×
23.02.2019
219.016.c6f4

Результат интеллектуальной деятельности: СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА ГРАФЕНЕ (варианты)

Вид РИД

Изобретение

№ охранного документа
0002680544
Дата охранного документа
22.02.2019
Аннотация: Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно пленок монооксида европия на графене, и может быть использовано для создания таких устройств спинтроники, как спиновый транзистор и инжектор спин-поляризованных носителей. Способ выращивания эпитаксиальных пленок монооксида европия EuO на графене включает формирование субмонослоя европия с поверхностной фазой методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка при температуре подложки T=20-100°С и давлении потока атомов европия P=(1⋅10-1⋅10) Торр, осаждение слоя монооксида европия EuO при температуре подложки T=20-100°C, давлении потока кислорода P=(1⋅10-1⋅10) Торр и давлении потока атомов европия P=(1⋅10-1⋅10) Торр, удовлетворяющих условию 10⋅P≤P≤11⋅P, до достижения необходимой толщины слоя монооксида европия EuO. В одном из вариантов осуществления изобретения после вышеперечисленых операций осаждают слой монооксида европия EuO при температуре подложки T=340-420°С, давлении потока кислорода P=(1⋅10-1⋅10) Торр и давлении потока атомов европия P=(1⋅10-1,5⋅10) Торр, удовлетворяющих условию 10⋅P≤P≤15⋅P, до достижения необходимой общей толщины слоя монооксида европия EuO. В частных случаях осуществления изобретения после осаждения пленки монооксида европия осуществляют ее отжиг в вакууме в диапазоне температур T=490-520С. Обеспечивается формирование эпитаксиальных стехиометрических пленок монооксида европия толщиной более 5нм с высоким кристаллическим совершенством без включений фаз высших оксидов на графене, что позволяет получить магнитные состояния в графене для создания таких технических устройств, как одноэлектронный транзистор и спиновый фильтр. 2 н. и 2 з.п. ф-лы, 4 ил., 4 пр.

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно пленок монооксида европия на графене, и может быть использовано для создания устройств спинтроники, например, инжекторов спин-поляризованного тока.

Структура EuO/Графен является перспективной основой для создания спинтронных устройств в силу уникальных свойств материалов: EuO является ферромагнитным изолятором с большим абсолютным значением магнитного момента на атом, что позволяет использовать его в качестве инжектора спин-поляризованных электронов в проводник. В то же время графен известен высокой проводимостью и большой длиной спиновой диффузии, что делает его хорошим проводником спинового тока. Кроме того, показана возможность разделения носителей заряда по спину в графене за счет эффекта близости с ферромагнитным оксидом.

Известно изобретение «Способ и оборудование для выращивания монокристаллических оксидов, нитридов и фосфидов» (патент № US 7135699 В1), в котором слоистая структура, содержащая редкоземельный оксид, формируется на различных подложках, в т.ч. кремния, и формирует сверхрешетку. В рамках метода может реализовываться выращивание эпитаксиальных слоев монооксида европия на кремниевых подложках при осаждении металла в потоке кислорода. Недостатком изобретения является тот факт, что изобретение ориентировано на диэлектрики с высокой диэлектрической проницаемостью, а потому не учитывает особенности выращивания полупроводниковых слоев EuO, где требуется сохранение валентности ионов Eu2+. Между тем, выращивание EuO требует особого подхода для предупреждения перехода иона европия в трехвалентное состояние и, в то же время, поддержания эпитаксиального роста.

Известна статья «Атомно-слоевое осаждение оксидов металлов на чистый и функционализированный графен» «Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene» (Статья DOI: 10.1021/ja8023059), в которой тонкие пленки оксидов металлов выращиваются на графене путем атомно-слоевого осаждения. Недостатком методики является невозможность получать эпитаксиальные пленки с хорошей кристаллической структурой.

Известна статья «Рост эпитаксиальных тонких пленок оксидов на графене» «Growth of Epitaxial Oxide Thin Films on Graphene» (Статья DOI: 10.1038/srep31511), в которой эпитаксиальные тонкие пленки SrTiO3 выращиваются методом лазерной абляции на графене. Недостатком изобретения является невозможность выращивать стехиометрический EuO с сохранением валентности ионов Eu2+.

Известна статья «Осаждение ферромагнитного изолятора EuO на графен» «Integration of the Ferromagnetic Insulator EuO onto Graphene» (Статья DOI: 10.1021/nn303771f), в которой эпитаксиальные тонкие пленки EuO выращиваются методом молекулярно-лучевой эпитаксии на графене. Недостатком изобретения является наличие значительного количества оксида европия Eu3O4 в пленке.

Известна статья «Структура и магнитные свойства сверхтонких пленок EuO на графене» «Structure and magnetic properties of ultra thin textured EuO films on graphene» (Статья DOI: 10.1063/1.4821953), в которой стехиометрические сверхтонкие пленки EuO получают методом молекулярно-лучевой эпитаксии на подложках Графен/Ir (111). Недостатком данного изобретения является тот факт, что изобретение ориентировано на выращивание пленок толщиной менее 10 монослоев (~2,6 нм), а потому не учитывает особенности роста пленок большей толщины с сохранением стехиометрии.

Известно изобретение «Способ выращивания эпитаксиальных пленок монооксида европия на кремнии» (Патент № RU 2557394), в котором методом молекулярно-лучевой эпитаксии выращивают субмонослой силицида европия при температуре подложки Ts=640÷680°С и давлении потока атомов европия PEu=(1÷7)⋅10-8 Торр, после чего осаждение проводят при температуре подложки Ts=340÷380°С, давлении потока кислорода PO2=(0,2÷3)⋅10-8 Торр и давлении потока атомов европия PEu=(1÷4)⋅10-8 Торр, затем осаждение проводят при температуре подложки Ts=430÷490°С, потоке кислорода с давлением PO2=(0,2÷3)⋅10-8 Торр, и потоке атомов европия с давлением PEu=(1÷7)10-8 Торр. В процедуре также предусмотрен ряд отжигов в вакууме:

- промежуточный отжиг после осуществления первой стадии (Ts=340÷380°С) роста, осуществляемый при температуре Ts=490÷520°С;

- конечный отжиг в диапазоне температур Ts=500÷560°С

Недостатком изобретения является невозможность применения методики при росте пленок EuO на графене.

Раскрытие изобретения

Техническим результатом настоящего изобретения является формирование эпитаксиальных стехиометрических пленок EuO толщиной более 5 нм с высоким кристаллическим совершенством без включений фаз высших оксидов на графене. Полученный результат позволил получить магнитные состояния в графене, что не было достигнуто в предыдущих работах и может быть использовано для создания таких технических устройств, как одноэлектронный транзистор и спиновый фильтр.

Для достижения технического результата предложен способ выращивания эпитаксиальных пленок монооксида европия EuO на графене, заключающийся в том, что методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка формируют субмонослой европия с поверхностной фазой при температуре подложки Ts=20÷100°С и давлении потока атомов европия PEu=(1⋅10-8÷1⋅10-7) Торр, затем осаждают слой монооксида европия EuO при температуре подложки Ts=20÷100°С, давлении потока кислорода PO2=(1⋅10-9÷1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8÷1,1⋅10-7) Торр, удовлетворяющих условию 10⋅PO2≤PEu≤11⋅PO2 до достижения необходимой толщины слоя монооксида европия EuO.

Кроме того, после осаждения пленки монооксида европия EuO осуществляют ее отжиг в вакууме в диапазоне температур Ts=490÷520°С.

Также для достижения того же технического результата предложен способ выращивания эпитаксиальных пленок монооксида европия EuO на графене, заключающийся в том, что методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка формируют субмонослой европия с поверхностной фазой при температуре подложки Ts=20÷100°C и давлении потока атомов европия PEu=(1⋅10-8÷1,1⋅10-7) Торр, затем осаждают слой монооксида европия EuO при температуре подложки Ts=20÷100°С, давлении потока кислорода PO2=(1⋅10-9÷1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8÷1,1⋅10-7) Торр, удовлетворяющих условию 10⋅PO2≤PEu≤11⋅PO2, а затем осаждают слой монооксида европия EuO при температуре подложки Ts=340÷420°С, давлении потока кислорода PO2=(1⋅10-9÷1⋅10-8) Торр и давлении потока атомов европия PEu=(1⋅10-8÷1,1⋅10-7) Торр, удовлетворяющих условию 10⋅PO2≤PEu≤15⋅PO2 до достижения необходимой общей толщины слоя монооксида европия EuO.

Кроме того, после осаждения пленки монооксида европия EuO осуществляют ее отжиг в вакууме в диапазоне температур Ts=490÷520°С.

Описанный способ позволяет выращивать однофазные эпитаксиальные пленки EuO на поверхности монослоя графена, что не может быть достигнуто способами, указанными в аналогах. Необходимо отметить, что в технологическом процессе может использоваться любая подложка с осажденным на нее монослоем графена, кроме приведенной в примерах подложки из кремния, не деградирующая при ростовых условиях. Монослой графена предварительно может быть осажден на поверхность различных подложек при помощи как ростовых технологий, так и технологий переноса пленки («Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems» (DOI: 10.1039/c4nr01600a)).

В установках молекулярно-лучевой эпитаксии обычно имеет место неоднозначная трактовка температур подложки. В настоящем изобретении температуры подложки выше 270°С определяются по показаниям инфракрасного пирометра, ниже - по показаниям термопары.

Давлением потока считается давление, измеренное ионизационным манометром Баярда-Альперта, находящимся в положении подложки. При этом, различие энергий ионизации для тех или иных материалов (2,54 и 12,2 эВ для Eu и О2 соответственно) приводит к неоднозначности в оценке реальных плотностей потоков молекулярных пучков (в единицах Атом/м2⋅с) из показаний таких манометров. В нашем случае, опытным путем было установлено, что реальные атомные потоки Eu и кислорода совпадают при показаниях манометра PEu=10⋅PO2.

Краткое описание чертежей

Изобретение поясняется чертежами:

На Фиг. 1 даны изображения дифракции быстрых электронов на исходной поверхности Графен/SiO2/Si до отжига (а) и поверхностной фазе в процессе формирования реконструкции поверхности графена - после завершения процедуры ее формирования (б).

На Фиг. 2 дана характерная картина дифракции быстрых электронов на пленках EuO.

На Фиг. 3 представлена θ-2θ рентгеновская дифрактограмма, полученная на образце SiOx/EuO (80 нм)/Графен/SiO2/Si(100).

На Фиг. 4 показана зависимость намагниченности образца SiOx/EuO(67 нм)/Графен/SiO2/Si(100) от температуры, согласно которой температура Кюри для EuO в пленке составляет 68,3 K, что отвечает данным по объемным монокристаллам и говорит об отсутствии примесей и вакансий кислорода, которые повышают температуру ферромагнитного перехода.

Пример 1. осуществления способа изобретения.

Структура Графен/SiO2/Si помещается в сверхвысоковакуумную камеру (остаточный вакуум Р~1⋅10-10 Торр). Затем, для очистки поверхности графена, осуществляется прогрев структуры до температуры Ts=600°С. Тот факт, что графен очищен, устанавливается с помощью дифракции быстрых электронов (Фиг. 1а). После чего структуру охлаждают до Ts=20÷100°С, затем открывают на 20 сек заслонку ячейки Eu предварительно прогретой до температуры, обеспечивающей давление потока PEu=(1⋅10-8÷1,1⋅10-7) Торр, что соответствует покрытию субмонослоя толщиной 1/6 монослоя.

Во время осаждения чистого Ей на картинах дифракции быстрых элктронов появляются промежуточные рефлексы (Фиг. 16). Эти изменения свидетельствуют об образовании периодичного субмонослойного покрытия металлического европия с поверхностной структурой типа позволяющей провести выращивание стехиометрического EuO.

После формирования поверхностной реконструкции происходит одновременное открытие заслонки ячейки Eu, нагретой до такой температуры, чтобы обеспечивать давление потока атомов Eu PEu=6,2⋅10-8 Торр, и кислорода, давление молекулярного пучка которого составляет PO2=6⋅10-9 Торр, при этом обеспечивается соблюдение условия 10⋅PO2≤PEu≤11⋅PO2. Температура подложки поддерживается на уровне Ts=20÷100°C. Открытие ячейки Eu и кислорода производится на 30 минут, что соответствует толщине пленки EuO в 20 нм при скорости роста пленки 0,66 нм/мин при заданных потоках веществ. Контроль над состоянием пленки производится in situ с помощью дифракции быстрых электронов. Картина дифракции от пленки EuO в процессе роста показана на Фиг. 2. Выход за пределы описанного режима приводит к формированию аморфных или кристаллических высших оксидов Eu2O3 и Eu3O4, или их смеси с EuO.

Поскольку пленка крайне чувствительна к окислению, по окончании роста пленку закрывают сплошным защитным слоем, например, Al или SiOx толщиной не менее 2 нм.

Исследования изготовленных образцов с помощью рентгеновской дифрактометрии (Фиг. 3) показали, что пленки EuO являются текстурированными: в силу симметрийных соображений (интеграция ГЦК решетки с гексагональной) кристаллиты латерально развернуты друг относительно друга на угол 30°, подавляющее большинство из них имеют ориентацию, нормальную к поверхности, (001). Включения с ориентацией (111) также присутствуют, однако оценка из интенсивности пиков показывает, что их количество составляет не более 10% от объема пленки. Положения рефлексов EuO свидетельствуют, что кристаллической решетке пленки EuO соответствует кубическая сингония Fm3m.

Пример 2.

По окончании осаждения 20 нм пленки EuO образец подвергается вакуумному отжигу при температуре Ts=490÷520°С. В остальном способ реализуется, как в Примере 1.

Пример 3.

По окончании осаждения 20 нм пленки EuO при температуре Ts=20÷100°С производится осаждение 30 нм пленки EuO при температуре подложки Ts=340÷420°С. В остальном способ реализуется, как в Примере 1.

Пример 4.

По окончании осаждения пленки EuO образец подвергается вакуумному отжигу при температуре Ts=490÷520°С. В остальном способ реализуется, как в Примере 3.

Таким образом, показана возможность получения эпитаксиальной пленки EuO большой толщины без включений фаз высших оксидов на монослое графена, приводящей к появлению в нем магнитных состояний, что позволит создавать устройства спинтроники, например спиновые фильтры и инжекторы спин-поляризованного тока.


СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА ГРАФЕНЕ (варианты)
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА ГРАФЕНЕ (варианты)
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА ГРАФЕНЕ (варианты)
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА ГРАФЕНЕ (варианты)
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА ГРАФЕНЕ (варианты)
СПОСОБ ВЫРАЩИВАНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК МОНООКСИДА ЕВРОПИЯ НА ГРАФЕНЕ (варианты)
Источник поступления информации: Роспатент

Showing 181-190 of 259 items.
20.02.2019
№219.016.c3a3

Термоэмиссионный преобразователь

Изобретение относится к термоэмиссионным преобразователям тепловой энергии в электрическую, они широко применяются в ядерных энергетических установках. Термоэмиссионный преобразователь содержит два изолированных электрода, находящихся в вакуумном объеме. Резервуар с рабочим телом - цезий...
Тип: Изобретение
Номер охранного документа: 0002449410
Дата охранного документа: 27.04.2012
16.03.2019
№219.016.e1e8

Способ получения полимерных противоопухолевых частиц в проточном микрореакторе и лиофилизата на их основе

Настоящее изобретение относится к области фармацевтической технологии и медицине, конкретно к способу получения полимерных противоопухолевых частиц в проточном микрореакторе и лиофилизата на их основе. Способ заключается в пропускании через проточный микрореактор водной фазы, состоящей из...
Тип: Изобретение
Номер охранного документа: 0002681933
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.f4c9

Способ получения наноразмерного платиноникелевого катализатора

Изобретение относится к каталитической химии, а именно к способам получения катодных катализаторов на основе Pt, предназначенных для использования в электролизерах и топливных элементах с твердым полимерным электролитом (ТПЭ). Техническим результатом является снижение времени и...
Тип: Изобретение
Номер охранного документа: 0002421850
Дата охранного документа: 20.06.2011
29.03.2019
№219.016.f4d5

Способ нанесения платиновых слоев на подложку

Изобретение относится к электронной технике и может быть использовано в процессах формирования пленочных элементов микроэлектронных устройств. Сущность изобретения: в способе нанесения платиновых слоев на подложку, включающем предварительное формирование на поверхности из оксида и/или нитрида...
Тип: Изобретение
Номер охранного документа: 0002426193
Дата охранного документа: 10.08.2011
29.03.2019
№219.016.f520

Способ преобразования энергии

Способ преобразования тепловой энергии в механическую, в котором в замкнутом цикле с помощью тепловой энергии проводят нагрев и испарение рабочего тела, которое подают затем на расширение в турбину. После турбины рабочее тело сорбируют в сорбенте, конденсируют и нагнетают на повторный нагрев и...
Тип: Изобретение
Номер охранного документа: 0002425230
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.f6d2

Устройство для доставки ультрахолодных нейтронов по гибким нейтроноводам

Изобретение относится к области ядерной физики, в частности к устройствам доставки низкоэнергетических нейтронов от источников нейтронов до объектов исследований или экспериментальных установок. Изобретение может быть использовано при транспортировке нейтронов низких энергий, включая...
Тип: Изобретение
Номер охранного документа: 0002433492
Дата охранного документа: 10.11.2011
29.03.2019
№219.016.f7ff

Устройство для подачи пара цезия в термоэммисионный преобразователь

Изобретение касается термоэмиссионного преобразования тепловой энергии в электрическую и относится к устройствам подачи пара цезия в межэлектродный зазор термоэмиссионного преобразователя (ТЭП). Технический результат - повышенная емкость по цезию достигается за счет того, что предложено...
Тип: Изобретение
Номер охранного документа: 0002464668
Дата охранного документа: 20.10.2012
04.04.2019
№219.016.fca0

Способ получения сверхтонких пленок кремния на сапфире

Изобретение относится к микроэлектронике. Сущность изобретения: в способе получения сверхтонких пленок кремния на сапфире в объектах, содержащих сапфировую подложку и исходный слой кремния, толщина которого значительно больше толщины получаемых тонких пленок кремния, производят аморфизацию...
Тип: Изобретение
Номер охранного документа: 0002427941
Дата охранного документа: 27.08.2011
01.05.2019
№219.017.47cd

Способ и устройство для оптимизации рециклинга рабочего газа в токамаке

Изобретение относится к способу оптимизации рециклинга рабочего газа в токамаке. Способ предусматривает поступление в плазму молекул и атомов рабочего газа с поверхностей стенок вакуумной камеры, подвижного и неподвижного лимитеров, и системы газонапуска с трубопроводом. Причем одновременно...
Тип: Изобретение
Номер охранного документа: 0002686478
Дата охранного документа: 29.04.2019
08.05.2019
№219.017.490f

Автономная энергетическая установка

Изобретение относится энергетике, а именно к автономным системам энергоснабжения объектов, удаленных от центрального энергоснабжения. Автономная энергетическая установка содержит аппаратный и топливный отсек, расположенные внутри корпуса, первичный источник энергии в виде источника...
Тип: Изобретение
Номер охранного документа: 0002686844
Дата охранного документа: 06.05.2019
Showing 1-7 of 7 items.
25.08.2017
№217.015.ca35

Способ выращивания эпитаксиальных пленок дисилицида стронция на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно новой фазы дисилицида стронция, обладающего в контакте с кремнием низкой высотой барьера Шоттки, и может быть использовано для создания контактов истока/стока в технологии производства полевых...
Тип: Изобретение
Номер охранного документа: 0002620197
Дата охранного документа: 23.05.2017
09.08.2018
№218.016.79e3

Способ получения эпитаксиальной пленки многослойного силицена, интеркалированного европием

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно EuSi кристаллической модификации hP3 (пространственная группа N164, ) со структурой интеркалированных европием слоев силицена, которые могут быть использованы для проведения экспериментов по...
Тип: Изобретение
Номер охранного документа: 0002663041
Дата охранного документа: 01.08.2018
17.08.2019
№219.017.c11b

Способ получения спин-поляризованных носителей заряда в графене

Использование: для получения спин-поляризованных носителей заряда в графене. Сущность изобретения заключается в том, что методом молекулярно-лучевой эпитаксии на поверхности предварительно сформированной структуры монослой графена/подложка формируют субмонослой европия со структурой Eu....
Тип: Изобретение
Номер охранного документа: 0002697517
Дата охранного документа: 15.08.2019
29.12.2020
№219.017.f404

Способ создания двумерного ферромагнитного материала дисилицида гадолиния со структурой интеркалированных слоев силицена

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSiсо структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока...
Тип: Изобретение
Номер охранного документа: 0002710570
Дата охранного документа: 27.12.2019
04.06.2020
№220.018.23dd

Способ создания двумерных ферромагнитных материалов euge и gdge на основе германена

Изобретение относится к технологии получения двумерных ферромагнитных материалов EuGe или GdGe, которые могут быть использованы при создании компактных спинтронных устройств. Способ создания двумерных ферромагнитных материалов EuGe и GdGe на основе германена заключается в осаждении атомарного...
Тип: Изобретение
Номер охранного документа: 0002722664
Дата охранного документа: 02.06.2020
13.06.2020
№220.018.26c5

Способ создания материалов на основе германена euge и srge с высокой подвижностью носителей заряда

Изобретение относится к получению материалов на основе германена EuGe и SrGe с высокой подвижностью носителей заряда, которые могут использоваться при создании наноэлектронных устройств. Атомарный поток европия или стронция с давлением (0,1÷100)⋅10 Торр осаждают на предварительно очищенную...
Тип: Изобретение
Номер охранного документа: 0002723125
Дата охранного документа: 08.06.2020
20.04.2023
№223.018.4d2f

Способ создания интерфейса для интеграции монокристаллического оксида европия с германием

Изобретение относится к технологии формирования эпитаксиальных гетероструктур, а именно тонких пленок оксида европия на германии, которые могут быть использованы при создании устройств германиевой наноэлектроники и спинтроники, в частности инжекторов спин-поляризационного тока, спиновых...
Тип: Изобретение
Номер охранного документа: 0002793379
Дата охранного документа: 31.03.2023
+ добавить свой РИД