×
20.02.2019
219.016.c392

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ВИСМУТ-212

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний. Раствор, содержащий смесь радионуклидов торий-228 и торий-229, а также дочерние продукты распада этих радионуклидов, барботируют газом, удаляя при этом из раствора один из дочерних продуктов распада тория-228 - газообразный радионуклид радон-220. Направляют газ через аэрозольный фильтр в сорбционное устройство, где в результате радиоактивного распада по цепочке Rn→Po→Pb накапливают радионуклид свинец-212, который после выхода активности свинца-212 на насыщение десорбируют. Полученный раствор направляют на колонку с ионообменной смолой, с которой периодически смывают дочерний продукт распада радионуклид висмут-212. В качестве газа для барботирования используют воздух, и/или азот, и/или гелий, и/или аргон, и/или криптон, и/или ксенон. В качестве сорбционного устройства используют пустотелый объем, размеры которого обеспечивают время пребывания радона-220, достаточное для его полного распада в радионуклид свинец-212, или ловушку с активированным углем. Технический результат - уменьшение трудоемкости процесса, снижение содержания примесных радионуклидов. 3 з.п. ф-лы.

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к технологии получения радионуклидов для ядерной медицины и может использоваться, в частности, для терапии онкологических заболеваний.

При терапии онкологических заболеваний все более широкое применение находят α-излучающие радионуклиды. Это связано с большой начальной энергией (5-8 МэВ) и коротким пробегом (десятки микрон) α-частиц в биологических тканях и, следовательно, высоким уровнем энерговыделения в области локализации распадающихся нуклидов. Носители α-излучающих радионуклидов (моноклональные антитела, пептиды) с высокой специфичностью позволяют доставлять их точно в опухолевый узел или метастатический очаг. Благодаря малым пробегам α-частиц возможно селективное воздействие излучения на патологические объекты с минимальной лучевой нагрузкой на окружающие здоровые ткани.

Настоящее изобретение может быть использовано для создания генераторов α-излучателей торий-228/свинец-212 (228Th/212Pb) и свинец-212/висмут-212 (212Pb/212Bi), конечные элементы цепочки распадов которых - радионуклиды свинец-212 и висмут-212 могут использоваться в составе медицинских радиофармпрепаратов.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Одним из наиболее перспективных направлений в ядерной медицине является радиоиммунотерапия с использованием α-излучателей. Применение короткоживущих α-излучающих радионуклидов для терапии онкологических заболеваний представляет интерес с радиобиологической точки зрения, поскольку является наиболее эффективным способом летального поражения опухолевых клеток благодаря короткому пробегу α-частиц в ткани и высокой ионизирующей способности.

В настоящее время ведется поиск α-излучателей, обладающих приемлемыми ядерно-физическими свойствами. Радионуклид висмут-212, образующийся при распаде изотопа уран-232, считается одним из наиболее перспективных для использования в терапии онкологических заболеваний.

Период полураспада висмута-212 составляет 60,6 мин, средняя энергия α-частиц 7,8 МэВ. При распаде висмута-212 образуются радионуклиды таллий-208 и полоний-212, которые ведут к стабильному нуклиду свинец-208. Пробег α-частиц в биологической ткани менее 100 мкм, что соответствует всего лишь нескольким диаметрам раковой клетки, а линейная передача энергии (ЛПЭ) достигает ~80 кэВ/мкм.

Начальный элемент цепочки уран-232 - искусственный изотоп урана, образование которого происходит в ядерном реакторе при облучении природного тория в результате следующих реакций взаимодействия нейтронов и гамма-квантов с нуклидом торий-232:

232Th(n,γ)233Th→233Pa(γ,n)232Pa→232U

232Th(n,2n)231Th→231Pa(n,γ)232Pa→232U

232Th(γ,n)231Th→231Pa(n,γ)232Pa→232U

В зависимости от условий облучения тория в реакторе равновесная концентрация урана-232 лежит в пределах 1000-6000 ppm [В.М.Мурогов, М.Ф.Троянов, А.Н.Шмелев. Использование тория в ядерных реакторах. М.: Энергоатомиздат, 1983].

При облучении тория в реакторе одновременно с ураном-232 происходит образование урана-233 по следующей реакции:

232Th(n,γ)→233Th→233Pa→233U

В результате α-распада урана-233 образуется торий-229, который, в свою очередь, после ряда распадов переходит в радионуклид висмут-213.

Висмут-212 является типичным генераторным радионуклидом и находит применение в радиоиммунотерапии, главным образом в виде меченных им моноклональных антител и других молекулярных носителей. Сегодня для получения висмута-212 используют две генераторные системы - 228Th/224Ra и 224Ra/212Bi. В первой из них радий-224 отделяется от тория-228 за счет анионообменного разделения этих радионуклидов из раствора азотной кислоты. Во втором генераторе с использованием катионообменных смол и минеральных кислот из радия-224 выделяют висмут-212 [R.W.Atcher, A.M.Friedman, J.J.Hines «An improved generator for the production of 212Pb and 212Bi from 224Ra». International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, Volume 39, Issue 4,1988, Pages 283-286].

За прототип выбран способ получения висмута-212, описанный в работе [В.М.Савинов, В.Б.Павлович, А.А.Котовский и др. «Контроль технологических процессов при разработке медицинских генераторов 225Ac/213Bi и 224Ra/212Bi альфа- и гамма-спектрометрическими методами» // Ядерная энергетика, №3, 2003, стр.116-126].

В качестве исходного сырья для получения радионуклида висмут-212 авторы использовали раствор, содержащий смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов. Для получения висмута-212 выполняли следующие процедуры:

- радионуклиды торий-229, торий-228 и образующиеся дочерние продукты распада этих радионуклидов выдерживали в растворе азотной кислоты для накопления радионуклида радий-224;

- после выдержки раствор, содержащий радионуклиды торий-229, торий-228, а также радий-224 и другие дочерние продукты распада тория-229 и тория-228, пропускали через колонку с анионитом;

- радионуклиды торий-229 и торий-228 оставались в колонке с анионитом, а радий-224 и другие дочерние продукты распада тория-229 и тория-228 собирались на выходе из колонки;

- полученный раствор, содержащий радий-224 и другие дочерние продукты распада радионуклидов торий-229 и торий-228, упаривали досуха;

- сухой остаток, содержащий радионуклид радий-224, растворяли в соляной кислоте;

- кислотный раствор радия-224 пропускали через колонку с катионитом;

- радионуклид радий-224 оставался в колонке с катионитом;

- колонку, содержащую радионуклид радий-224, промывали раствором соляной кислоты;

- на выходе из колонки с катионитом собирали раствор с радионуклидом висмут-212.

Однако этот способ получения висмута-212 имеет ряд недостатков:

- многостадийный процесс получения висмута-212 из смеси радионуклидов торий-228 и торий-229 является трудоемким, осуществляется путем последовательного радиохимического выделения радионуклида радий-224 методом сорбции из исходного раствора тория-228 и тория-229 и на следующей стадии выделения из раствора радия-224 радионуклида висмут-212;

- в исходном растворе радионуклидов торий-228 и торий-229 за время хранения накапливается примесный радионуклид таллий-208, обладающий гамма-излучением с энергией 2,6 МэВ, что создает большие радиационные нагрузки на персонал, осуществляющий процесс получения висмута-212.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей изобретения является упрощение технологического процесса получения радионуклида висмут-212 и снижение выхода примесных радионуклидов.

Для решения поставленной задачи в способе получения радионуклида висмут-212 из раствора, содержащего смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов, с последующим выделением висмута-212 с помощью ионообменных смол предлагается раствор, содержащий смесь радионуклидов торий-228 и торий-229, а также дочерние продукты распада этих радионуклидов барботировать газом, удаляя при этом из раствора один из дочерних продуктов распада тория-228 - газообразный радионуклид радон-220, направлять газ через аэрозольный фильтр в сорбционное устройство, где в результате радиоактивного распада по цепочке 220Rn→216Po212Pb накапливать радионуклид свинец-212, который после выхода активности свинца-212 на насыщение десорбировать и полученный раствор направлять на колонку с ионообменной смолой, с которой периодически смывать дочерний продукт распада радионуклид висмут-212.

При этом раствор барботируют воздухом, и/или азотом, и/или гелием, и/или аргоном, и/или криптоном, и/или ксеноном.

В качестве сорбционного устройства можно использовать пустотелый объем, размеры которого обеспечивают время пребывания радона-220, достаточное для его полного распада в радионуклид свинец-212.

В качестве сорбционного устройства можно использовать ловушку с активированным углем.

Сорбционное устройство (им может быть длинная трубка, или большой сосуд, или ловушка с сорбентом, например активированным углем) должно обеспечивать время протекания через него потока газа не менее 10-и минут (примерно десять периодов полураспада радона-220 - 55,6 с).

В предлагаемом способе получения радионуклида висмут-212 использовано наличие среди дочерних продуктов распада тория-228 газообразного радионуклида радон-220, который в результате распада по цепочке 220Rn→216Po→212Pb→212Bi приводит к образованию целевого радионуклида висмут-212. Период полураспада радона-220 составляет 55,6 сек, что обеспечивает возможность его удаления из водных растворов кислот с помощью барботажа газа [Схемы распада радионуклидов. Энергия и интенсивность излучения. Публикация 38 МКРЗ. В двух частях. Часть вторая. Книга 2. М.: Энергоатомиздат, 1987, стр.204-205].

Инертный газ радон в 6,7 раза тяжелее воздуха, обладает низким коэффициентом растворимости в воде [А.С.Сердюкова, Ю.Т.Капитанов. Изотопы радона и продукты их распада в природе. М.: Атомиздат, 1975]. Из-за малой растворимости радон легко выделяется из воды в воздух. В термальных водах, имеющих температуру свыше 30°C, коэффициент растворимости радона в воде уменьшается вдвое по отношению к так называемым "холодным" радоновым водам с температурой до 10°C. Быстрому выделению радона в воздух также способствуют насыщенность термальных радоновых вод азотом и углекислотой. По данным ряда авторов потери радона из воды с выделяющимся из нее углекислым газом достигают 36%.

Изотопы радона в исключительно редких случаях вступают в химические соединения. Химические соединения радона-220 не известны.

В присутствии в растворе всплывающих газовых пузырьков атомы радона в процессе диффузии в жидкости приникают в объем пузырьков и выносятся на поверхность раствора. Транспортируя радон-220 по технологическим газовым коммуникациям, его доставляют в систему улавливания, где удерживают до полного распада в радионуклид свинец-212, который, в свою очередь, распадается в висмут-212.

После удаления из системы улавливания радионуклид висмут-212 используется по своему прямому назначению для приготовления медицинских препаратов, применяемых при терапии онкологических заболеваний.

Предлагаемый способ получения радионуклида висмут-212 обладает преимуществами по сравнению с описанным прототипом:

- полученный таким способом радионуклид висмут-212 не содержит радиоактивных примесей, поскольку в цепочках распада тория-229 и тория-228 имеется только один газообразный радионуклид - радон-220;

- исключается многостадийный радиохимический передел раствора, содержащего смесь радионуклидов торий-228 и торий-229 и дочерних продуктов распада этих радионуклидов, в результате чего упрощается технологический процесс получения висмута-212;

- в исходном растворе, содержащем смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов, снижается примесь радионуклида таллий-208, обладающего высокоэнергетическим гамма-излучением, что снижает дозовую нагрузку на персонал.

ПРИМЕР ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

В качестве исходного сырья для получения радионуклида висмут-212 используют раствор, содержащий смесь радионуклидов торий-228, торий-229 и дочерних продуктов распада этих радионуклидов.

Для получения висмута-212 смесь радионуклидов торий-229, торий-228 и образующихся дочерних продуктов распада этих радионуклидов выдерживают в кислом растворе HNO3, помещенном в колбу-барботер объемом 50 мл. Общий объем раствора 10 мл. В колбу-барботер по трубке, погруженной в раствор кислоты, с помощью перистальтического насоса подается воздух с расходом ~50 мл/мин. В качестве прокачиваемого газа может быть использован любой из упомянутых в формуле газов или их смесей. Воздух был выбран как наиболее доступный газ.

По газовой коммуникации, представляющей собой фторопластовую трубку длиной 0,3 м из колбы-барботера, воздушный поток, содержащий атомы радона-220, подается на аэрозольный фильтр для отделения диспергированной фракции исходного раствора. После прохождения фильтра воздушный поток поступает в сорбционный объем, который представляет собой фторопластовую трубку диаметром 8 мм и длиной более одного метра. Время пребывания газового потока в трубке указанной длины достаточно для полного распада радона-220 и оседания его дочернего радионуклида свинец-212 на стенке трубки. Очищенный воздух по замкнутому контуру вновь поступает в колбу-барботер с раствором радионуклидов торий-229 и торий-228.

Продолжительность прокачки газа по контуру 20 часов, что составляет более 60% времени, необходимого для выхода активности радионуклида свинец-212 в насыщение. После завершения прокачки трубку отсоединяют от установки и с ее внутренней поверхности десорбируют свинец-212.

Десорбция свинца-212 проводится последовательно двумя растворами: горячей водой объемом 50 мл и 6М HCl объемом 50 мл (генератор торий-228/свинец-212).

Из полученного солянокислого раствора на катионите Дауэкс-50 сорбируют радионуклиды свинец-212 и висмут-212 и по мере накопления и необходимости слабым солянокислым раствором десорбируют необходимое количество висмута-212 (генератор свинец-212/висмут-212).

Все растворы, включая раствор в колбе-барботере, подвергаются спектрометрическому анализу для определения радионуклидного состава и сведения материального баланса.

Предложенный способ получения висмута-212 позволяет по сравнению со способом, выбранным за прототип, уменьшить трудоемкость процесса, снизить содержание примесных радионуклидов.

Источник поступления информации: Роспатент

Showing 61-70 of 322 items.
27.06.2014
№216.012.d5b0

Способ получения водорода и водород-метановой смеси

Изобретение может быть использовано в химической промышленности. Способ получения водород-метановой смеси включает использование в качестве источника сырья двух параллельных потоков, содержащих низшие алканы. Первый поток направляют на парциальное окисление кислородсодержащим газом. Продукты...
Тип: Изобретение
Номер охранного документа: 0002520482
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da2e

Способ получения водорода из воды

Изобретение может быть использовано в химической промышленности и при изготовлении стационарных и транспортных источников топлива. Восстанавливают оксид железа путем его термолиза при нагреве инертным газом с получением кислорода при температуре выше 1200°C и давлении выше 0.1 МПа. Затем железо...
Тип: Изобретение
Номер охранного документа: 0002521632
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.dee6

Способ управления устройством с помощью глазных жестов в ответ на стимулы

Изобретение относится к области бесконтактного взаимодействия пользователей с управляемыми устройствами. Техническим результатом является обеспечение детекции команд пользователя, отдаваемых с помощью взгляда, без необходимости точного определения пространственных координат взгляда и...
Тип: Изобретение
Номер охранного документа: 0002522848
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1a2

Нанокомпозиционный полимерный материал и способ его получения

Изобретение относится к композиционным полимерным материалам и способу их получения. Нанокомпозиционный полимерный материал получают путем совместной конденсации на подложке паров сульфидов металлов и дихлор-п-ксилилена, полученного пиролизом α,α'-дихлор-п-ксилола, в вакууме с образованием...
Тип: Изобретение
Номер охранного документа: 0002523548
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1ef

Способ управления разогревом энергетической установки

Изобретение относится к области управления энергетическими стационарными и транспортными установками электростанций и станций теплоснабжения с любым видом горючего, в том числе ядерного горючего, и может быть использовано в системах разогрева энергетических установок с принудительной и...
Тип: Изобретение
Номер охранного документа: 0002523625
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e4ef

Горизонтальный реактор с перемещаемым отражателем нейтронов и способ его эксплуатации

Изобретение относится к ядерной энергетике, в частности к энергетическим реакторам. Предложено техническое решение для создания и эксплуатации энергетических ядерных реакторов, в которых компенсация реактивности, теряемой в процессе выгорания топлива на одном участке активной зоны,...
Тип: Изобретение
Номер охранного документа: 0002524397
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e832

Способ получения катализатора полимеризации лактонов или поликонденсации альфа-оксикислот

Изобретение относится к области высокомолекулярной химии и, в частности, катализа синтеза биоразлагаемых полимеров способом полимеризации лактонов или поликонденсации оксикислот, а также синтеза полиуретанов. Предложен способ получения катализатора путем взаимодействия металлического олова с...
Тип: Изобретение
Номер охранного документа: 0002525235
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.eb48

Способ получения моторного топлива

Изобретение относится к химической, нефтехимической, газовой промышленности, в частности к технологиям производства синтетического жидкого топлива. Изобретение относится к способу получения моторного топлива путем его каталитического синтеза из продуктов пиролиза углеводородов, содержащих...
Тип: Изобретение
Номер охранного документа: 0002526040
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.eb9b

Аэростатический летательный аппарат

Изобретение относится к управляемым аэростатическим летательным аппаратам. Аэростатический летательный аппарат содержит подъемный баллонет, несущий баллонет и энергетическую установку, включающую нагреватель. Подъемный баллонет заполнен рабочим телом энергетической установки, расположенной в...
Тип: Изобретение
Номер охранного документа: 0002526123
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec0c

Способ формирования магнитной паттернированной структуры в немагнитной матрице

Изобретение относится к технологии создания сложных структур с помощью потока ускоренных частиц и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств. Изобретение обеспечивает уменьшение размеров магнитных...
Тип: Изобретение
Номер охранного документа: 0002526236
Дата охранного документа: 20.08.2014
Showing 21-21 of 21 items.
20.04.2023
№223.018.4d78

Способ получения радиоизотопов тербий-154 и тербий-155

Изобретение относится к технологии получения радионуклидов для ядерной медицины на ускорителях заряженных частиц. Способ получения радиоизотопов Тb и Тb включает облучение на ускорителе заряженных частиц мишени с изотопами гадолиния, которую изготавливают каскадной из двух последовательно...
Тип: Изобретение
Номер охранного документа: 0002793294
Дата охранного документа: 31.03.2023
+ добавить свой РИД