×
01.03.2019
219.016.cf6d

СПОСОБ СЕЛЕКТИВНОГО РАЗРУШЕНИЯ РАКОВЫХ КЛЕТОК С ПОМОЩЬЮ МАГНИТНЫХ МИКРОКОНТЕЙНЕРОВ С ФОТОДИНАМИЧЕСКИМИ ИЛИ ФОТОТЕРМИЧЕСКИМИ КРАСИТЕЛЯМИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к медицине, онкологии, и может быть использовано для селективного разрушения опухолей. Для этого фотосенсибилизатор капсулируют в полимерные микроконтейнеры, оболочка которых содержит наночастицы магнетита (FеO) и вводят в окружающую опухоль биоткань. В объеме опухоли создают внешнее постоянное магнитное поле, пространственная конфигурация которого совпадает с формой опухоли. Лазерное облучение производят через время соответствующее максимальному накоплению микроконтейнеров в опухоли при плотности энергии излучения достаточной для фотодинамического или фототермического разрушения оболочек микроконтейнеров внутри опухоли и последующего фотодинамического или фототермического разрушения клеток раковой опухоли. При этом фотосенсибилизатор выбирают с полосой поглощения в красной и ближней ИК спектральной области 650-1200 нм. Способ позволяет увеличить эффективность разрушения раковых клеток за счет повышения степени накопления в опухоли фотосенсибилизатора при минимальном разрушении окружающих здоровых клеток и при проведении операции без общей анестезии. 3 з.п. ф-лы, 9 ил.
Реферат Свернуть Развернуть

Изобретение относится к области биомедицинских технологий, в частности к созданию селективного лазерного фотодинамического или фототермического разрушения злокачественных раковых клеток на основе векторной магнитной доставки микрокапсул с фотосенсибилизаторами и последующего резонансного лазерного облучения опухоли.

Лечение злокачественных новообразований у теплокровных животных или людей традиционными способами хирургии не всегда возможно из-за особенностей локализации опухоли (например, в области твердого неба или глотки). Кроме того, при использовании технологии, когда иссекается более трех сантиметров здоровой ткани от границы опухоли, в большинстве случаев возникают метастазы, а при технологии химиотерапии возникает много осложнений из-за неселективности воздействия (см. Руководство по химиотерапии опухолевых заболеваний. / Под. ред. Н.И.Переводчиковой. - М.: Практическая медицина, 2005, с.581-657).

Известен способ близкофокусной рентгенотерапии с суммарной очаговой дозой 100-120 Гр и дистанционной гамма терапии при лучевом разрушения злокачественных клеток, таких как меланома с суммарной очаговой дозой 30-40 Гр (Ш.Х.Ганцев. Онкология. - М.:Медицинское информационное агентство, 2004, с.190-204).

Однако данный способ, несмотря на распространенность, обладает следующими недостатками. При лечении таких злокачественных новообразований, как меланома, с помощью дистанционной гамма-терапии даже в сочетании с иммунотерапией, как показывает опыт, приводит к 75-90% рецидиву опухолей, а через 2-6 месяцев возникают метастазы.

Известен нейтрон-захватный способ селективного разрушения меланомы (В.Н.Митин, Н.Г.Козловская, А.М.Арнопольская. Нейтрон-захватная терапия опухолей ротовой полости у собак. Всероссийский ветеринарный журнал, 2006, №1, с.9-10). Способ включает введение в кровь внутривенно L-борфенилаланина, который селективно накапливается в определенной опухоли-меланоме, так как L-фенилаланин является незаменимой аминокислотой, из которой вырабатывается меланин, образующий меланоциты, содержащиеся в клетках меланомы. Таким образом, происходит селективное накопление L-борфенилаланина в клетках меланомы. При облучении пространственной зоны, соизмеримой с опухолью, содержащей L-борфенилалан пучком медленных нейтронов, получаемых по нейтроноводу из ядерного реактора, происходит разрушение клеток меланомы вследствие индуцированного вторичного локального излучения бора.

Однако данный способ обладает следующими недостатками: радиационное облучение пациентов, которое лишь частично уменьшается при использовании литиевого защитного фартука; сложная и очень дорогая установка, включающая компактный ядерный реактор, требующий для обслуживания квалифицированных специалистов немедицинского профиля, в частности физиков-ядерщиков; длительное время облучения пациентов в течение часа при мониторинге сердечно-сосудистой системы; применение общей анестезии.

Известен способ лазерного фототермолиза опухолей на основе плазмонно-резонансных золотых наночастиц (см. P.K.Jain, I.H.El-Sayed, M.A.El-Sayed. Au nanoparticles target cancer. Nanotoday, 2007, v.2, №1, p.18-29). Способ включает локальное введение золотых плазмонно-резонансных наночастиц в венозную кровь и облучение лазерным излучением с длиной волны, совпадающей с полосой поглощения наночастицами и вызывающей локальный нагрев наночастиц и соответственно некроз раковых клеток.

Однако данный способ имеет ряд недостатков, связанных малой контрастностью накопления золотых наночастиц в опухоли.

Наиболее близким к предлагаемому способу является способ фотодинамического разрушения опухолей, включающий внутривенное введение фотосенсибилизатора и облучение опухоли непрерывным лазерным излучением с длиной волны, совпадающей с полосой поглощения фотосенсибилизатора (Photodynamic therapy /Ed. T.J.Dougherty/ J.Clin.Laser Med. Surg. 1996, Vol.14, P.219-348; Патент РФ №2184578, МПК A61N 5/06).

При поглощении лазерного излучения молекулы фотосенсибилизатора переходят в возбужденное электронное состояние, при столкновении возбужденных молекул фотосенсибилизатора с молекулами кислорода последний переходит в возбужденное синглетное состояние, а активные молекулы кислорода в течении времени жизни в синглетном состоянии (с типичным временем жизни несколько микросекунд) при взаимодействии с плазматической мембраной клетки повреждают ее и клетка гибнет вследствие некроза. Таким образом, разрушение клеток происходит лишь во время воздействия лазерного излучения в пространственной области облучения лазерным пучком.

Селективный фотодинамический механизм разрушения раковых опухолей основан на более высокой плотности (контрастности) накопления фотосенсибилизатора в опухолевых клетках по сравнению с нормальными, что связано с большей плотностью кровеносных сосудов и их финестрированностью в опухоли по сравнению со здоровой биотканью.

Однако этот контраст для различных типов опухолей не превышает двух-трех раз, что является основным недостатком данного метода.

Используемые в медицинской практике фотосенсибилизаторы - фталационины, порфирины, хлорины, имеют полосы поглощения фотосенсибилизаторов в ультрафиолетовой или видимой области спектра и используемые лазеры не могут эффективно проникать в опухоль вследствие сильного поглощения оптического излучения биотканью. Кроме того, фотодинамический способ обладает малой контрастностью накопления фотосенсибилизаторов в раковых клетках.

Задачей изобретения является увеличения эффективности разрушения объемных раковых клеток за счет повышения степени накопления в опухоли (контрастности) фотосенсибилизатора при минимальном разрушении окружающих здоровых клеток.

Технический результат заключается в эффективности и селективности повреждения злокачественных клеток при проведении операции без общей анестезии.

Поставленная задача решается тем, что способе селективного разрушения опухолей, включающем введение раствора фотосенсибилизатора и облучение опухоли лазерным излучением, совпадающим с максимумом полосы поглощения фотосенсибилизатора, согласно решению, для локального разрушения опухоли фотосенсибилизатор капсулируют в полимерные микроконтейнеры, оболочка которых содержит наночастицы магнетита (Fе3O4) и вводят в биоткань, окружающую опухоль, в объеме опухоли создают внешнее постоянное магнитное поле, пространственная конфигурация которого совпадает с геометрическими размерами опухоли, а лазерное облучение производят через время соответствующее максимальному накоплению микроконтейнеров в опухоли, при плотности энергии излучения, достаточной для фотодинамического или фототермического разрушения оболочек микроконтейнеров внутри опухоли и последующего фотодинамического или фототермического разрушения клеток раковой опухоли, при этом фотосенсибилизатор выбирают с полосой поглощения в красной и ближней ИК-спектральной области 650-1200 нм.

Оболочка микроконтейнеров дополнительно содержит золотые наночастицы с плазменным резонансом, совпадающим с максимумом поглощения фотосенсибилизатора при концентрации золотых наночастиц не менее 108 в см3.

Оболочка микроконтейнеров дополнительно содержит наночастицы золота с плазменным резонансом в видимой и ближней ИК-области 500-1200 нм, а для локального раскрытия микроконтейнеров их дополнительно облучают лазерным излучением, совпадающим с максимумом поглощения плазмонно-резонансных золотых наночастиц.

Для локального разрушения оболочки микроконтейнеров дополнительно используют переменное высокочастотное магнитное поле в диапазоне частот десятки кГц - сотни МГц.

Изобретение поясняется чертежами.

На фиг.1 показана блок-схема эксперимента по разрушению опухолей лабораторной крысы in vivo на основе селективной фотодинамической или фототермической терапии при облучении микроконтейнеров, оболочка которых содержит наночастицы магнетита (Fе3O4), содержащих внутри фотосенсибилизатор, резонансным излучением лазера, где: 1 - лабораторная крыса (пациент); 2 - злокачественная опухоль; 3 - электромагнит, создающий пространственное распределение магнитного поля, совпадающего с формой опухоли; 4 - микроконтейнеры, полимерная оболочка которых содержит наночастицы магнетита (Fе3O4), а внутренняя полость микроконтейнера заполнена фотосенсибилизатором; 5 - полупроводниковый лазер с волоконно-оптическим световодом, излучающим в красной или ближней инфракрасный спектральной области (650-1200 нм) с длиной волны, совпадающей с полосой поглощения фотосенсибилизатора.

На фиг.2 представлено изображение микроконтейнера, оболочка которого содержит наночастицы магнетита (Fе3O4), полученное с помощью ТЕМ электронного микроскопа при различном увеличении.

На фиг.3 представлены двумерные томографические сканы при зондировании кюветы толщиной 1 мм, заполненной суспензией микроконтейнера в 50% водном растворе глицерина при отсутствии и наличии магнитного поля в различные моменты времени. Магнитное поле напряженностью 0.02 тесла, создавалось постоянным магнитом, приложенным к внешней стенке кюветы, толщиной 3 мм (внутренняя стенка на фиг.4 изображена снизу): а - без магнитного поля, б - состояние суспензии через 72 с после воздействия магнитного поля, в - через 120 с, г - через 186 с. Измерения проводились с помощью низкокогерентного оптического томографа типа ОСТ 3000 фирмы Carl Zeiss.

На фиг.4 представлен процесс разрушения микроконтейнера, содержащего в оболочке магнитные и золотые частицы без воздействия лазерного излучения (а), и при облучении лазером с длиной волны, совпадающей с плазменным резонансом золотых наночастиц (б, в).

На фиг.5 представлены изображения золотых наносфер (а), наностержней (б) и нанооболочек (в), полученные с помощью электронного микроскопа.

На фиг.6 представлены спектральные зависимости оптической плотности плазмонно-резонансных наночастицв видимой и ближней инфракрасной области: (а) - наносферы, (б) - наностержни, (в) - нанооболочки при различных геометрических параметрах.

На фиг.7 представлены термограмма при облучении пробирки типа Эппендорф с водным раствором золотых нанооболочек (ядро из SiO2 диаметром 140 нм и золотой оболочкой толщиной 15 нм с максимумом плазменного резонанса на длине волны 800 нм при концентрации наночастиц 109 в мл) излучением полупроводникового лазера с длиной волны (810 нм) мощностью 1 Вт в течение 3-х минут с энергией 180 Дж.

На фиг.8 представлены термограмма при облучении пробирки типа Эппендорф с водным раствором фотосенсибилизатора (индоцианин зеленый-IGG) излучением полупроводникового лазера с длиной волны (810 нм), совпадающей с полосой поглощения фотосенсибилизатора и мощностью 1 Вт в течении 3-х минут с энергией 180 Дж.

На фиг.9 представлены термограмма спонтанной опухоли кошки при введении 0.1 мл фотосенсибилизатора (индоцианин зеленый-IGG), вызывающий фототермолиз опухоли при воздействии излучения полупроводникового лазера с длиной волны (810 нм), совпадающей с полосой поглощения фотосенсибилизатора (IGG) с мощностью 2 Вт в течение 2-х минут.

В прототипе селективность повреждения опухоли определяется селективностью накопления красителя в опухоли, который вводится в кровь. Время оборота крови в организме человека составляет 21 секунду. В зависимости от типа опухоли в различных органах существует различное время максимального накопления красителя, при этом характерной время может составлять от получаса до десятков часов. Максимальная контрастность накопления фотодинамических красителей, применяемых в онкологии для злокачественных опухолей, в 2-3 раза превышает контрастность накопления красителя в нормальной биоткани и связывается, в основном, с фенестрированностью новых капилляров, прорастающих в опухоли.

Нами предлагается диффузионная доставка и удержание красителя, помещенного в микроконтейнеры с магнитной оболочкой, с помощью управляемого магнитного поля. Предварительные эксперименты, выполненные в средах с различной вязкостью, показали принципиальную возможность управления пространственной локализацией таких магнитных микроконтейнеров.

Способ осуществляется следующим образом.

Полимерные микроконтейнеры 4, оболочка которых содержит наночастицы магнетита (Fе3O4), с заключенным внутри микроконтейнеров фотосенсибилизатором, вводятся в биоткань, окружающую опухоль 2 пациента 1. Включается внешнее постоянное магнитное поле 3 с пространственной конфигурацией, соизмеримой с опухолью 2. Через время, соответствующее максимальному накоплению магнитных наночастиц в опухоли 2 (оценки показывают, что в зависимости от типа опухоли типичное время накопления наночастиц составляет не более часа), опухоль 2 облучают лазерным пучком 5 при плотности энергии излучения, достаточной для фотодинамического или фототермического разрушения оболочек микроконтейнеров внутри опухоли 2 и последующего фотодинамического или фототермического разрушения клеток раковой опухоли 2. При этом длина волны лазера должна совпадать с полосой поглощения фотосенсибилизатора, а фотосенсибилизатор выбирают с полосой поглощения в красной и ближней ИК-спектральной области 650-1200 нм.

В Саратовском государственном университете авторами заявки разработана технология получения полимерных микроконтейнеров, оболочка которых содержит наночастицы магнетита (Fе3O4), а также золотые наночастицы (Dmitry A. Gorin, Sergey A. Portnov, Olga A. Inozemtseva, Zofia Luklinska, Alexey M. Yashchenok, Anton M. Pavlov, Andre G. Skirtach, Helmuth Mohwaldb and Gleb B. Sukhorukov. Magnetic/gold nanoparticle functionalized biocompatible microcapsuleswith sensitivity to laser irradiation. Phys. Chem. Chem. Phys., 2008, 10, 6899-6905).

Размеры и форма полимерных микроконтейнеров 4, оболочка которых содержит наночастицы магнетита (Fе3О4), контролировалась с помощью электронной микроскопии, которая позволяет определить пространственное распределение магнитных наночастиц в полимерной оболочке микроконтейнеров 4 (фиг.2). Управление движением микроконтейнеров 4, оболочка которых содержит наночастицы магнетита (Fе3О4), осуществлялось с помощью постоянного магнитного поля 3, что показано на фиг.3. Используя бесконтактный оптический метод диагностики на основе низко-когерентного оптического томографа типа ОСТ 3000 фирмы Carl Zeiss, авторы исследовали пространственную динамику движения микроконтейнеров в водно-глицериновой смеси с помощью постоянного магнитного поля 3, что позволило определять время накопления магнитных микроконтейнеров в биотканях раковых клеток. На фиг.3 представлены двумерные томографические сканы при зондировании кюветы толщиной 1 мм, заполненной суспензией микроконтейнеров в 50% водном растворе глицерина при отсутствии и наличии магнитного поля в различные моменты времени. Магнитное поле напряженностью 0.02 тесла, создавалось постоянным магнитом, приложенным к внешней стенке кюветы, толщиной 3 мм: (а) - без магнитного поля, (б) - состояние суспензии через 72 с после воздействия магнитного поля, (в) - через 120 с, (г) - через 186 с.

При пространственной конфигурации внешнего магнитного поля, совпадающей с пространственной конфигурацией раковых клеток, за определенное время происходит накопление микроконтейнеров 4 в опухоли 2.

Процесс разрушения микроконтейнера 4, содержащего в оболочке магнитные и золотые частицы при облучении лазером 5 с длиной волны, совпадающей с плазменным резонансом золотых наночастиц, представлен на фиг.4. Концентрация золотых и магнитных наночастиц составляет 108 в см3.

Микроконтейнеры, содержащие в оболочке золотые наночастицы (наносферы), имеющие плазменный резонанс 520-560 нм, не совпадающий с максимумом поглощения красителя, находящегося внутри микроконтейнера, дополнительно облучают лазером. В результате такого облучения происходит терморазрыв оболочки микроконтейнера, как показано на фиг.5, а потом необходимо резонансное лазерное воздействие на краситель.

В лаборатории размерных наносенсоров института биофизики физиологии растений и микроорганизмов РАН авторами заявки разработана технология изготовления золотых плазмонно-резонансных наночастиц с возможностью управлением спектральным положением плазменного резонанса при изменении геометрических параметров наночастиц представляющих собой золотые наносферы, наностержни и нанооболочки, как показано на фиг.5, 6 (Н.Г.Хлебцов, В.А.Богатырев, Л.А.Дыкман, Б.Н.Хлебцов. Золотые наноструктуры с плазменным резонансом для биомедицинских исследований. // Российские нанотехнологии. 2007, Т.2, №3-4, С.69-86). Технология изготовления плазмонно-резонансных золотых наночастиц типа нанооболочек и наностежней позволяют получить максимум поглощения наночастиц в спектральной области соответствующей области прозрачности биотканей (650-1200 нм).

Лазерный фототермолиз плазмонно-резонансных золотых наночастиц при воздействии лазерного излучения представлен на фиг.7. Создание золотых нанооболочек с ядром оксида кремния (SiO2) диаметром 140 нм с золотой нанооболочкой толщиной 15 нм позволяет получить максимум плазменного резонанса на длине волны 800 нм. Как показали эксперименты (фиг.7), при концентрации золотых нанооболочек 109 в мл воды при воздействии ИК-излучения полупроводникового лазера с длиной волны (810 нм), мощностью 1 Вт в течение 3-х минут с энергией 180 Дж позволяет достигнуть температуры раствора более 70°С, что позволяет управлять разрушением микроконтейнеров, в оболочку которых внедрены золотые наночастицы.

Внутри микроконтейнеров находится ИК-фотосенсибилизатор, при лазерном облучении с длиной волны, совпадающей с полосой поглощения красителя, может происходить нагрев молекул красителя, раскрытие микроконтейнеров и локальный фототермолиз раковых клеток при нагреве с температурой более 43-57°С, либо при соответствующем фотосенсибилизаторе происходит фотодинамическое разрушение опухолей.

Проведенные эксперименты позволили установить необходимые уровни лазерной энергии для технологии фототермолиза. На фиг.8 представлены термограмма при облучении пробирки типа Эппендорф с водным раствором фотосенсибилизатора (индоцианин зеленый-IGG) излучением полупроводникового лазера с длиной волны (810 нм), совпадающей с полосой поглощения фотосенсибилизатора и мощностью 1 Вт в течение 3-х минут с энергией 180 Дж при достижении температуры более 70°С.

Нижний предел плотности энергии используемых лазеров определяется температурой нагрева оболочки микроконтейнера, необходимой для ее разрушения, а верхний предел определяется уровнем плотности лазерной энергии, не вызывающей патологических изменений биоткани, в которой не содержатся плазмонно-резонансные наночастицы и фотосенсибилизатор. Концентрация плазмонно-резонансных золотых наночастиц в оболочке в микроконтейнерах должна находиться в определенном диапазоне. Максимальное значение концентрации плазмонно-резонансных золотых наночастиц определяется процессами образования кластеров, приводящих и к уширению плазменного резонанса, и смещению его максимума. Нижняя граница концентрации плазмонно-резонансных золотых наночастиц определяется эффективностью лазерного нагрева оболочки микроконтейнеров, вызывающих ее разрыв.

Динамика нагрева плазмонно-резонансных золотых наночастиц и фотосенсибилизаторов, а также пространственного распределения температуры исследовалась авторами как в эксперименте, так и моделировалось (Лазерный фототермолиз биотканей с использованием плазмонно - резонансных наночастиц. Максимова И.Л., Акчурин Г.Г. Терентюк Г.С., Хлебцов Б.Н., Акчурин Г.Г.мл., Ермолаев И.А., Скапцов А.А., Ревзина Е.М., Тучин В.В, Хлебцов Н.Г. Квантовая электроника, 2008, т.38, №6, с.536-542). Эксперименты, проведенные по облучению биотканей лабораторных крыс с введенными в опухоль золотыми плазмонно-резонансными наночастицами и последующим гистологическим анализом, были определены режимы лазерного облучения, вызывающий при фототермолизе биотканей локальный некроз клеток (см. статью I.L.Maksimova, G.G.Akchurin, B.N.Khiebtsov, G.S.Terentyuk, G.G.Akchurin, I.A.Ermolaev, A.A.Skaptsov, E.P.Soboleva, N.G.Khiebtsov and V.V. Tuchin. Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: computer simulations and experiment. Medical Laser Application 2007, Vol.22, P.95-105-112).

Процесс фототермолиза опухолей лабораторных животных на основе ИК-фотосенсибилизатора типа Индоцианина - зеленого (IGG) и золотых нанооболочек исследован в Ргос.SPIE, 2007, vol.6645, G.G.Akchurin Jr V.A.Bogatyrev, I.L.Maksimova, G.A.Seleverstov, G.S.Terentyuk, B.N.Khiebtsov, N.G.Khiebtsov, V.V.Tuchin. Near-infrared laser photothermal therapy and photodynamic inactivation of cells by using gold nanoparticles and dyes; а также представлен на Европейской международной конференции (19-20 ноября Брюссель) Photonics Life 2008, Georgy G. Akchurin, Garif G. Akchurin, Irina M. Maksimova, Boris N. Khiebtsov, Nikolay G. Khiebtsov, Georgy S. Terentyuk, Valery V. Tuchin. Technology ofNIR laser photothermal tissue treatment based on gold plasmon-resonant nanoparticles and ICG dye.

Источник поступления информации: Роспатент

Showing 1-10 of 22 items.
10.01.2013
№216.012.1719

Способ оценки прогрессирования стадии первичной открытоугольной глаукомы

Изобретение относится к медицине, в частности к офтальмологии, и может быть использовано для оценки стадии прогрессирования первичной открытоугольной глаукомы. Для конкретного пациента с уже установленным клиническими методами диагнозом первичная открытоугольная глаукома стадии S проводят...
Тип: Изобретение
Номер охранного документа: 0002471405
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.171a

Способ бесконтактного измерения внутриглазного давления

Изобретение относится к области медицины и может быть использовано для измерения внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером, используя калибровочную кривую для модели глаза. Преобразуют...
Тип: Изобретение
Номер охранного документа: 0002471406
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a22

Устройство обнаружения электропроводящих объектов на базе датчиков магнитного поля с частотным выходом

Изобретение относится к металлоискателям для целей диагностики и дефектоскопии, археологии, входного контроля в системах безопасности и т.п. и может использоваться для обнаружения локальных неоднородностей в виде металлических и металлосодержащих предметов ограниченных размеров, проводных линий...
Тип: Изобретение
Номер охранного документа: 0002472182
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a53

Способ экспериментального моделирования стресс-индуцированного развития острого язвенного кровотечения

Изобретение относится к области экспериментальной медицины, в частности к гастроэнтерологии, и касается моделирования развития острого язвенного кровотечения. Для этого обеспечивают индуцированное последовательное воздействие на крыс путем хронического социального и иммобилизационного стрессов....
Тип: Изобретение
Номер охранного документа: 0002472231
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2801

Способ изготовления зонда для ближнеполевой сверхвысокочастотной микроскопии

Изобретение относится к измерительной технике и может быть использовано в ближнеполевой сканирующей СВЧ и оптической микроскопии. Способ изготовления стеклянного зонда с проводящей сердцевиной включает помещение в стеклянную трубку легкоплавкого металла или металлического сплава, температура...
Тип: Изобретение
Номер охранного документа: 0002475761
Дата охранного документа: 20.02.2013
10.04.2013
№216.012.344d

Способ визуализации аминокислот на целлюлозной матрице, средство для его реализации и способ получения средства

Группа изобретений относится к аналитической химии, а именно к идентификации и экспрессного полуколичественного определения биологически активных соединений в сложных смесях. Способ получения средства для визуализации аминокислот на целлюлозной матрице включает приготовление водного раствора,...
Тип: Изобретение
Номер охранного документа: 0002478932
Дата охранного документа: 10.04.2013
10.06.2013
№216.012.4868

Способ повышения стабильности водного раствора квантовых точек - наночастиц селенида кадмия, покрытых меркаптокислотами

Изобретение относится к аналитической химии. Водный раствор квантовых точек на основе селенида кадмия, покрытых меркаптокислотой, стабилизируют, вводя сульфит натрия до его концентрации в растворе 0,02-0,2 моль/л. Технический результат - повышение стабильности водного раствора квантовых точек...
Тип: Изобретение
Номер охранного документа: 0002484116
Дата охранного документа: 10.06.2013
27.09.2013
№216.012.70cb

Способ получения электромагнитных колебаний в свч и квч диапазоне со сверхширокополосной перестройкой частоты

Изобретение относится к области твердотельной сверхвысокочастотной микроэлектроники, в частности к методам получения электромагнитных колебаний в СВЧ и КВЧ диапазоне, и может использоваться в устройствах для передачи информации. Достигаемый технический результат - расширение диапазона...
Тип: Изобретение
Номер охранного документа: 0002494526
Дата охранного документа: 27.09.2013
20.02.2019
№219.016.becb

Генератор случайных перестановок

Устройство относится к вычислительной, информационно-измерительной радиотехнике и может быть использовано в системах защиты информации от несанкционированного доступа. Технический результат - обеспечение высокой скорости работы устройства, формирующего уникальные случайные числа путем генерации...
Тип: Изобретение
Номер охранного документа: 0002395834
Дата охранного документа: 27.07.2010
20.02.2019
№219.016.c2c3

Генератор импульсов случайной длительности

Изобретение относится к вычислительной технике, информационно-измерительной радиотехнике и может быть использовано в качестве источника подкачки энтропии в систему генерирования случайных чисел для различных устройств информационной безопасности. Техническим результатом является обеспечение...
Тип: Изобретение
Номер охранного документа: 0002408059
Дата охранного документа: 27.12.2010
Showing 1-10 of 21 items.
10.02.2013
№216.012.22ed

Термосенсибилизатор для лазерной гипертермии и способ его получения

Изобретение относится к нанотехнологии новых материалов, предназначенных для использования в биологии, ветеринарии и медицине, в частности для лазерной гипертермии новообразований. Предлагается способ, отличающийся от известных концентрациями реагентов, рН реакционной смеси и поверхностной...
Тип: Изобретение
Номер охранного документа: 0002474443
Дата охранного документа: 10.02.2013
10.08.2013
№216.012.5c3a

Способ получения порошкового препарата наночастиц благородных металлов

Изобретение относится к нанотехнологии новых материалов, а именно к производству порошковых препаратов плазмонно-резонансных (ПР) частиц, предназначенных для использования в различных областях науки и техники. Способ включает получение дисперсии наночастиц в растворителе восстановлением...
Тип: Изобретение
Номер охранного документа: 0002489231
Дата охранного документа: 10.08.2013
27.09.2013
№216.012.70cb

Способ получения электромагнитных колебаний в свч и квч диапазоне со сверхширокополосной перестройкой частоты

Изобретение относится к области твердотельной сверхвысокочастотной микроэлектроники, в частности к методам получения электромагнитных колебаний в СВЧ и КВЧ диапазоне, и может использоваться в устройствах для передачи информации. Достигаемый технический результат - расширение диапазона...
Тип: Изобретение
Номер охранного документа: 0002494526
Дата охранного документа: 27.09.2013
20.07.2014
№216.012.dfdf

Сверхширокополосный вакуумный туннельный фотодиод для детектирования ультрафиолетового, видимого и инфракрасного оптического излучения и способ для его реализации

Изобретение относится к оптоэлектронике и вакуумной микроэлектронике и может быть использовано при создании сверхширокополосных фотодетекторов в ультрафиолетовой, видимой и ИК области спектра для оптической спектроскопии и диагностики, систем оптической связи и визуализации. Cверхширокополосный...
Тип: Изобретение
Номер охранного документа: 0002523097
Дата охранного документа: 20.07.2014
27.09.2014
№216.012.f87f

Способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах

Изобретение используется для определения усиления локального электростатического поля и работы выхода в нано- или микроструктурных эмиттерах. Сущность изобретения заключается в том, что измеряют темновую зависимость туннельного эмиссионного тока при увеличении напряжения на аноде и определяют...
Тип: Изобретение
Номер охранного документа: 0002529452
Дата охранного документа: 27.09.2014
10.04.2015
№216.013.38e5

Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером

Изобретение относится к вакуумной микроэлектронике. Способ создания сверхбыстродействующего вакуумного туннельного фотодиода с наноструктурированным эмиттером включает измерение фототока вакуумного фотодиода, возникающего при облучении непрерывным или импульсным оптическим излучением эмиттера...
Тип: Изобретение
Номер охранного документа: 0002546053
Дата охранного документа: 10.04.2015
20.08.2015
№216.013.6ed0

Способ получения терагерцовых изображений раковых опухолей и патологий кожи

Изобретение относится к медицине, области нанотехнологий, в частности к усилению контраста и глубины зондирования при получении терагерцовых изображений раковых опухолей и патологий кожи с использованием наночастиц и лазерного нагрева. Способ включает введение плазмонно-резонансных композитных...
Тип: Изобретение
Номер охранного документа: 0002559938
Дата охранного документа: 20.08.2015
13.01.2017
№217.015.8620

Оптоакустический объектив

Изобретение относится к области спектроскопии конденсированных сред и фотоакустического анализа материалов. Оптоакустический объектив содержит звукопровод с кольцевым пьезоэлектрическим преобразователем на одном его торце, акустической линзой на другом его торце и сквозным цилиндрическим...
Тип: Изобретение
Номер охранного документа: 0002603819
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.b6b2

Способ плазмонно-резонансной фототермической терапии опухолей в эксперименте

Изобретение относится к медицине, в частности к онкологии и может быть использовано для терапии опухолей. Животному с опухолью внутривенно вводят раствор золотых наностержней, покрытых полиэтиленгликолем. Через 24 часа после введения проводят диагностическое лазерное облучение инфракрасным...
Тип: Изобретение
Номер охранного документа: 0002614507
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.cd35

Способ наносекундной микродозовой рентгеновской диагностики

Использование: для неразрушающего контроля различных материалов, изделий и объектов с помощью импульсных рентгеновских лучей, а также для медицинской рентгенодиагностики. Сущность изобретения заключается в том, что просвечивают объект импульсным рентгеновским излучением, преобразование...
Тип: Изобретение
Номер охранного документа: 0002619852
Дата охранного документа: 18.05.2017
+ добавить свой РИД