×
27.09.2014
216.012.f87f

СПОСОБ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ УСИЛЕНИЯ ЛОКАЛЬНОГО ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И РАБОТЫ ВЫХОДА В НАНО ИЛИ МИКРОСТРУКТУРНЫХ ЭМИТТЕРАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение используется для определения усиления локального электростатического поля и работы выхода в нано- или микроструктурных эмиттерах. Сущность изобретения заключается в том, что измеряют темновую зависимость туннельного эмиссионного тока при увеличении напряжения на аноде и определяют значение напряжения V, облучают измеряемую поверхность эмиттера лазерным пучком ультрафиолетового или видимого диапазона с фиксированным значением оптической мощности и длины волны λ, измеряют значение туннельного фотоэмиссионного тока при увеличении напряжения на аноде и фиксируют значение напряжения V, определяют значение работы выхода А и значение усиления локального электростатического поля β в пространственной области облучения эмиттера из данного соотношения или дополнительно облучают измеряемую поверхность эмиттера лазерным пучком на другой длине волны λ ультрафиолетового или видимого диапазона с максимальной разницей относительно первой длины волны, определяют значение напряжения V и определяют значение усиления локального электростатического поля в пространственной области облучения эмиттера и значение работы выхода А из данного соотношения. Технический результат: обеспечение возможности определения локального электростатического поля с одновременным определением работы вывода электронов из эмиттера. 4 ил.
Основные результаты: Способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано- или микроструктурных эмиттерах, характеризующийся тем, что измеряют темновую зависимость туннельного эмиссионного тока при увеличении напряжения на аноде и определяют значение напряжения V, стремящееся к напряжению автоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного автоэмиссионного тока, облучают измеряемую поверхность эмиттера лазерным пучком ультрафиолетового или видимого диапазона с фиксированным значением оптической мощности и длины волны λ, измеряют значение туннельного фотоэмиссионного тока при увеличении напряжения на аноде и фиксируют значение напряжения V, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного тока, определяют значение работы выхода А и значение усиления локального электростатического поля β в пространственной области облучения эмиттера из соотношенияβ=2.77·10 (hс/λ)·z/[(V)- V)] (1)А=hс /(λ [1-(V/V)]) (2)или дополнительно облучают измеряемую поверхность эмиттера лазерным пучком на другой длине волны λ ультрафиолетового или видимого диапазона с максимальной разницей относительно первой длины волны, определяют значение напряжения V, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного тока, и определяют значение усиления локального электростатического поля в пространственной области облучения эмиттера и значение работы выхода А из соотношенияβ=2.77·10 z (hс /λ - h с/λ)·/[(V)- V)] (3)А=(h с /λ - h с /λ)/[1-(V/V)] (4)где: β - форм-фактор-величина, соответствующая усилению локальной напряженности электростатического поля в нано- или микроструктурных эмиттерах, вследствие пространственного градиента формы поверхности эмиттера, облучаемого световым пучком;z - расстояние между эмиттером и анодом в см;А - работа выхода электронов из эмиттера в эВ;V- напряжение в вольтах, стремящееся к напряжению автоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного автоэмиссионного тока;V- напряжение в вольтах, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного фототока при облучении эмиттера оптическим излучением с энергией фотона hc/λ;hc/λ=hν- энергия фотона в эВ, поглощаемая электроном эмиттера, вследствие однофотонного фотоэффекта;V- напряжение в вольтах, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного тока при облучении эмиттера оптическим излучением с энергией фотона hν соответственно с длиной волны λ=с/ν;ν - частота излучения оптического диапазона;с - скорость света;h - постоянная Планка.
Реферат Свернуть Развернуть

Изобретение относится к вакуумной микроэлектронике и может быть использовано при создании вакуумных приборов СВЧ микроэлектроники с холодной автоэмиссией эмиттера, в матричных вакуумных дисплеях и визуализаторах.

Известен оптический метод определения работы выхода из эмиттера основанный на измерении оптического спектра пропускания или отражения при облучении эмиттера оптическим излучением в ультрафиолетовой и видимой области спектра и измерении резкого (на несколько порядков) уменьшения коэффициента поглощения от длины волны, определение длины волны λгр, соответствующей границе пропускания («красной» границы фотоэффекта) и определения работы выхода А из соотношения А=h·c/λгр или А (эВ)=1240/λгр (нм); где: h -постоянная Планка, с - скорость света (Уханов Ю.И. Оптические свойства полупроводников. М.: Наука. 1977. С.368; Золотарев В.М., Морозов В.Н., Смирнова Е.В. Оптические постоянные природных и технических сред. Справочник. Л.: Химия. 1984. С.216). Однако данный способ позволяет определить работу выхода из металлов при условии, что геометрические размеры эмиттера больше чем зондирующий оптический пучок. В оптических спектрометрах зондирующий пучок имеет типичные размеры порядка см в поперечном сечении, поэтому использование такого метода для реальных микроэмиттеров представляет труднорешаемую экспериментальную задачу. Кроме того, метод не позволяет определить локальность поля, связанную с резким пространственным изменением рельефа поверхности эмиттера.

Известен способ определения работы выхода из эмиттера вакуумного фотодиода при его облучении оптическим излучением с перестраиваемой длиной волны и измерении значения фототока. В спектральной области, соответствующей резкому уменьшению фототока при увеличении длины волны определяется красная границе фотоэффекта, соответствующая границе возникновения нулевого фототока. Это значение длины волны соответствует условию, когда энергия фотона hν равна работе выхода А (Лебедева В.В. Экспериментальная оптика. М.: Изд. МГУ. С.352). Длина волны электромагнитного излучения света λ связана с частотой соотношением λ=с/ν, поэтому соотношение для определения работы выхода А (эВ)=1240/λгр (нм). Так как значение работы выхода для известных металлов лежит в диапазоне от 2-х до 6 эВ (Зи С. Физика полупроводниковых приборов. М.: Мир, 1984. 456 с.), то для определения работы выхода, например, для вольфрама с значением А=5 эВ требуется излучение с длиной волны меньше или равной 248 нм, т.е. перестраиваемое излучение в дальней УФ-области. При облучении вакуумного фотокатода необходимо кварцевое окно, пропускающее такое УФ-излучение. Кроме того, если это вакуумный микродиод, то возникают технические сложности пространственного облучения таких эмиттеров. Метод также не позволяет определить значение усиления локального электростатического поля на эмиттере.

Известен способ определения работы выхода из эмиттера вакуумного диода при исследовании термоэлектронной эмиссии (Петрин А.Б. О термополевой эмиссии из металлических острий // Физика плазмы. 2010, т.36, №7, с.671-679). Способ заключается в измерении вольт-амперной характеристики при фиксированной температуре катода и установление значения плотности тока, соответствующего области насыщения ВАХ и вычисление А, используя известное соотношения Ричардсона-Дешмана. Однако данный метод подходит только для эмиттеров, обладающих термоэлектронной эмиссией. Кроме того, в формулу Ричардсона-Дешмана входит термоэлектронная постоянная, которая зависит от вероятности туннелирования определяемой шириной потенциального барьера.

Для расчета усиления локального электростатического поля на нано- или микроструктурных автоэмиссионных эмиттерах, обусловленного локальным пространственным градиентом поверхности необходимо измерение 3D микрорельефа поверхности эмиттера. Известен способ определения микрорельефа поверхности на основе атомно-силовой микроскопии (Method and atomic force microscope for imaging surfaces with atomic resolution. BR 605251, 1987-07-28, BINNING GERD KARL). Однако зондирующая упругая консоль (кантилевер) атомно-силового микроскопа (АСМ) не всегда может измерить трехмерную поверхность эмиттера. Такие же проблемы возникают для металлического острийного зонда туннельного микроскопа (В.Л. Миронов. Основы сканирующей зондовой микроскопии. Нижний Новгород. 2004. 110 с.) при измерении сложного рельефа 3D поверхности проводящего микроэмиттера.

Известен способ определения микро- и нанорельефа поверхности эмиттера (А.Н.Образцов и др. Роль кривизны атомных слоев в полевой эмиссии электронов из графитоподобного наноструктурированного углерода. Письма ЖЭТФ, 1999, Т.69, В.5, С.381-386). При использовании различных проекций возможно определение сложной поверхности эмиттера с помощью электронного микроскопа (Гоулдстейн Дж. и др. Растровая электронная микроскопия и рентгеновский микроанализ. М.: Мир. С.304), но установление 3D микрорельефа поверхности эмиттера позволяет только оценить увеличение локального электростатического поля на основе расчетных моделей электростатики. Кроме того, эти способы не позволяют определить работу выхода в эмиттере.

Известен способ определения работы выхода эмиттера вакуумного диода с автоэлектронной эмиссией (Muller E.W. // J. Appl. Phys. 1955. V. 26. P. 732; Образцов А.Н., Волков А.П., Павловский И.Ю. Механизм холодной эмиссии электронов из углеродных материалов // Письма ЖЭТФ. 1998. Т.68. В.1. С.56-60), заключающейся в измерении тока автоэмиссии J вакуумного диода при увеличении ускоряющего напряжения V на аноде, построение полученной вольт-амперной характеристики диода в координатах lg(I/F2) и 1/F, определение работы выхода А из наклона графика этой зависимости, где F=β∙V/Z напряженность электростатического поля с учетом влияния градиента поверхности, а Z - расстояние эмиттер-анод. Однако данный способ предполагает, что предварительно известно значение усиления локального электростатического поля β, так называемого форм-фактора, т.е. величины, соответствующей увеличению электростатической напряженности поля, вследствие пространственного градиента формы поверхности эмиттера.

Задачей изобретения является возможность определения локального электростатического поля, создаваемого пространственными микро- и нанонеоднородностями эмиттера с одновременным определением работы вывода электронов из эмиттера с пространственным разрешением в пределах 300-1000 нм, определяемой длиной волны зондирующего оптического пучка УФ или видимого диапазона.

Поставленная задача решается тем, что в способе бесконтактного определения усиления локального электростатического поля и работы выхода в нано- или микроструктурных эмиттерах, согласно изобретению, измеряют темновую зависимость туннельного эмиссионного тока при увеличении напряжения на аноде и определяют значение напряжения V, стремящееся к напряжению автоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного автоэмиссионного тока, облучают измеряемую поверхность эмиттера лазерным пучком ультрафиолетового или видимого диапазона с фиксированным значением оптической мощности и длины волны λ1, измеряют значение туннельного фотоэмиссионного тока при увеличении напряжения на аноде и фиксируют значение напряжения V∞ λ1, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного тока, определяют значение работы выхода А и значение усиления локального электростатического поля β в пространственной области облучения эмиттера из соотношения

β1/2=2.77·103 (hс/λ1)·z1/2/[(V)1/2- V∞ λ1)1/2] (1)

А=hс /(λ1 [1-(V∞ λ1/V)1/2]) (2)

или дополнительно облучают измеряемую поверхность эмиттера лазерным пучком на другой длине волны λ2 ультрафиолетового или видимого диапазона с максимальной разницей относительно первой длины волны, определяют значение напряжения V∞λ2, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного тока и определяют значение усиления локального электростатического поля в пространственной области облучения эмиттера и значение работы выхода А из соотношения

β1/2=2.77·103 z1/2 (hс /λ1 - h с/λ2)·/[(V∞ λ2)1/2- V∞ λ1)1/2] (3)

А=(h с /λ1 - h с /λ2)/[1-(V∞ λ1/V∞ λ2)1/2] (4)

где: β - форм-фактор-величина, соответствующая усилению локальной напряженности электростатического поля в нано- или микроструктурных эмиттерах, вследствие пространственного градиента формы поверхности эмиттера, облучаемого световым пучком;

z - расстояние между эмиттером и анодом в см;

А - работа выхода электронов из эмиттера в эВ;

V- напряжение в вольтах, стремящееся к напряжению автоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного автоэмиссионного тока;

V∞λ1 - напряжение в вольтах, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного фототока при облучении эмиттера оптическим излучением с энергией фотона hc/λ1;

hc/λ1=hν1 - энергия фотона в эВ, поглощаемая электроном эмиттера, вследствие однофотонного фотоэффекта;

V∞λ2 - напряжение в вольтах, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного тока при облучении эмиттера оптическим излучением с энергией фотона hν2 соответственно с длиной волны λ2=с/ν2;

ν - частота излучения оптического диапазона;

с - скорость света;

h - постоянная Планка.

Изобретение поясняется чертежами.

На Фиг.1 представлена блок схема экспериментальной установки для реализации предлагаемого способа на основе измерения вольт-амперных характеристик вакуумного микродиода с углеродными эмиттерами с наноразмерной структурой в сильных электростатических полях при облучении поверхности эмиттера лазерным или светодиодным оптическим излучением УФ или видимого диапазона.

На Фиг.2 представлена расчетная зависимость изменения высоты потенциального барьера эмиттер-вакуум от значения напряженности поля при работе выхода электронов из эмиттера равной 5 эВ.

На Фиг.3 представлена экспериментальная зависимость туннельного фотоэмиссионного тока при лазерном облучении с длиной волны λ=473 нм (энергия фотона 2.62 эВ) углеродного наноразмерного эмиттера (B) и темнового автоэмиссионного тока (C) от изменения ускоряющего напряжения на аноде вакуумного микродиода при расстоянии эмиттер анод Z=1 микрон.

На Фиг.4 представлена зависимость туннельного фотоэмиссионного тока при лазерном облучении углеродного наноразмерного эмиттера на длине волны красного -He-Ne лазера с λ=633 нм (энергия фотона 1.96 эВ) (D) и темнового автоэмиссионного тока (G) при отсутствии оптического облучения эмиттера от изменения ускоряющего напряжения на аноде вакуумного микродиода при расстоянии эмиттер анод 1 микрон.

Позициями на чертежах обозначены:

1 - блок питания лазеров или светодиодов;

2 - твердотельный микролазер, полупроводниковый лазер или светодиод со спектральным максимумом длины волны излучения от ближнего УФ до ИК

3 - фокусирующая оптическая система;

4 - вольтметр;

5 - стабилизированый перестраиваемый источник постоянного напряжения;

6 - вакуумный микродиод с углеродным пространственно-периодическим эмиттером наноразмерной структуры с микролезвиями, каждый из которых имеет острие кромки длиной 200 нм и толщиной 20 нм, при этом расстояние между плоскостями лезвия и анода от 1 до 3 мкм;

7 - ограничивающее сопротивление;

8 - измерительное сопротивление;

10 - микровольметр.

Способ осуществляется следующим образом.

С помощью стабилизированного источника питания 5 подается минимальное (близкое к нулевому значению) положительное напряжения на анод вакуумного микродиода 6, эмиттер которого через ограничивающее 7 и измерительное сопротивление 8 соединен с нулевым потенциалом. При увеличении положительного потенциала на блоке 5 фиксируют соответствующее напряжение с помощью 4 и измеряют с помощью микровольметра 10 порог возникновения автоэмиссионного тока, увеличивают напряжения на аноде микродиода и фиксируют то его экспоненциально возрастающее значение, при котором автоэмиссионный ток увеличивается минимум на три-пять порядков и стремится к пробойному значению. Включают источник питания лазера 1 и возбуждают когерентное лазерное или светодиодное оптическое излучение в лазере 2. С помощью оптической системы 3 облучают поверхность эмиттер микродиода лазерным пучком с длиной волны УФ или видимого диапазона при условии, что энергия соответствующих фотонов меньше предполагаемой работы выхода диагностируемого эмиттера. (Типичное значение для любого металла и сплава эмиттеров лежит в диапазоне 6-2 эВ.) Увеличивают положительный потенциала на блоке 5 с нулевого до значения, соответствующего возникновению туннельного фототока, и фиксируют с помощью микровольметра 9 порог возникновения фотоэмиссионного тока, увеличивают напряжения на аноде микродиода и фиксируют то его экспоненциально возрастающее значение, при котором фотоэмиссионный ток возрастает минимум на три-пять порядков и стремится к пробойному значению, и по рабочей формуле (3) и (4) определяют значение работы выхода А и значение напряженности локального поля в пространственной области облучения эмиттера.

Аналогично проводят измерения при облучении эмиттера лазерным излучением с другой длиной волны, при этом для повышения точности метода измерения выбирают длины волн зондирующего излучения с максимальной разницей из УФ и видимого и ближнего ИК-диапазона.

В основе способа определения работы выхода и локального электростатического поля в нано- или микроструктурных автоэмиссионных эмиттерах лежит обнаруженный авторами туннельный фотоэффект при энергиях фотонов, существенно меньших работы выхода электрона из эмиттера, который может наблюдаться случае формирования сильного электростатического поля в межэлектродном промежутке «эмиттер-анод». Физический механизм обнаруженного авторами туннельного фотоэффекта в сильных электростатических полях заключается в возможности управления вероятностью туннелирования неравновесных фотоэлектронов, возникающих вследствие поглощения фотонов с энергией hν через потенциальный барьер «металл-вакуум» при уменьшении его высоты и ширины с помощью сильного электростатического поля при учете эффекта Шоттки (Зи С. Физика полупроводниковых приборов. М.: Мир. 1984. С.456). Использование предложенной модели для оценки влияния сильных электростатических полей напряженностью 107-108 В/cм показало, что высотой и шириной потенциального барьера можно эффективно управлять, уменьшая их в несколько раз с повышением напряженности поля вплоть до режима возникновения автоэмиссионого электронного пробоя. Использование модифицированной модели автоэлектронной эмиссии Фаулера-Нордгейма, учитывающей изменению уровня Ферми для неравновесных фотоэлектронов (Fowler R.H., Nordheim L. Electron Emission in Intense Electric Fields // Proc. Roy. Soc. Lond. 1928. A119. P. 173-181), можно получить соотношение, определяющее энергетическое расстояние от уровня Ферми до вершины потенциального барьера при энергии фотонов hν

Δφ=А- hν- (е3βU/Z)1/2, (5)

где е - заряд электрона; β - форм-фактор локального усиления напряженности поля; U - разность потенциалов внешнего поля на зазоре Z эмиттер-анод.

Выражение (5) позволяет определить и экспериментально проверить те значения напряженности полей E=U/Z и форм-фактора β, соответствующих вероятности туннелирования неравновесных фотоэлектронов или равновесных автоэмиссионных электронов, стремящиеся к 1, что соответствует условию автоэмиссионного пробоя, а в случае оптического облучения эмиттера с энергией фотона hν фотоэмиссионного пробоя. Соответствующие расчеты изменения высоты потенциального барьера при работе выхода электронов из эмиттера, равной 5 эВ, от значения напряженности поля проведены и представлены на Фиг.2.

Возможно определение работы выхода электронов из эмиттера и форм-фактор усиления локальной напряженности электростатического поля при облучении эмиттера на одной длине волны, но в этом случае необходимо измерение темновых автоэмиссионных вольт-амперных характеристик, тогда можно получить соотношения для определения работы выхода электронов из эмиттера и форм-фактор локального усиления напряженности поля из соотношений (1) и (2). Если измерять напряженность поля в В/см, расстояние эмиттер-анод в см, а работу выхода электронов А в (эВ), то, используя соотношение (5), можно получить численные соотношения, которые позволяют определить работу выхода и форм-фактор усиления локального напряженности электростатического поля при условии, что вероятность туннелирования стремится к 1.

Тогда для автоэмиссионного тока должно выполняться соотношение

А=3.6 10-4 (β V/z)1/2……………………..(6)

При облучении эмиттера лазерным или светодиодным излучением с энергией фотона hν получаем соотношение

А-hν1=3.6 10-4 (β V∞ λ1/z)1/2………………….(7),

где: V- напряжение в вольтах, соответствующее напряжению пробоя автоэмиссионного тока, когда вероятность туннелирования стремится к 1.

V∞ λ1 - напряжение в вольтах, соответствующее напряжению пробоя туннельного фотоэмиссионного тока, когда вероятность туннелирования стремится к 1, возникающая при облучении эмиттера оптическим излучением с энергией фотона hν1=hc/λ1.

Используя соотношение (7) для двух длин волн УФ и видимого диапазона можно получить рабочие формулы для определения работы выхода электронов из эмиттера и форм-фактор локального усиления напряженности поля, т.е. соотношения (3) и (4).

Результаты апробации данного способа были экспериментально протестированы на основе измерения вольт-амперных характеристик при облучении углеродного наноразменого эмиттера лазерным излучением с красной -633 нм и синей λ=473 нм длиной волны излучения и темновой автоэмиссионной характеристики представлены на Фиг.3 и 4.

Используя экспериментальные результаты, представленные на Фиг.3, в соответствии с рабочей формулой (4), были найдены граничные напряжения соответствующие резкому возрастанию туннельного фотоэмиссионного тока при облучении одного и того же пространственного места в эмиттере микродиода, что позволило определить значение форм-фактора β, т.е. усиления напряженности локального электростатического поля равного 89, при этом значение работы выхода электронов из углеродного эмиттера определенное из формулы (3), равно 4.97 эВ. Значение работы выхода электронов из углерода, представленное в общепризнанной научным сообществом монографии Зи (Зи С. Физика полупроводниковых приборов. М.: Мир, 1984. 456 с.), А=5 эВ. Точность определения β и А предлагаемым способом будет максимальной при определении напряжения, соответствующего условию пробоя для автоэмиссионного тока и фотоэмиссионного тока при оптическом облучении. При экспериментальной реализации способа измеряется значение напряжения соответствующего возрастанию тока эмиссии микродиода на три порядка по сравнению с пороговым значением. Оценки погрешности определения работы выхода и возрастания локального поля на эмиттере вследствие микро- и нанорельефа его поверхности в соответствии с рабочей формулой (1-4), используя соотношение (1) и экспоненциальную зависимость туннельного тока от напряженности поля, эмиттер анод показали, что она не превышает 5% вследствие очень высокой крутизны вольт-амперной характеристики туннельной эмиссии близи условия пробоя, определяемого соотношением (1). Предлагаемый метод позволяет измерять значение локального электростатического поля на микроэмиттере с пространственным разрешением, определяемым размером оптического пучка на эмиттере. Минимальный размер лазерного сфокусированного пучка определяется дифракционным пределом, равным 1.22 λ/NA, где NA≤1, поэтому для УФ и видимого излучения такой размер ограничен длиной волны зондирующего излучения, т.е. значением 300-1000 нм.

Способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано- или микроструктурных эмиттерах, характеризующийся тем, что измеряют темновую зависимость туннельного эмиссионного тока при увеличении напряжения на аноде и определяют значение напряжения V, стремящееся к напряжению автоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного автоэмиссионного тока, облучают измеряемую поверхность эмиттера лазерным пучком ультрафиолетового или видимого диапазона с фиксированным значением оптической мощности и длины волны λ, измеряют значение туннельного фотоэмиссионного тока при увеличении напряжения на аноде и фиксируют значение напряжения V, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного тока, определяют значение работы выхода А и значение усиления локального электростатического поля β в пространственной области облучения эмиттера из соотношенияβ=2.77·10 (hс/λ)·z/[(V)- V)] (1)А=hс /(λ [1-(V/V)]) (2)или дополнительно облучают измеряемую поверхность эмиттера лазерным пучком на другой длине волны λ ультрафиолетового или видимого диапазона с максимальной разницей относительно первой длины волны, определяют значение напряжения V, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного тока, и определяют значение усиления локального электростатического поля в пространственной области облучения эмиттера и значение работы выхода А из соотношенияβ=2.77·10 z (hс /λ - h с/λ)·/[(V)- V)] (3)А=(h с /λ - h с /λ)/[1-(V/V)] (4)где: β - форм-фактор-величина, соответствующая усилению локальной напряженности электростатического поля в нано- или микроструктурных эмиттерах, вследствие пространственного градиента формы поверхности эмиттера, облучаемого световым пучком;z - расстояние между эмиттером и анодом в см;А - работа выхода электронов из эмиттера в эВ;V- напряжение в вольтах, стремящееся к напряжению автоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного автоэмиссионного тока;V- напряжение в вольтах, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного фототока при облучении эмиттера оптическим излучением с энергией фотона hc/λ;hc/λ=hν- энергия фотона в эВ, поглощаемая электроном эмиттера, вследствие однофотонного фотоэффекта;V- напряжение в вольтах, стремящееся к напряжению фотоэмиссионного пробоя, которое контролируется по экспоненциальному возрастанию на 3-5 порядков туннельного фотоэмиссионного тока при облучении эмиттера оптическим излучением с энергией фотона hν соответственно с длиной волны λ=с/ν;ν - частота излучения оптического диапазона;с - скорость света;h - постоянная Планка.
СПОСОБ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ УСИЛЕНИЯ ЛОКАЛЬНОГО ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И РАБОТЫ ВЫХОДА В НАНО ИЛИ МИКРОСТРУКТУРНЫХ ЭМИТТЕРАХ
СПОСОБ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ УСИЛЕНИЯ ЛОКАЛЬНОГО ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И РАБОТЫ ВЫХОДА В НАНО ИЛИ МИКРОСТРУКТУРНЫХ ЭМИТТЕРАХ
СПОСОБ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ УСИЛЕНИЯ ЛОКАЛЬНОГО ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И РАБОТЫ ВЫХОДА В НАНО ИЛИ МИКРОСТРУКТУРНЫХ ЭМИТТЕРАХ
СПОСОБ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ УСИЛЕНИЯ ЛОКАЛЬНОГО ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И РАБОТЫ ВЫХОДА В НАНО ИЛИ МИКРОСТРУКТУРНЫХ ЭМИТТЕРАХ
Источник поступления информации: Роспатент

Showing 1-10 of 66 items.
10.01.2013
№216.012.1896

Средство терапии раковых заболеваний

Изобретение относится к новым соединениям, соответствующим общим формулам, указанным ниже, в свободном виде либо в виде фармацевтически приемлемых солей, которые обладают противоопухолевой активностью и могут быть использованы в медицинской практике как терапевтическое средство для лечения...
Тип: Изобретение
Номер охранного документа: 0002471786
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8a

Цифровой генератор хаотического сигнала

Изобретение относится к области радиотехники и может быть использовано в современных, помехозащищенных и конфиденциальных системах связи, в системах защиты информации для создания шумового сигнала, в контрольно-измерительных системах для измерения частотных характеристик, а также в системах...
Тип: Изобретение
Номер охранного документа: 0002472286
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.20eb

Способ поиска залежей нефти и газа

Изобретение относится к области геофизики и может быть использовано при поиске месторождений нефти и газа. Согласно заявленному способу поиска залежей углеводородов пробы образцов отбирают по определенной системе профилей и определяют в них концентрацию тяжелых металлов (Со). Далее измеряют...
Тип: Изобретение
Номер охранного документа: 0002473928
Дата охранного документа: 27.01.2013
10.04.2013
№216.012.34d1

Источник света

Изобретение относится к энергосберегающим светотехническим приборам. Преимущественной сферой его применения являются бытовые и промышленные системы освещения помещений, наружного освещения, подсветки ЖК экранов с активной матрицей, динамические и статические информационные экраны, экраны...
Тип: Изобретение
Номер охранного документа: 0002479064
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.34d2

Источник света

Изобретение относится к осветительной технике и может быть использовано для освещения, декоративной подсветки и световой сигнализации, в том числе с цветовым кодированием. Техническим результатом является создание простой дешевой в изготовлении конструкции экономичного катодолюминесцентного...
Тип: Изобретение
Номер охранного документа: 0002479065
Дата охранного документа: 10.04.2013
20.05.2013
№216.012.4095

Способ получения этана из газового конденсата в промысловых условиях

Изобретение относится к газовой промышленности и может быть использовано на газоконденсатных месторождениях, непосредственно на объектах подготовки газа к транспорту или на централизованных объектах по подготовке нестабильного газового конденсата к транспорту или переработке. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002482103
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.426a

Способ получения катодного материала со структурой оливина для литиевой автономной энергетики

Изобретение относится к химической технологии и используется для получения катодных материалов со структурой оливина для литиевой автономной энергетики (гибридного транспорта, электромобилей, буферных систем хранения энергии и т.д.). Способ включает смешение соли лития LiCO, оксида железа (III)...
Тип: Изобретение
Номер охранного документа: 0002482572
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49c0

Способ обнаружения лизина в смеси α-аминокислот

Изобретение относится к аналитической химии, а именно к способам обнаружения биологически активного соединения - лизина, в сложных смесях. Технический результат заключается в упрощении, ускорении и удешевлении процедуры определения лизина при сохранении высоких метрологических параметров...
Тип: Изобретение
Номер охранного документа: 0002484460
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.4f3e

Способ измерения внутриглазного давления

Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал,...
Тип: Изобретение
Номер охранного документа: 0002485879
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5819

Устройство перестановок и сдвигов битов данных в микропроцессорах

Изобретение относится к средствам перестановок и сдвигов битов данных в микропроцессорах. Технический результат заключается в увеличении скорости выполнения операций. Устройство содержит n-разрядный вход данных X-X, n-разрядный выход данных Y-Y, n-разрядный вход битов маскирования F-F,...
Тип: Изобретение
Номер охранного документа: 0002488161
Дата охранного документа: 20.07.2013
Showing 1-10 of 77 items.
10.01.2013
№216.012.1896

Средство терапии раковых заболеваний

Изобретение относится к новым соединениям, соответствующим общим формулам, указанным ниже, в свободном виде либо в виде фармацевтически приемлемых солей, которые обладают противоопухолевой активностью и могут быть использованы в медицинской практике как терапевтическое средство для лечения...
Тип: Изобретение
Номер охранного документа: 0002471786
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8a

Цифровой генератор хаотического сигнала

Изобретение относится к области радиотехники и может быть использовано в современных, помехозащищенных и конфиденциальных системах связи, в системах защиты информации для создания шумового сигнала, в контрольно-измерительных системах для измерения частотных характеристик, а также в системах...
Тип: Изобретение
Номер охранного документа: 0002472286
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.20eb

Способ поиска залежей нефти и газа

Изобретение относится к области геофизики и может быть использовано при поиске месторождений нефти и газа. Согласно заявленному способу поиска залежей углеводородов пробы образцов отбирают по определенной системе профилей и определяют в них концентрацию тяжелых металлов (Со). Далее измеряют...
Тип: Изобретение
Номер охранного документа: 0002473928
Дата охранного документа: 27.01.2013
10.04.2013
№216.012.34d1

Источник света

Изобретение относится к энергосберегающим светотехническим приборам. Преимущественной сферой его применения являются бытовые и промышленные системы освещения помещений, наружного освещения, подсветки ЖК экранов с активной матрицей, динамические и статические информационные экраны, экраны...
Тип: Изобретение
Номер охранного документа: 0002479064
Дата охранного документа: 10.04.2013
20.05.2013
№216.012.4095

Способ получения этана из газового конденсата в промысловых условиях

Изобретение относится к газовой промышленности и может быть использовано на газоконденсатных месторождениях, непосредственно на объектах подготовки газа к транспорту или на централизованных объектах по подготовке нестабильного газового конденсата к транспорту или переработке. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002482103
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.426a

Способ получения катодного материала со структурой оливина для литиевой автономной энергетики

Изобретение относится к химической технологии и используется для получения катодных материалов со структурой оливина для литиевой автономной энергетики (гибридного транспорта, электромобилей, буферных систем хранения энергии и т.д.). Способ включает смешение соли лития LiCO, оксида железа (III)...
Тип: Изобретение
Номер охранного документа: 0002482572
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49c0

Способ обнаружения лизина в смеси α-аминокислот

Изобретение относится к аналитической химии, а именно к способам обнаружения биологически активного соединения - лизина, в сложных смесях. Технический результат заключается в упрощении, ускорении и удешевлении процедуры определения лизина при сохранении высоких метрологических параметров...
Тип: Изобретение
Номер охранного документа: 0002484460
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b4e

Способ повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи и, в частности, при низкоинтенсивной лазерной и фотодинамической терапии. Облучают поверхность кожи световым пучком на длине волны 575 нм при полуширине спектра не более 5 нм. Способ...
Тип: Изобретение
Номер охранного документа: 0002484860
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4b4f

Способ локального повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи, в частности при низкоинтенсивной лазерной и фотодинамической терапии. Определяют глубину нахождения патологического участка дермы. При глубине меньше 0.22 мм облучение световым пучком...
Тип: Изобретение
Номер охранного документа: 0002484861
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4f3e

Способ измерения внутриглазного давления

Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал,...
Тип: Изобретение
Номер охранного документа: 0002485879
Дата охранного документа: 27.06.2013
+ добавить свой РИД