы общее время с момента формирования сигнала I4=1 и до открытия всех клапанов перепуска газов не превышало 0,1...0,3 с.

1.Способзащитыгазотурбиннойустановкиотраскруткисиловойтурбиныпривнезапномсбросенагрузки,включающийизмерениечастотывращениясиловойтурбиныn,определениееепервойпроизводнойповременииприведеннойпотемпературевоздуханавходеустановкиТчастотывращениягазогенератораn,формированиепредельныхзначенийn ,n ,исравнениеихсn,n,,соответственно,отличающийсятем,чтоприn>n ,n>n иосуществляютперепускгазазатурбинойгазогенератораватмосферу.12.Способзащитыгазотурбиннойустановкипоп.1,отличающийсятем,чтовеличинуn определяютпоформулеn =n +Δ,гдеn -уставочноезначениечастотывращениясиловойтурбины,аΔ≥(5-7)δn,гдеδn-статическаяпогрешностьрегулированиячастотывращениясиловойтурбиныгазотурбиннойустановки.23.Способзащитыгазотурбиннойустановкипоп.2,отличающийсятем,чтовеличинаΔсоставляет60...100об/мин.3
Источник поступления информации: Роспатент

Showing 21-30 of 100 items.
10.08.2014
№216.012.e778

Высокотемпературный газотурбинный двигатель

Высокотемпературный газотурбинный двигатель включает турбину, в которой внутренняя полость охлаждаемой сопловой лопатки второй ступени на входе через заслонку регулирования расхода охлаждающего воздуха соединена с промежуточной ступенью компрессора. Рабочая лопатка второй ступени турбины...
Тип: Изобретение
Номер охранного документа: 0002525049
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e8ba

Высокотемпературная газовая турбина

Высокотемпературная газовая турбина содержит рабочую лопатку первой ступени, первую сопловую лопатку и установленную на внутреннем корпусе камеры сгорания опору соплового аппарата. Первая сопловая лопатка верхней полкой установлена в наружном корпусе камеры сгорания, а радиальными ребрами...
Тип: Изобретение
Номер охранного документа: 0002525371
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e8c6

Опора турбины

Опора турбины газотурбинного двигателя содержит подшипник (4), вал (6) и лабиринт (11) с фланцем (10) между подшипником (4) и диском (8) турбины. С внешней стороны фланца (10) лабиринта (11) установлен дополнительный фланец (12) с образованием полости продувки (13). Полость (13) на входе...
Тип: Изобретение
Номер охранного документа: 0002525383
Дата охранного документа: 10.08.2014
10.11.2014
№216.013.03e0

Ротор турбины высокого давления

Ротор турбины высокого давления включает диск, установленный фланцем, расположенным со стороны выходной кромки рабочей лопатки, на размещенной на валу втулке. На противоположной от диска стороне втулки выступами радиального ребра установлен лабиринт с уплотнительными гребешками. Фланец диска...
Тип: Изобретение
Номер охранного документа: 0002532390
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.03e3

Система суфлирования турбореактивного двигателя

Изобретение относится к турбореактивным двухконтурным двигателям авиационного применения. Система суфлирования турбореактивного двигателя включает в себя трубопровод суфлирования, соединенный с трубой суфлирования, установленной на сопло. Выходной конец патрубка трубы суфлирования выполнен...
Тип: Изобретение
Номер охранного документа: 0002532393
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0423

Статор компрессора газотурбинного двигателя

Статор (1) компрессора газотурбинного двигателя выполнен с поворотными направляющими лопатками (7), (9) и (10) и соединенными с ними через рычаги (19), (20) и (21) поворотными тяговыми кольцами (23), (24) и (25). Тяговые кольца содержат радиальные опорные винты (26), в головках которых со...
Тип: Изобретение
Номер охранного документа: 0002532457
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0424

Ротор высокотемпературной турбомашины

Изобретение относится к роторам высокотемпературных турбомашин газотурбинных двигателей авиационного и наземного применения. В роторе (1) высокотемпературной турбомашины между первым (7) и вторым (8) и предпоследним (9) и последним (10) по потоку газа (11) уплотнительными гребешками в ободе (6)...
Тип: Изобретение
Номер охранного документа: 0002532458
Дата охранного документа: 10.11.2014
27.12.2014
№216.013.146c

Ротор турбины низкого давления

Изобретение относится к роторам турбин низкого давления газотурбинных двигателей авиационного и наземного применения. Ротор турбины включает установленный на задней по потоку газа стороне обода диска лабиринт с внутренним радиальным ребром, а также установленный с передней стороны обода диска...
Тип: Изобретение
Номер охранного документа: 0002536652
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.146f

Газотурбинный двигатель

Газотурбинный двигатель (1) включает в себя корпус приводов (2) с расположенным за ним ниже по потоку воздуха (3) компрессором (4) с передними по потоку спрямляющими (8) и рабочими (9) титановыми лопатками. На переднем хвостовике (12) вала (13) компрессора установлено зубчатое колесо (14)...
Тип: Изобретение
Номер охранного документа: 0002536655
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1d85

Статор высокотемпературной турбины

Изобретение относится к статорам высокотемпературных турбин газотурбинных двигателей авиационного и наземного применения. Статор высокотемпературной турбины включает размещенную в промежуточном корпусе сопловую лопатку и установленные ниже по потоку газа сектора разрезного кольца, выполненные с...
Тип: Изобретение
Номер охранного документа: 0002538985
Дата охранного документа: 10.01.2015
Showing 21-25 of 25 items.
25.04.2020
№220.018.1996

Автономное интегрированное устройство сбора, регистрации и контроля параметров авиационного газотурбинного двигателя

Изобретение относится к области авиационной техники и предназначено для использования в бортовых системах сбора, регистрации и контроля параметров летательных аппаратов с использованием беспроводной технологии передачи полетной информации, преимущественно для контроля параметров авиационного...
Тип: Изобретение
Номер охранного документа: 0002719757
Дата охранного документа: 23.04.2020
16.07.2020
№220.018.332f

Способ управления реверсивным устройством газотурбинного двигателя

Изобретение относится к управлению газотурбинным двигателем с применением реверса тяги при торможении самолета. Способ управления реверсивным устройством газотурбинного двигателя включает в себя блокировку управляющего сигнала на включение реверсивного устройства при положении рычага управления...
Тип: Изобретение
Номер охранного документа: 0002726491
Дата охранного документа: 14.07.2020
12.04.2023
№223.018.421e

Способ управления реверсивным устройством газотурбинного двигателя при посадке и прерванном взлете самолета

Изобретение относится к области авиационного двигателестроения, в частности к способам управления реверсивным устройством (РУ) газотурбинного двигателя (ГТД) при торможении самолета в условиях посадки и прерванного взлета. Способ заключается в том, что определяют приземление самолета по наличию...
Тип: Изобретение
Номер охранного документа: 0002730731
Дата охранного документа: 25.08.2020
10.05.2023
№223.018.5343

Способ управления входным направляющим аппаратом компрессора газотурбинного двигателя

Изобретение относится к области авиационного газотурбинного двигателестроения и может быть использовано в электронных системах автоматического управления с гидромеханическим резервированием. Изобретение решает техническую проблему, связанную с отсутствием дифференцированного подхода к выявлению...
Тип: Изобретение
Номер охранного документа: 0002795359
Дата охранного документа: 03.05.2023
10.05.2023
№223.018.5349

Способ управления газотурбинным двигателем электронно-гидромеханической системой

Изобретение относится к области авиационного газотурбинного двигателестроения и может быть использовано в электронных системах автоматического управления с гидромеханическим резервированием. Способ управления газотурбинным двигателем электронно-гидромеханической системой заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002795360
Дата охранного документа: 03.05.2023
+ добавить свой РИД