×
11.03.2019
219.016.d5eb

Результат интеллектуальной деятельности: Способ управления рулём высоты самолёта

Вид РИД

Изобретение

№ охранного документа
0002681509
Дата охранного документа
06.03.2019
Аннотация: Изобретение относится к способу управления рулем высоты самолета. Для управления рулем высоты измеряют угол тангажа, угол крена, вектор перегрузки, вектор угловой скорости, комплекс скоростных параметров, углы отклонения управляющих поверхностей самолета, вычисляют корректирующие сигналы приращения нормальной перегрузки и угловой скорости тангажа, определяют заданное значение приращения нормальной перегрузки, вычисляют величины позиционного и интегрального сигналов управления, формируют управляющий сигнал привода руля высоты определенным образом, передают управляющий сигнал на приводы руля высоты. Обеспечивается повышение характеристик устойчивости, управляемости и безопасности, а также снижение аэродинамических нагрузок. 1 з.п. ф-лы.

Изобретение относится к авиационной технике, в частности, к системам управления (СУ) самолетов и может быть использовано при проектировании самолетов с целью уменьшения эксплуатационных и расчетных маневренных аэродинамических нагрузок на горизонтальное оперение (ГО) и хвостовую часть фюзеляжа самолета.

Известен и широко применяется в системах управления самолетов астатический автомат продольной устойчивости и управляемости (см. А.В. Ефремов, В.Ф. Захарченко, В.Н. Овчаренко и др. Динамика полета; под ред. Г.С. Бюшгенса. - М.: Машиностроение, 2011, стр. 694-700). При управлении в соответствии с этим способом измеряют отклонение штурвала от нейтрального положения ΔХВ и параметры движения, на их основе вычисляют корректированные сигналы приращения нормальной перегрузки Δny к, угловой скорости тангажа ωz к и сигнал скорости полета V. Далее определяют управляющий сигнал статического автомата устойчивости UСУУП (там же, стр. 689-694). Для этого, вычисляют используя сигнал скорости полета V три коэффициента усиления: коэффициент усиления прямой цепи Kш в; коэффициент усиления обратной связи по перегрузке Kn; коэффициент усиления обратной связи по угловой скорости тангажа ; которые затем умножают на сигналы отклонения штурвала от нейтрального положения ΔХВ, приращения нормальной перегрузки Δny и угловой скорости тангажа , соответственно, и складывают. Управляющий сигнал привода руля высоты UСДУ определяют как сумму статического и интегрального:

.

Подинтегральный сигнал U определяют аналогично сигналу UСУУП

используя сигналы ΔХВ, Δny к, ωz к и коэффициенты Kш∫, Kn∫ и Kω∫. Управляющий сигнал привода руля высоты UСДУ передают на рулевые приводы, которые управляют рулем высоты в соответствии с этим сигналом.

Данный способ управления обеспечивает высокий уровень характеристик устойчивости, управляемости и безопасности полета. У приведенного способа можно отметить два недостатка: возможность возникновения больших по абсолютной величине аэродинамических нагрузок при маневрировании; невозможность управления этими нагрузками или их снижения.

Известен, принятый за прототип, способ управления самолетом в продольном канале, обеспечивающий управление через отклонение руля высоты (см. Б.С.Алешин, С.Г. Баженов, Ю.И. Диденко, Ю.Ф. Шелюхин. Системы дистанционного управления магистральных самолетов. - М.: Наука, 2013, стр. 122-129). При управлении в соответствии с этим способом измеряют углы тангажа ϑ и крена γ, вектор перегрузки (величины nх, nу, nz), вектор угловой скорости (величины ωх, ωу, ωz), комплекс скоростных параметров, углы отклонения управляющих поверхностей самолета (закрылков - δз, предкрылков - δпр, стабилизатора - ϕ). По измеренным сигналам определяют заданное значение приращения нормальной перегрузки Δny зад, вычисляют скорость полета V, корректирующие сигналы приращения нормальной перегрузки Δny c и приращения угловой скорости тангажа Δωz с:

;

,

где g - ускорение силы тяжести.

Определяют величину прямого сигнала управляемости:

δв пр=Rш⋅Δny зад.

Для определения коэффициента усиления Rш могут использоваться сигналы отклонения управляющих поверхностей самолета, и параметры полета.

Определяют величину позиционного сигнала управляемости (управления):

δв позn позω поз

где составляющая, определяемая нормальной перегрузкой εn поз определяется выражением:

εn поз=Knу п⋅(Δny c-Wп(s)⋅Δny зад)⋅Wny п(s),

здесь s - опреатор Лапласса, Wп(s) - динамическое звено (в качестве него может приниматься апериодическое звено), Wny п(s) - апериодический фильтр по сигналу нормальной перегрузки, Kпу п- коэффициент усиления позиционной обратной связи по перегрузке, позиционная обратная связь по угловой скорости тангажа εω поз имеет следующий вид:

εω поз=Kωz п⋅(Δωz с-g/V⋅Wп(s)⋅Δny зад),

где Kωz п - коэффициент усиления позиционной обратной связи по угловой скорости тангажа. Коэффициенты усиления Knу п и могут выбираться в зависимости от режима полета самолета.

Определяют величину интегрального сигнала управляемости (управления):

где εnω ∫n ∫ω ∫,

εn ∫=Kny ∫⋅(Δny c-W(s)⋅Δny зад),

εω ∫=Kωz ⋅(Δωz с-g/V-W(s)⋅Δny зад),

здесь W(s) - динамическое звено (в качестве него может приниматься апериодическое звено), Kny ∫, Kωz , и K - коэффициенты усиления, которые могут выбираться в зависимости от режима полета самолета.

Формируют управляющий сигнал привода руля высоты:

δвв прв позв ∫,

Передают управляющий сигнал δв на исполнительные приводы руля высоты и осуществляют отклонение руля высоты в соответствии с данным сигналом.

Данный способ управления, как и способ-аналог, обеспечивает высокий уровень характеристик устойчивости, управляемости и безопасности полета. Он обладает теми же недостатками: возможность возникновения больших по абсолютной величине аэродинамических нагрузок при маневрировании; невозможность управления этими нагрузками или их снижения.

Техническим результатом изобретения является осуществление управления самолетом в продольном канале, обеспечивающего высокий уровень характеристик устойчивости, управляемости и безопасности при одновременном снижении аэродинамических нагрузок на ГО, возникающих при таком управлении.

Технический результат достигаются тем, что в способе управления рулем высоты самолета, содержащем измерение угла тангажа, угла крена, вектора перегрузки, вектора угловой скорости, комплекса скоростных параметров, углов отклонения управляющих поверхностей самолета, вычисление корректирующих сигналов приращения нормальной перегрузки Δny c и приращения угловой скорости тангажа Δωz с, определение заданного значения приращения нормальной перегрузки ⋅Δny зад, вычисление величины позиционного сигнала управления δв поз на основе измеренных параметров движения, вычисление величины интегрального сигнала управления δв ∫, формирование управляющего сигнала привода руля высоты δв с использованием позиционного δв поз и интегрального δв ∫ сигналов управления, передачу управляющего сигнала δв на исполнительные приводы руля высоты и соответствующее отклонение руля высоты, управляющий сигнал привода руля высоты δв определяют в зависимости от позиционного сигнала управляемости δв поз, интегрального сигнала управляемости δв ∫, корректирующего сигнала приращения нормальной перегрузки Δny c, а перед формированием управляющего сигнала привода руля высоты δв вводят ограничение позиционного сигнала управления δв поз максимальной и минимальной величиной.

Управляющий сигнал привода руля высоты δв может быть определен в соответствии формулой , где - величина градиента перемещения руля высоты на единицу перегрузки.

Способ осуществляется следующим образом:

1. При управлении в соответствии с этим способом измеряют углы тангажа ϑ и крена γ, вектор перегрузки (величины nх, nу, nz), вектор угловой скорости (величины ωх, ωу, ωz), комплекс скоростных параметров, углы отклонения управляющих поверхностей самолета (закрылков - δз, предкрылков - δпр, стабилизатора - ϕ). По измеренным сигналам определяют заданное значение приращения нормальной перегрузки Δny зад, вычисляют скорость полета V, корректирующие сигналы приращения нормальной перегрузки Δny c и приращения угловой скорости тангажа Δωz с:

;

,

где g - ускорение силы тяжести.

С использованием корректирующего сигнала приращения нормальной перегрузки Δnу с определяют величину компенсационного сигнала:

δв к=Rш⋅Δny с.

Для определения коэффициента усиления Rш могут использоваться сигналы отклонения управляющих поверхностей самолета, и параметры полета. В качестве коэффициента усиления Rш может быть принята величина градиента перемещения руля высоты на единицу перегрузки - .

Определяют величину позиционного сигнала управляемости (управления):

δв позn позω поз,

где составляющая, определяемая нормальной перегрузкой εn поз определяется выражением:

εn поз=Knу п⋅(Δny c-Wп(s)⋅Δny зад)⋅Wny п(s),

здесь s - опреатор Лапласса, Wп(s) - динамическое звено (в качестве него может приниматься апериодическое звено), Wny п(s) - апериодический фильтр по сигналу нормальной перегрузки, Kпу п- коэффициент усиления позиционной обратной связи по перегрузке, позиционная обратная связь по угловой скорости тангажа εω поз имеет следующий вид:

εω поз=Kωz п⋅(Δωz с-g/V⋅Wп(s)⋅Δny зад),

где Kωz п - коэффициент усиления позиционной обратной связи по угловой скорости тангажа. Коэффициенты усиления Knу п и могут выбираться в зависимости от режима полета самолета.

Определяют величину интегрального сигнала управляемости (управления):

где εnω ∫n ∫ω ∫,

εn ∫=Kny ∫⋅(Δny c-W(s)⋅Δny зад),

εω ∫=Kωz ⋅(Δωz с-g/V⋅W(s)⋅Δny зад),

здесь W(s) - динамическое звено (в качестве него может приниматься апериодическое звено), Kny ∫, Kωz , и K - коэффициенты усиления, которые могут выбираться в зависимости от режима полета самолета.

Формируют управляющий сигнал привода руля высоты:

δвв прв позв ∫,

2. Для ряда режимов полета, характеризующихся скоростями полета, близкими к расчетной предельной скорости полета, определяют балансировочную нагрузку на ГО при горизонтальном полете YГО бал 1, а также при полете с минимальной и максимальной эксплуатационными перегрузками, YГО бал min и YГО бал max соответственно. При этом центровки самолета выбираются в диапазоне от предельно передней, до предельно задней, а вес самолета считается максимальным для данной центровки.

3. Для того же перечня режимов полета, весов и центровок самолета, определяют изменение во времени нагрузки на ГО при переходе от минимальной эксплуатационной перегрузки к максимальной и при переходе от максимальной эксплуатационной перегрузки к минимальной. Для каждого режима полета фиксируют максимальную и минимальную нагрузку на ГО YГО max и YГО min, балансировочное значение нагрузки в переходном процессе, предшествующее данным экстремальным значениям YГО бал(+) и YГО бал(-).

4. Определяют режимы полета, вес и центровки самолета, при которых реализуется максимальная YГО max max и минимальная YГО min min нагрузка на ГО в переходном процессе. Фиксируют эти значение нагрузки и принимают их в качестве исходных расчетных значений.

5. На расчетных режимах наибольшего нагружения ГО, там где реализуются значения YГО max max и YГО min min, определяют максимально и минимально возможные ограничения величины позиционного сигнала управляемости δв поз при которых выполняются требования обеспечения устойчивости и управляемости σmax. и σmin, соответственно, определяют соответствующие им расчетные величины максимальной YГО max расч и минимальной YГО min расч расчетных нагрузок. Величина расчетной нагрузки YГО max расч не может быть менее наибольшей из балансировочных нагрузок YГО бал 1, YГО бал min и YГО бал max, а величина YГО min расч не может быть более наименьшей их величины.

6. Определяют максимальное и минимальное ограничение позиционного сигнала, как такие величины, при которых приращение нагрузки на ГО в переходном процессе ΔYГО относительно балансировочных величин YГО бал на данном режиме полета не превышает разностей соответствующих расчетных и балансировочных нагрузок: ΔYГО≤ YГО max расч- YГО бал(+) при определении; ΔYГО≤ YГО бал(-)-YГО min расч при определении .

7. Ограничивают позиционный сигнал управления δв поз максимальной и минимальнойвеличиной.

8. Формируют управляющий сигнала привода руля высоты δв с использованием компенсационного сигнала δв к, ограниченного позиционного сигнала δв поз и интегрального сигнала управления δв ∫.

Также возможно формирование сигнала δв в соответствии с выражением:

.

9. Передают управляющий сигнал δв на исполнительные приводы руля высоты, и отклоняют руль высоты в соответствии с этим сигналом.

Данный способ управления может быть применим к самолетам, имеющим различные органы продольного управления:

руль высоты;

руль высоты и отклоняемый стабилизатор - в этом случае скорость отклонения стабилизатора определяется величиной интегрального сигнала управляемости δв ∫, аналогично прототипу;

отклоняемый стабилизатор без руля высоты - в этом случае управляющий сигнал δв следует подавать на вход привода управления стабилизатором.

Проведенное математическое моделирование на примере магистрального самолета (максмальный взлетный вес 80 т) показало, что предлагаемый способ управления обеспечивает уменьшение аэродинамического нагружения ГО при выполнении маневров типа «контролируемый маневр», предписываемых авиационными правилами АП-25, на 15% по сравнению со способом описанным в прототипе.

Проблема обеспечения высокого уровня безопасности полета решается традиционно: за счет использования обратных связей по комплексу сигналов, аналогично способу, описанному в прототипе.


Способ управления рулём высоты самолёта
Способ управления рулём высоты самолёта
Способ управления рулём высоты самолёта
Способ управления рулём высоты самолёта
Источник поступления информации: Роспатент

Showing 11-20 of 40 items.
27.03.2014
№216.012.ae95

Полимерное связующее и препрег на его основе

Изобретение относится к области высокомолекулярной химии, а именно к получению связующих для полимерных композиционных материалов (ПКМ), применяемых для изготовления конструкций на основе волокнистых углеродных наполнителей с рабочей температурой 200-400°C, и могут быть использованы в...
Тип: Изобретение
Номер охранного документа: 0002510408
Дата охранного документа: 27.03.2014
27.03.2014
№216.012.aea6

Волокнистый композиционный материал

Изобретение относится к области металлургии, в частности к волокнистым композиционным материалам, армированным непрерывными волокнами оксида алюминия, и может быть использовано в качестве конструкционного материала в авиационной технике. Волокнистый композиционный материал представляет собой...
Тип: Изобретение
Номер охранного документа: 0002510425
Дата охранного документа: 27.03.2014
20.11.2015
№216.013.92ef

Способ управления реактивным приводом несущего винта вертолета и устройство для его осуществления

Изобретение относится к области авиации, в частности к конструкциям винтокрылых летательных аппаратов. Способ управления реактивным приводом несущего винта вертолета заключается в получении сжатого газа с помощью силовой установки и компрессора, транспортировке его к щелевым соплам,...
Тип: Изобретение
Номер охранного документа: 0002569233
Дата охранного документа: 20.11.2015
10.02.2016
№216.014.c4a3

Стенд для определения аэродинамических характеристик модели в присутствии неподвижного экрана

Изобретение относится к экспериментальной аэродинамике, в частности к установкам для определения аэродинамических характеристик модели в аэродинамической трубе в присутствии неподвижного экрана. Стенд содержит аэродинамическую трубу с установленными на поворотной платформе аэродинамическими...
Тип: Изобретение
Номер охранного документа: 0002574326
Дата охранного документа: 10.02.2016
12.01.2017
№217.015.5b11

Велосипедное шасси летательного аппарата

Изобретение относится к авиации и касается велосипедного шасси летательного аппарата (ЛА). Велосипедное шасси ЛА содержит переднюю и заднюю опоры, включающие стойки, пневматики, узлы крепления стоек шасси и другие составные части опор. При этом стойки хотя бы одной из опор удалены в стороны от...
Тип: Изобретение
Номер охранного документа: 0002589808
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.85e2

Самолет с шасси на воздушной подушке

Изобретение относится к авиации и касается самолетов с шасси на воздушной подушке (СШВП). СШВП содержит фюзеляж, крыло, вертикальное и горизонтальное оперение, силовую установку, содержащую двигатель, соединенный с воздушным винтом, шасси на воздушной подушке (ВП), оснащенное вентилятором,...
Тип: Изобретение
Номер охранного документа: 0002603808
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.a9cd

Способ определения интенсивности осадков в реальном времени в авиационных системах улучшенного видения

Изобретение относится к области метеорологии и может быть использовано для определения интенсивности осадков в реальном времени в авиационных системах улучшенного видения. Сущность: получают видеоизображение посредством телевизионной камеры видимого диапазона спектра. Производят цифровую...
Тип: Изобретение
Номер охранного документа: 0002611696
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.b5f2

Аппарат на воздушной подушке с наземным движителем

Изобретение относится к транспорту и касается аппаратов на воздушной подушке с наземным движителем (АВП). АВП содержит корпус, гибкое ограждение воздушной подушки, снабженное воздуховодом, силовую установку, содержащую двигатель, соединенный посредством трансмиссии с воздушным движителем и с...
Тип: Изобретение
Номер охранного документа: 0002614459
Дата охранного документа: 28.03.2017
29.12.2017
№217.015.f440

Линейный асинхронный электропривод

Изобретение относится к электротехнике, к быстродействующим электроприводам. Технический результат состоит в обеспечении возможности уменьшения массы электропривода для разгона до заданной скорости на ограниченной длине за счет безынерционного увеличения тягового усилия от нуля до максимальной...
Тип: Изобретение
Номер охранного документа: 0002637114
Дата охранного документа: 30.11.2017
17.02.2018
№218.016.2ae5

Способ измерения скорости движения подводного объекта

Изобретение относится к измерительной технике, в частности может быть использовано при аттестации бассейнов переменных давлений в качестве испытательного оборудования, опытной отработке в них пусковых устройств необитаемых малогабаритных подводных аппаратов, проведения гидродинамических...
Тип: Изобретение
Номер охранного документа: 0002642945
Дата охранного документа: 29.01.2018
Showing 1-3 of 3 items.
10.10.2013
№216.012.7251

Способ управления уборкой механизации крыла самолета транспортной категории

Изобретение относится к авиации, в частности к способам управления механизацией крыла при взлете, повышающим безопасность полета самолетов транспортной категории посредством защиты закрылков и предкрылков от чрезмерных аэродинамических нагрузок. Для управления уборкой механизации крыла самолета...
Тип: Изобретение
Номер охранного документа: 0002494922
Дата охранного документа: 10.10.2013
12.01.2017
№217.015.5b11

Велосипедное шасси летательного аппарата

Изобретение относится к авиации и касается велосипедного шасси летательного аппарата (ЛА). Велосипедное шасси ЛА содержит переднюю и заднюю опоры, включающие стойки, пневматики, узлы крепления стоек шасси и другие составные части опор. При этом стойки хотя бы одной из опор удалены в стороны от...
Тип: Изобретение
Номер охранного документа: 0002589808
Дата охранного документа: 10.07.2016
19.06.2019
№219.017.8b3a

Устройство для экспериментального определения комплексов вращательных и нестационарных производных

Изобретение относится к экспериментальной аэродинамике летательных аппаратов и может быть использовано при динамических испытаниях моделей различных летательных аппаратов в аэродинамической трубе. Устройство содержит державку для крепления модели летательного аппарата, измеритель...
Тип: Изобретение
Номер охранного документа: 0002441214
Дата охранного документа: 27.01.2012
+ добавить свой РИД