×
08.03.2019
219.016.d3c3

Результат интеллектуальной деятельности: Состав для химической обработки прискважинной зоны пласта

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтедобычи, в частности к составам для проведения физико-химической обработки в ходе эксплуатации и освоения скважин, и может быть использовано для интенсификации притока нефти из пласта за счет химического воздействия, в т.ч. растворения и диспергации карбонатной и/или терригенной составляющей породы, деструкции и диспергирования глинистой и полимерглинистой составляющих, баритового утяжелителя, кольматирующего прискважинную зону пласта - ПЗП. Состав для химической обработки прискважинной зоны пласта, включающий комплексон, гидроксид щелочного металла, добавку и воду, дополнительно содержит изопропиловый спирт или кубовые остатки бутиловых спиртов - КОБС, в качестве комплексона - трилон-Б или гидроксиэтилендифосфоновую кислоту - ГОЭДФК, в качестве гидроксида щелочного металла - гидроксид натрия и гидроксид калия, в качестве добавки - ТН-МС-2 или Сурфасол при следующем соотношении компонентов, мас. %: трилон-Б или ГОЭДФК 5,0-10,0, гидроксид натрия 2,5-5,0, гидроксид калия 2,5-5,0, ТН-МС-2 или Сурфасол 3,5-5,0, изопропиловый спирт или КОБС 3,0-5,0, вода остальное. Технический результат - повышение эффективности и технологичности химической обработки ПЗП, повышение эффективности диспергирования полимерглинистой, армированной частицами барита фильтрационной корки, сформированной в поровом пространстве ПЗП, предотвращение вторичного осаждения кольматирующих веществ в поровом пространстве коллектора, повышение эффективности химического воздействия на пласт. 4 табл.

Изобретение относится к области нефтедобычи, в частности к составам для проведения физико-химической обработки в ходе эксплуатации и освоения скважин, и может быть использовано для интенсификации притока нефти из пласта за счет химического воздействия, в том числе растворения и диспергации карбонатной и/или терригенной составляющей породы, деструкции и диспергирования глинистой и полимерглинистой составляющих, баритового утяжелителя, кольматирующего прискважинную зону пласта (ПЗП).

Основным методом восстановления естественной проницаемости карбонатной и/или терригенной составляющей породы коллектора в ПЗП в добывающих скважинах является использование кислотной обработки - закачка соляной кислоты или глинокислоты. Использование кислотных обработок приводит к частичному растворению глинистой корки, карбонатного цемента породы и другого кольматирующего материала, который поступает в ПЗП в ходе первичного вскрытия пласта при бурении. Основным недостатком использования глинокислот различных модификаций является процесс вторичного осадкообразования из-за наличия в составах плавиковой (фтористоводородной) кислоты. Ионы фтора образуют с алюмосиликатами нерастворимые осадки, кольматирующие поровое пространство коллекторов, поэтому для нефтедобывающей промышленности актуальна задача разработки бесфтористых химических составов.

Известен состав для разглинизации пласта (см. «Инструкция по технологии разглинизации с целью повышения производительности скважин». Разработчик - Научно-технологический центр ВНИИнефть, г. Москва, 1999), включающий неионогенное поверхностно-активное вещество (ПАВ), едкий натр и воду. В качестве неионогенного ПАВ используют неонол, проксамин, дисолван. Состав содержит следующее соотношение компонентов, мас. %:

неиногенное ПАВ 1-3
едкий натр 0,1-2
вода остальное

Состав удаляет кольматирующие вещества с поверхности породы, переводит их в объем состава и удерживает частицы кольматирующего вещества во взвешенном состоянии. Он обладает низкой степенью разрушения и декольматации глинистых и полимерсодержащих образований и характеризуется вторичным осаждением кольматирующих веществ в поровом пространстве коллектора. Поэтому у состава низкая эффективность при воздействии на продуктивные пласты, вскрытые на полимерных или полимерглинистых буровых растворах, содержащие барит, так как компоненты состава действует в основном на глинистую составляющую бурового раствора и коллектора.

Известен состав для обработки призабойной зоны пласта (патент RU №2232879, МПК Е21В 43/22, опубл. 20.04.2004 в бюл. №20), получаемый растворением гидроксида щелочного металла в воде, затем введением комплексона трилона-Б при перемешивании до полного растворения и введением оставшейся воды при следующем соотношении компонентов, мас. %:

комплексон трилон-Б 0,35-28,0
гидроксид щелочного металла 0,05-7,0
вода остальное

Указанный состав эффективен только при его циклической закачке с использованием щелочного буферного раствора на метанольной или углеводородной основе при коэффициенте соотношения буферного раствора и состава, равном 1-1,5, и при длительности выдержки как буферной жидкости, так и указанного состава. Кроме того, для применения данного состава требуется значительный объем промывочных растворов, при этом увеличиваются длительность процесса и эксплуатационные затраты на его проведение. Содержание в растворе трилона-Б более 15,0% экономически и технологически неэффективно, так как при этом количество растворяющегося сульфата бария увеличивается весьма незначительно и возникают сложности при приготовлении растворов такой концентрации, к тому же при соответствующей концентрации растворов по щелочи требуются дополнительные затраты при регенерации.

Кроме этого, известный состав характеризуется вторичным осаждением кольматирующих веществ в поровом пространстве коллектора, низкой эффективностью при воздействии на продуктивные пласты, вскрытые на полимерных или полимерглинистых буровых растворах, содержащих барит, так как гидроксиды щелочных металлов действуют в основном на глинистую составляющую бурового раствора и коллектора. Это снижает эффективность химической обработки.

Наиболее близким аналогом является состав для обработки призабойной зоны пласта (патент RU №2581859, МПК С09K 8/528, опубл. 20.04.2016 в бюл. №11), включающий комплексон трилон-Б, гидроксид щелочного металла, добавку - ПАВ - и воду. В составе следующее соотношение компонентов, мас. %:

комплексон трилон-Б 45,0
гидроксид щелочного металла 6,0
ПАВ 3,0
вода остальное

Состав получен приготовлением в процессе приготовления товарной формы - концентрата - с последующим его разбавлением водой в соотношении 1:0,6-111. Концентрат получают растворением 3,1 мас. % гидроксида щелочного металла в 46 мас. % воды добавлением при перемешивании 23 мас. % комплексона трилона-Б, нагревают до 60°С, добавляют при перемешивании оставшуюся часть комплексона трилона-Б и затем последовательно добавляют оставшуюся часть гидроксида щелочного металла.

Основной недостаток этого состава - низкая растворяющая и диспергирующая способность природных материалов как карбонатного, так и терригенного коллекторов из-за низкой смачиваемости и неглубокого проникновения в поровое пространство растворяемого материала, вторичного осаждения кольматирующих веществ.

Кроме этого, процесс приготовления состава характеризуется сложностью и многостадийностью (предварительное приготовление концентрата с последующим его растворением водой).

Техническими задачами изобретения являются повышение эффективности и технологичности состава для химической обработки ПЗП за счет повышения растворяющей способности состава воздействовать на природную составляющую коллектора, повышения эффективности диспергирования полимерглинистой, армированной частицами барита фильтрационной корки, сформированной в поровом пространстве ПЗП, предотвращение (минимизация) процесса вторичного осаждения кольматирующих веществ в поровом пространстве коллектора, повышение эффективности химического воздействия на пласт, а также достижение технологичности приготовления состава.

Технические задачи решаются составом для химической обработки прискважинной зоны пласта, включающим комплексон, гидроксид щелочного металла, добавку и воду.

Новым является то, что состав дополнительно содержит изопропиловый спирт или кубовые остатки бутиловых спиртов - КОБС, в качестве комплексона используют трилон-Б или гидроксиэтилендифосфоновую кислоту - ГОЭДФК, в качестве гидроксида щелочного металла - гидроксид натрия и гидроксид калия, в качестве добавки - ТН-МС-2 или Сурфасол при следующем соотношении компонентов, мас. %:

трилон-Б или ГОЭДФК 5,0-10,0
гидроксид натрия 2,5-5,0
гидроксид калия 2,5-5,0
ТН-МС-2 или Сурфасол 3,5-5,0
изопропиловый спирт или КОБС 3,0-5,0
вода остальное

Для приготовления состава используют следующие компоненты:

- комплексон трилон-Б (двунатриевая соль этилендиаминтетрауксусной кислоты) - представляет собой белый кристаллический порошок. Хорошо растворяется в воде и щелочах, рН 1%-ного водного раствора - 4,5, удельная растворимость в воде при 20°С - 100 г/дм3;

- комплексон ГОЭДФК - кристаллический порошок белого цвета, обладает хорошей химической стабильностью при высоком показателе рН. Устойчив к гидролизу и разложению при стандартных условиях освещения и температурном режиме, а также устойчив к окислению хлоридом, воздействию кислот и оснований. Массовая доля основного вещества в высушенном продукте не менее 97%;

- гидроксид натрия (NaOH) - белое твердое вещество, сильное химическое основание, с Тпл=323°С, Ткип=1403°С. Сильно гигроскопичен, на воздухе «расплывается», активно поглощая пары воды из воздуха. Хорошо растворяется в воде, при этом выделяется большое количество теплоты;

- гидроксид калия (КОН) - представляет собой бесцветные, очень гигроскопичные кристаллы с Тпл=380-406°С, Ткип=1327°С, является сильным основанием;

- добавку - ТН-МС-2 - композицию из анионных и неионогенных ПАВ в водно-спиртовом растворителе, содержащую следующие компоненты, мас. %: натрий сульфоэтоксилат - до 25, натрий сульфид - до 25, октаоксиэтиленовый эфир нонилфенола - 10-60, 2-Аминоэтанол - до 5, метанол - 10-50, изопропанол - до 10, вода - 5-45. Представляет собой прозрачную бесцветную жидкость с массовой долей сухого остатка не менее 30,0%, кинематической вязкостью при температуре 20°С не более 30 мм2/с, температурой застывания не выше минус 40°С (ТУ 20.59.42-005-13004554-2017, ПАСПОРТ БЕЗОПАСНОСТИ ХИМИЧЕСКОЙ ПРОДУКЦИИ РПБ №13004554 20 49772 от «25» декабря 2017 г.);

- добавку - Сурфасол, сложную сбалансированную композицию ПАВ и синергетических добавок, содержащую следующие компоненты, мас.%: этиленгликоль - 30-40, альфа-(Нонилфенил)-омега-гидроксиокта (окси-1,2-этандиил) - до 5, 1-Гидроксиэтилиден-дифосфоновая кислота (ОЭДФК) - 1-5, кокоамидопропилбетаин - до 15, вода - остальное. Это однородная жидкость от светло-желтого до темно-коричневого цвета плотностью при 20°С в пределах 900-1100 кг/м3, температурой застывания не выше минус 50°С. Обладает высокой проникающей способностью в поровое пространство и растворяющей способностью по отношению к солям (ТУ 2458-012-91222887-2014, ПАСПОРТ БЕЗОПАСНОСТИ ХИМИЧЕСКОЙ ПРОДУКЦИИ РПБ №91222887 24 43900 от «12» октября 2016 г.);

- изопропиловый спирт - органическое соединение, простейший вторичный одноатомный спирт алифатического ряда, бесцветная жидкость с характерным спиртовым запахом, более резким, чем у этанола. Тпл=90°С, Ткип=83°С. Динамическая вязкость при стандартных условиях - 2,4 мПа⋅с;

- КОБС - имеют сложный компонентный состав, мас.%: алифатические спирты - С8 60,1, сложные эфиры - 17,5, кетоны - 15,0, альдегиды - 7,4. Кинематическая вязкость при 20°С - 2,4 мПа⋅с;

- воду техническую пресную.

Сущность предложения заключается в создании состава для химической обработки ПЗП. Повышение эффективности состава обеспечивается следующим механизмом его воздействия на ПЗП: комплексон извлекает ионы металла из нерастворимых солей металлов в коллекторе и замещает их на ионы натрия и калия, которые находятся в компонентах состава. Почти все соли натрия и калия растворимы в воде, что снижает вторичное осадкообразование и растворяет (точнее комплексирует, связывает) ионы металлов, в частности ионы бария (сульфат бария (барит), кальция (сульфат кальция, оксалаты). Применение в качестве комплексона трилона-Б или ГОЭДФК в составе приводит к одинаковому техническому результату.

NaOH и КОН усиливают растворяющую (разглинизирующую) способность состава для химической обработки ПЗП за счет обменных катионов натрия и калия. При этом отдельные глинистые компоненты, находящиеся в полимерглинистой, армированной частицами барита фильтрационной корке самопроизвольно переходят в контактирующий с ними состав. Такая дезагрегация глинистых компонентов и является целью химической обработки составом ПЗП.

Когда NaOH и КОН вступают в контакт с химически активными глинистыми компонентами, благодаря своему малому ионному радиусу натрия и калия они приближаются к поверхности глинистых компонентов на очень небольшое расстояние, благоприятное для энергетической кинетики.

Ион калия - лучший материал для катионообмена на глинах из-за того, что он имеет меньшую энергию гидратации, чем ионы натрия, поэтому легче теряет слой адсорбированной воды. Радиус иона калия в растворе меньше, чем расстояние между слоями кристаллической решетки основных минералов коллектора. Для экономичности компонентов в состав для химической обработки ПЗП ввели NaOH, так как он более дешевый, чем КОН.

Вследствие низкого межфазного натяжения на границе «состав - растворяемый материал», высокой поверхностной активности, высокой растворяющей способности по отношению к солям в коллекторе добавка предназначена для более глубокого проникновения состава для химической обработки ПЗП в поры пласта и загрязняющие, кольматирующие материалы в пласте (полимерглинистую, армированную частицами барита фильтрационную корку). ПАВ в добавке способствует предотвращению образования осадков и стойких эмульсий. Применение в качестве добавки ТН-МС-2 или Сурфасол в составе приводит к одинаковому техническому результату.

Изопропиловый спирт или КОБС являются водорастворимыми спиртами-смачивателями. В выбранном диапазоне концентраций усиливается эффект смачивания за счет дополнительного снижения межфазного натяжения поверхности растворяемых материалов.

Поэтому совокупность свойств этих компонентов усиливает синергетический эффект предлагаемого состава. После вымывания продуктов реакции восстанавливается проницаемость ПЗП, увеличивается приток нефти к забою скважины.

В лабораторных условиях состав для химической обработки ПЗП в объеме 100 см3 готовят следующим образом. В химический стакан на 250 мл помещают расчетное количество порошковых компонентов: комплексон - 5 г (5 мас. %), NaOH - 2,5 г (2,5 мас. %), КОН - 2,5 г (2,5 мас. %). Далее приливают добавку - 3,5 г (3,5 мас. %) и изопропиловый спирт или КОБС - 3 мл (3 мас. %). Затем в химический стакан к порошковым компонентам с добавкой и изопропиловым спиртом или КОБС доливают расчетный объем воды - 83,5 мл (83,5 мас. %). Состав для химической обработки ПЗП перемешивают при комнатной температуре на лопастной мешалке при числе оборотов 100-180 мин-1 до достижения однородности состава за 20-30 мин. Оптимальное количество компонентов и их соотношение в составе для химической обработки ПЗП установлено опытным путем и представлено в табл. 1.

Пример приготовления состава №1 для химической обработки ПЗП в объеме 100 см3. В химический стакан на 250 мл помещают расчетное количество порошковых компонентов: комплексон (трилон-Б) - 5,0 г (5,0 мас. %), NaOH - 2,5 г (2,5 мас. %), КОН - 2,5 г (2,5 мас. %). Далее приливают добавку Сурфасол - 3,5 г (3,5 мас. %) и КОБС - 3,0 мл (3,0 мас. %). Затем в химический стакан к порошковым компонентам с добавкой и КОБС доливают расчетный объем воды - 83,5 мл (83,5 мас. %). Состав для химической обработки ПЗП перемешивают при комнатной температуре на лопастной мешалке при числе оборотов 100-180 мин-1 до достижения однородности состава за 20-30 мин. Остальные составы для химической обработки ПЗП по табл.1 готовят аналогично составу №1.

Для испытания предлагаемого состава для химической обработки ПЗП были использованы два вида образцов кернового материала со скважин Тюгеевского и Северо-Елтышевского месторождений, турнейского горизонта.

Химический стакан с предварительно взвешенным образцом кернового материала и составом для химической обработки ПЗП помещали в вытяжной шкаф с постоянной температурой (24°С). По истечении 240 мин образец кернового материала, обработанный составом для химической обработки ПЗП, переносили на бумажный фильтр. Далее остатки образца кернового материала смывали дистиллированной водой со стенок химического стакана, после чего образец кернового материала на фильтре промывали и сушили до постоянной массы. Растворимость образца кернового материала (Р), мас %, рассчитывали по формуле:

где mнач - масса образца кернового материала до обработки, г; m1 - масса образца кернового материала после обработки, г.

Таким образом, предлагаемый состав обладает в 4,86 раза большей растворяющей способностью данного образца кернового материала, чем состав по наиболее близкому аналогу.

Таким образом, состав для химической обработки ПЗП обладает в 1,93 раза большей растворяющей способностью данного образца кернового материала, чем состав по наиболее близкому аналогу.

Основные характеристики состава для химической обработки ПЗП и состава по наиболее близкому аналогу приведены в табл. 4.

Приведенные в табл. 1 и 4 данные свидетельствуют о том, что состав для химической обработки ПЗП по сравнению с составом наиболее близкого аналога обладает большей физико-химической активностью по отношению как к карбонатным материалам коллектора, так и терригенным (растворяющая способность) без видимого вторичного осадкообразования полимерглинистой, армированной частицами барита фильтрационной корки (диспергирующая способность) при ратм=101325 Па, Твозд=24°С.

Предлагаемая дозировка добавки (ТН-МС-2 или Сурфасол) и водорастворимых спиртов-смачивателей (КОБС и изопропилового спирта) положительно влияет на степень снижения межфазного натяжения состава для химической обработки ПЗП на границе с образцом кернового материала, которая составляет от 0,1 до 0,9 мН/м. У состава наиболее близкого аналога в несколько раз выше - 1,45-1,89 мН/м.

Результаты исследований показали, что изменение концентраций компонентов в составе для химической обработки ПЗП нецелесообразно, т.к. при увеличении концентрации компонентов снижается технологичность или устанавливается стабилизация параметров на одном уровне (составы №№14, 15, 20-23, 28-30, 36-39).

При уменьшении концентрации компонентов в составе ниже указанных пределов наблюдается ухудшение физико-химических свойств состава, особенно растворяющей и диспергирующей способности (составы №№12, 13, 16-19, 24-27, 31-35).

Результаты лабораторных исследований по обоснованию физико-химических свойств состава для химической обработки ПЗП по сравнению с составом по наиболее близкому аналогу дополнены результатами физического моделирования на керновой установке Vinci CFS-700.

Методика исследования. В первую очередь определяли начальную проницаемость образцов керна (Kпр1) по керосину на установке Vinci CFS-700. Для этого осуществляли фильтрацию керосина через образец керна.

Образец керна в ходе эксперимента загружали в гидростатический кернодержатель, обеспечивающий всесторонний равномерный обжим. Значения давления обжима и противодавления составляли 30,4059 МПа (4410 psi) и 8,2737 МПа (1200 psi) соответственно. Давление закачки (рабочее) - 10,1325 МПа (1469,59 psi).

Керосин подавался в кернодержатель при постоянном давлении из контейнеров с плавающим поршнем. Регистрировали перепад давления. Заданная температура в опытах составляла 27°С (примерно пластовые условия для месторождений Республики Татарстан).

После достижения стабилизации процесса фильтрации керосина (установления постоянной скорости фильтрации и постоянного перепада давления на торцах образца керна) определяли Кnp1 по керосину. Затем закачивали состав для химической обработки ПЗП. В процессе закачки фиксировали динамику давления и скорость фильтрации. Проводили выдержку предлагаемого состава на реакцию с породой в течение 3 часов. На следующем этапе определяли конечную проницаемость образцов керна (Кпр2) по керосину. Для этого осуществляли фильтрацию керосина через образцы керна, при этом регистрировали перепад давления. После достижения стабилизации процесса фильтрации определяли Кпр2. Далее проводили расчет коэффициента интенсификации (Кинт), равного отношению конечной проницаемости (после предлагаемого воздействия составом) к начальной (до воздействия) - Кпр2пр1.

Фильтрационный опыт проводился с составом для химической обработки ПЗП №9. Был использован образец кернового материала с Екатериновского месторождения, бобриковского горизонта, скважины 4045.

Коэффициент проницаемости до химического воздействия составом: Кпр1=0,385 мкм2.

Коэффициент проницаемости после химического воздействия составом: Кпр2=0,505 мкм2.

Коэффициент интенсификации:

Аналогичный фильтрационный опыт проводился с составом по наиболее близкому аналогу №4. Был использован образец кернового материала с Екатериновского месторождения, бобриковского горизонта, скважины 4045. В результате получен коэффициент интенсификации:

Таким образом, эффективность химического воздействия состава для химической обработки ПЗП в 1,25 раза выше по сравнению с составом по наиболее близкому аналогу.

В итоге получен эффективный и технологичный состав для химической обработки ПЗП за счет увеличения физико-химической активности по растворяющей способности материалов коллекторов и диспергированию загрязняющих, кольматирующих материалов в пласте (полимерглинистой, армированной частицами барита, фильтрационной корки), снижения межфазного натяжения, облегченного выноса продуктов реакций из пласта в процессе освоения скважины (комплексное воздействие спиртов-смачивателей и добавки).

Источник поступления информации: Роспатент

Showing 71-80 of 432 items.
26.08.2017
№217.015.e4e0

Способ разработки залежи битуминозной нефти из горизонтальной скважины

Изобретение относится к области горного дела. Технический результат - увеличение коэффициента извлечения нефти на залежах с низким пластовым давлением и наличием газовых шапок с одновременным снижением затрат на прогрев продуктивного пласта за счет исключения прорыва теплоносителя в газовые...
Тип: Изобретение
Номер охранного документа: 0002626497
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e500

Способ эксплуатации добывающей высоковязкую нефть скважины

Изобретение относится к нефтяной промышленности и предназначено для снижения асфальтеносмолопарафиновых отложений (АСПО) на внутрискважинном оборудовании и разрушения водонефтяной эмульсии в скважине при эксплуатации скважины, добывающей высоковязкую нефть. Способ включает спуск в скважину...
Тип: Изобретение
Номер охранного документа: 0002626484
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e506

Способ удаления заглушек из перфорированных отверстий хвостовика при заканчивании горизонтальной скважины в залежи битума

Изобретение относится к нефтяной промышленности и может найти применение при строительстве нефтяных скважин с горизонтальным окончанием в залежи битума. Способ удаления заглушек из перфорированных отверстий хвостовика при заканчивании горизонтальной скважины в залежи битума включает бурение,...
Тип: Изобретение
Номер охранного документа: 0002626496
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e515

Способ промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта

Изобретение относится к нефтегазобывающей промышленности, в частности к технологиям промывки проппантовых пробок в скважинах. Способ включает спуск в скважину в интервал пласта колонны труб с пакером, установку пакера над пластом, закачку жидкости гидроразрыва в продуктивный пласт, проведение...
Тип: Изобретение
Номер охранного документа: 0002626495
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e51d

Способ разработки залежи битуминозной нефти из горизонтальной скважины

Изобретение относится к области горного дела. Технический результат - увеличение коэффициента извлечения нефти с одновременным снижением затрат на прогрев продуктивного пласта за счет исключения прорыва теплоносителя в газовые шапки. Способ разработки залежи битуминозной нефти из горизонтальной...
Тип: Изобретение
Номер охранного документа: 0002626500
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e5bf

Способ соединения труб, снабжённых внутренней оболочкой

Изобретение относится к технологии соединения труб с внутренним покрытием. Способ соединения труб, снабженных внутренней оболочкой, с привариваемым наружным стаканом включает размещение на концах труб на длину зоны активного термического влияния сварки между внутренней поверхностью трубы и...
Тип: Изобретение
Номер охранного документа: 0002626709
Дата охранного документа: 31.07.2017
26.08.2017
№217.015.e679

Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта

Изобретение относится к нефтегазодобывающей промышленности. Технический результат – повышение эффективности и надежности способа разработки, увеличение охвата залежи тепловым воздействием, равномерная и полная выработка запасов высоковязкой нефти или битума из залежи с одновременным снижением...
Тип: Изобретение
Номер охранного документа: 0002626845
Дата охранного документа: 02.08.2017
26.08.2017
№217.015.e831

Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта

Изобретение относится к разработке залежей высоковязкой нефти или битума, содержащих непроницаемые пропластки, с применением трещин гидроразрыва пласта (ГРП). Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта (ГРП) включает бурение вертикальной и...
Тип: Изобретение
Номер охранного документа: 0002627345
Дата охранного документа: 07.08.2017
26.08.2017
№217.015.e98f

Способ регулирования профиля приёмистости нагнетательной скважины (варианты)

Изобретение относится к нефтяной промышленности, в частности к способам регулирования профиля приемистости нагнетательной скважины, и может найти применение при разработке нефтяной залежи с неоднородными по проницаемости пластами и для ограничения водопритока в добывающей скважине. Технический...
Тип: Изобретение
Номер охранного документа: 0002627785
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.e99a

Способ разработки залежи битуминозной нефти

Изобретение относится к области горного дела. Технический результат - увеличение коэффициента извлечения нефти на залежах с наличием газовых шапок c одновременным снижением затрат за счет исключения прорыва теплоносителя в газовые шапки. Способ разработки залежи битуминозной нефти включает...
Тип: Изобретение
Номер охранного документа: 0002627795
Дата охранного документа: 11.08.2017
Showing 51-58 of 58 items.
14.05.2020
№220.018.1cc9

Гидрофобная эмульсия для обработки карбонатного нефтяного пласта

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности обработки карбонатного нефтяного пласта за счет увеличения глубины проникновения гидрофобной эмульсии вглубь пласта, замедления скорости реакции микроглобул кислоты в эмульсии с породой...
Тип: Изобретение
Номер охранного документа: 0002720715
Дата охранного документа: 13.05.2020
29.06.2020
№220.018.2c77

Комплексная методика выбора кислотных составов для интенсификации добычи нефти доманиковых отложений

Изобретение относится к области нефтегазодобывающей промышленности и может быть применено при комплексном выборе кислотных составов для интенсификации добычи нефти. Технический результат – обеспечение выбора эффективной кислоты для интенсификации добычи нефти доманиковых отложений. В...
Тип: Изобретение
Номер охранного документа: 0002724832
Дата охранного документа: 25.06.2020
20.04.2023
№223.018.4cf4

Способ большеобъемной селективной кислотной обработки призабойной зоны пласта в карбонатных коллекторах

Изобретение относится к нефтедобывающей промышленности, в частности к способам воздействия на призабойную зону пласта, сложенного карбонатными породами или терригенными породами с содержанием карбонатов более 15%. Технический результат - повышение эффективности большеобъемной селективной...
Тип: Изобретение
Номер охранного документа: 0002750776
Дата охранного документа: 02.07.2021
20.04.2023
№223.018.4cff

Способ большеобъемной селективной кислотной обработки призабойной зоны пласта в карбонатных коллекторах

Изобретение относится к способам интенсификации добычи нефти из продуктивных пластов с применением селективных кислотных методов воздействия на призабойную зону пласта, сложенного карбонатными породами или терригенными породами с содержанием карбонатов более 15%. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002750171
Дата охранного документа: 22.06.2021
24.04.2023
№223.018.526f

Способ кислотной обработки открытого горизонтального ствола скважин

Изобретение относится к нефтедобывающей промышленности и, в частности, к способам интенсификации добычи нефти из продуктивных карбонатных пластов, вскрытых скважинами с открытыми горизонтальными стволами. Технический результат - повышения эффективности и качества кислотной обработки открытого...
Тип: Изобретение
Номер охранного документа: 0002740505
Дата охранного документа: 14.01.2021
16.05.2023
№223.018.60db

Способ обработки призабойной зоны добывающей скважины, эксплуатирующейся погружным электроцентробежным насосом

Изобретение относится к нефтяной промышленности. Технический результат - снижение негативного воздействия кислоты на эксплуатационную колонну и подземное оборудование, исключение загрязнения окружающей среды из-за излива на устье скважины кислоты при монтаже и демонтаже оборудования на устье...
Тип: Изобретение
Номер охранного документа: 0002743983
Дата охранного документа: 01.03.2021
16.05.2023
№223.018.6182

Способ обработки призабойной зоны добывающей скважины эксплуатирующейся скважинным глубинным насосом

Изобретение относится к нефтяной промышленности. Технический результат - снижение негативного воздействия кислоты на эксплуатационную колонну и подземное оборудование, исключение загрязнения окружающей среды из-за излива на устье скважины кислоты при монтаже и демонтаже оборудования на устье...
Тип: Изобретение
Номер охранного документа: 0002746498
Дата охранного документа: 14.04.2021
19.06.2023
№223.018.825d

Способ обработки прискважинной зоны

Изобретение относится к нефтедобыче. Технический результат - повышение эффективности обработки прискважинной зоны. В способе обработки прискважинной зоны перед выполнением обработки не менее чем за сутки выполняют опрессовку колонны насосно-компрессорных труб НКТ с насосом скважинным приводом....
Тип: Изобретение
Номер охранного документа: 0002797160
Дата охранного документа: 31.05.2023
+ добавить свой РИД