×
20.02.2019
219.016.c25f

Результат интеллектуальной деятельности: ТЕРМОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ СО ЩЕЛОЧНЫМ МЕТАЛЛОМ

Вид РИД

Изобретение

№ охранного документа
0002456698
Дата охранного документа
20.07.2012
Аннотация: Изобретение предназначено для повышения эффективности работы термоэлектрического преобразователя со щелочным металлом (АМТЕС), преобразующим тепловую энергию непосредственно в электрическую энергию. Изобретение может быть использовано как в наземных, так и в космических условиях как генератор, преобразующий различную тепловую энергию (солнечную, тепловых электростанций, ядерную и др.) с высоким КПД в электрическую энергию. Технический результат - повышение срока службы термоэлектрического преобразователя, стабильности его выходных электрических параметров за счет материалов и конструкции электродов и твердого электролита. Термоэлектрический преобразователь тепловой энергии в электрическую со щелочным металлом содержит в качестве твердого электролита ориентированный пиролитический графит интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям и служит одновременно одним из электродов, второй электрод выполнен ив металла с открытой пористостью и размещен вблизи от твердого электролита в холодной области, а рабочим телом служат щелочные металлы: цезий, рубидий и калий. 1 з.п.ф-лы, 2 ил.

Изобретение относится к области энергетики, точнее к системам, преобразующим тепловую энергию (солнечную, тепловых электростанций, ядерную и др.) непосредственно в электрическую энергию как в наземных, так и в космических условиях, и может быть использовано для повышения эффективности работы одного из видов этого типа устройств, а именно, термоэлектрических преобразователей энергии (ТЭП) со щелочными металлами (далее - Alkali metal thermal to Electric Conversion (AMTEC).

Известны основополагающие работы (1. Патент США №3458356, 1969, Thermo-Electric Generator, J.T.Kummer and N.Weber, 2. Thermoelectric Energy Conversion with Solid Electrolytes, Science, 1983, p.915, T.Cole), в которых описаны устройство и способ преобразования тепловой энергии непосредственно в электрическую.

Наиболее близким прототипом является термоэлектрический преобразователь со щелочным металлом (см. Патент США №3458356, 1969, Thermo-Electric Generator, J.T.Kummer and N.Weber)

ТЭП со щелочным металлом представляет собой замкнутый вакуумный объем со средствами подачи и отвода тепла и разделенный твердым электролитом на две герметичные части - зоны испарения и конденсации рабочего тела. Зоны испарения и конденсации рабочего тела соединены патрубком с электромагнитным насосом. Твердый электролит с обеих сторон покрыт тонкопленочными пористыми металлическими электродами, которые с помощью электрических выводов через стенку устройства подсоединены к нагрузке. Твердый электролит представляет собой β″Al2O3,

(далее, BASE. - beta" - alumina solid electrolyte).

Рабочее тело - натрий заполняет область высокого давления ТЭП, которую поддерживают при температуре T2 в интервале 800…1300 K с помощью внешнего источника тепла. При этих температурах давление насыщенных паров натрия находится в интервале 0,05…2,5 атм. (5,0·103…2,5·105 Пa). Область низкого давления в основном содержит пар натрия и малое количество жидкого натрия и находится при температуре T1 в интервале 400…800 K, при которой производится давление пара натрия в интервале от 10-9 до 10-2 атм. (10-4 до 103 Па).

Пар натрия из области с высоким давлением, диффундируя через пористые электроды и твердый электролит, попадает в область низкого давления, конденсируясь в жидкую фазу, которая затем с помощью электромагнитного наноса по патрубку возврата жидкого натрия возвращается в высокотемпературную область для рециркуляции через твердый электролит, тем самым замыкая циркуляционный контур и заканчивая рабочий цикл процесса.

Вначале цикла пар натрия при температуре T1 из зоны конденсации, попадая в высокотемпературную область, аккумулирует тепловую энергию до тех пор, пока не достигнет температуры Т2. Температура генерирует давление (химический потенциал) для силового движения ионов натрия сквозь твердый электролит по направлению к поверхности с низким давлением. В BASE натрий диффундирует только в виде как Na+ по реакции:

Эта реакция имеет место на интерфейсе жидкий натрий (пар) - BASE, когда натрий диффундирует через твердый электролит. Символ (Na+) BASE означает, что ион натрия является проводником в β″Al2O3.

При разомкнутом контуре ионы натрия благодаря термической кинетической энергии диффундируют по направлению к поверхности BASE, находящейся при низком давлении, принося туда положительный заряд. Достаточно сильное электрическое поле возникает на BASE и существует до тех пор, пока есть движение потока ионов натрия. Напряжение разомкнутой цепи дается уравнением Нернста для концентрационной ячейки:

Vэдc=RT2F-lln(P2/P4),

где R - газовая константа, F - число Фарадея, Р2 - давление пара натрия при температуре Т2 и Р4 - давление пара натрия на пористом электроде, примыкающем к низкой области давления пара натрия.

Когда плотность тока через BASE равна нулю, P4 будет зависеть от давления пара натрия поверхности конденсации P1 выражением:

P4(i=0)=P1(T2/T1)1/2

Когда внешняя цепь замкнута, электроны проходят через нагрузку и нейтрализуют ионы натрия на пористом электроде низкого давления (обратное направление реакции 1). Далее уже нейтральные атомы натрия, обладая теплотой испарения, покидают пористый электрод, движутся через паровое пространство и выделяют теплоту конденсации при температуре T1.

Напряжение, которое возникает вдоль твердого электролита, является силой, которая двигает электроны через нагрузку, при которой совершается электрическая работа.

Основным недостатком термоэлектрического генератора со щелочным металлом (АМТЕС) является низкая стабильность тонкопленочных металлических электродов, связанная с коррозией материала, из-за наличия в окружающей электроды атмосфере активных составляющих: кислорода, водорода, углеводородов и др.

Технический результат - повышение срока службы термоэлектрического преобразователя, стабильности его выходных электрических параметров.

Для этого предложен термоэлектрический преобразователь со щелочным металлом. Состоящий из средств подвода и отвода тепла, вакуумированного объема, разделенного твердым электролитом на две герметичные области, двух электродов с герметичными электрическими выводами на нагрузку, патрубка возврата жидкого конденсата щелочного металла из зоны конденсации в зону испарения с установленным на нем электромагнитным насосом, при этом в качестве твердого электролита используют ориентированный пиролитический графит интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям, являющийся одновременно одним из электродов, а второй электрод выполнен из металла с открытой пористостью, разделен с первым электродом межэлектродным промежутком и расположен со стороны зоны конденсации.

Кроме того, в качестве щелочного металла используют цезий или рубидий, или калий.

На фигурах 1 и 2 показан предлагаемый термоэлектрический преобразователь со щелочным металлом, который содержит следующие основные узлы:

1. Электрическая нагрузка, контур потребителя;

2. Высокотемпературная область (Температура 800…1300 K);

3. Металлокерамические электрические выводы электрод-нагрузка;

4. Изолятор из окиси алюминия;

5. Зона испарения щелочного металла;

6. Пар щелочного металла (цезий, рубидий, калий);

7. Твердый электролит (электрод) - ориентированный пиролитический графит, интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям;

8. Патрубок для возврата жидкого конденсата щелочного металла из зоны конденсации в зону испарения;

9. Металлический электрод с открытой пористостью;

10. Изолятор из окиси алюминия;

11. Электромагнитный насос;

12. Зона испарения натрия из капиллярной структуры;

13. Низкотемпературная область (Температура 400…800 K).

Предлагаемый термоэлектрический преобразователь со щелочным металлом в качестве рабочего тела содержит в качестве твердого электролита 5 ориентированный пиролитический графит, интеркалированный щелочным металлом, С-ось которого перпендикулярна графитовым слоям. Твердый электролит служит одновременно одним из электродов, второй электрод 8 выполнен из металла с открытой пористостью и размещен вблизи от твердого электролита в низкотемпературной области. Рабочим телом служат щелочные металлы: цезий или рубидий, или калий.

Электроды разделены межэлектродным промежутком и изолированы от корпуса диэлектриком из окиси алюминия 4 и 10. Электрические контакты от обоих электродов выведены через металлокерамические выводы 3 через корпус изделия и подключены к внешней нагрузке 1.

Термоэлектрический преобразователь со щелочным металлом работает следующим образом. Рассмотрим работу устройства с рабочим телом, в качестве которого использован цезий. Использование рубидия и калия обусловлено их аналогичными цезию физико-химическими свойствами. Щелочные металлы цезий, рубидий и калий обладают низким потенциалом ионизации (3,89 eV - Cs, 4,34 eV - Rb, 5,14 eV - K в то время, как работа выхода электронов для графита равна 5,5 eV). Это позволяет нейтральным атомам щелочных металлов в нагретом состоянии, взаимодействуя с графитом, отдавать валентный электрон зоне проводимости графита, ионизироваться и затем внедряться между слоями графита (См. Каландаришвили А.Г. Источники рабочего тела для термоэмиссионных преобразователей энергии. - 2-е издание, доп., - Ж: Энергоатомиздат, 1993 г. - 304 с., с.183, а затем под действием перепада давления перемещаться из горячей в холодную зону, из которой они затем испаряются в виде ионов цезия. Далее они, перемещаясь, достигают металлического электрода с открытой пористостью, выполненный, например, из молибдена, вольфрама и др., где нейтрализуются и в дальнейшем в виде нейтральных атомов цезия достигают и адсорбируются в зоне конденсации. Содержание цезия в твердом электролите зависит от температуры графита и величины давления пара цезия над поверхностью графита и может управляться требуемым образом.

Разделение электродов и использование твердого электролита из графита, интеркалированного щелочным металлом, позволяет повысить стабильность и срок службы термоэлектрического преобразователя со щелочным металлом. Технический эффект достигается за счет исключения тонкопленочных пористых металлических электродов, подверженных постоянной коррозии, что приводит к нестабильности выходных электрических параметров преобразователя.

Источник поступления информации: Роспатент

Showing 161-170 of 259 items.
10.08.2018
№218.016.7b05

Способ регистрации нейтронов и устройство для его осуществления

Группа изобретений относится к области регистрации нейтронов сцинтилляционным методом с использованием неорганического сцинтилляционного материала. Сущность изобретений заключается в том, что способ регистрации нейтронов содержит этапы, на которых регистрируют фотоны сцинтилляций, образующиеся...
Тип: Изобретение
Номер охранного документа: 0002663683
Дата охранного документа: 08.08.2018
19.08.2018
№218.016.7d1b

Способ получения биоразлагаемого композита на основе алифатических сложных полиэфиров и гидроксиапатита

Изобретение относится к медицинской химии, а именно к биоразлагаемым фосфатсодержащим полимерным материалам, использующимся в качестве аналогов костной ткани, и раскрывает способ получения биоразлагаемого композита. Способ характеризуется тем, что синтез композита, который включает в себя...
Тип: Изобретение
Номер охранного документа: 0002664432
Дата охранного документа: 17.08.2018
07.09.2018
№218.016.8477

Способ формирования синаптического мемристора на основе нанокомпозита металл-нестехиометрический оксид

Изобретение относится к области микро- и наноэлектроники, а именно к технологии изготовления синаптического мемристора на основе нанокомпозита металл-нестехиометрический оксид, который обладает адаптивными (нейроморфными) свойствами. Техническим результатом является создание мемристивных...
Тип: Изобретение
Номер охранного документа: 0002666165
Дата охранного документа: 06.09.2018
12.09.2018
№218.016.867e

Способ изготовления наноструктурированной мишени для производства молибден-99

Изобретение относится к технологии получения радионуклидов и может быть использовано для производства радионуклида молибден-99 высокой удельной активности (без носителя), являющегося основой для создания радионуклидных генераторов технеция-99, нашедших широкое применение в ядерной медицине для...
Тип: Изобретение
Номер охранного документа: 0002666552
Дата охранного документа: 11.09.2018
03.10.2018
№218.016.8cf6

Система управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа токамак

Изобретение относится к cистеме управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа Токамак. Система содержит автоматизированное рабочее место АРМ оператора 13, соединенное с комплексом СВЧ-нагрева плазмы 6, вакуумную камеру 1 с установленными в ней...
Тип: Изобретение
Номер охранного документа: 0002668231
Дата охранного документа: 27.09.2018
03.10.2018
№218.016.8d27

Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем

Изобретение относится к области атомной энергии и может быть использовано в реакторах на быстрых нейтронах с жидкометаллическим теплоносителем. Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем содержит вертикально установленные тепловыделяющие сборки активной зоны и...
Тип: Изобретение
Номер охранного документа: 0002668230
Дата охранного документа: 27.09.2018
08.11.2018
№218.016.9acc

Способ оценки риска хронических аутоиммунных воспалительных процессов

Изобретение относится к биофизике, биологии и медицине, а именно к диагностике обменных нарушений, интоксикации организма при различных заболеваниях, в том числе наследственных, генетических, экологических, аутоиммунных. Изобретение представляет собой способ оценки риска хронических...
Тип: Изобретение
Номер охранного документа: 0002671641
Дата охранного документа: 06.11.2018
30.11.2018
№218.016.a220

Способ пуска ядерного реактора космического назначения

Изобретение относится к атомной энергетике и может быть использовано при эксплуатации ядерных реакторов космических установок. Способ пуска ядерного реактора космического назначения содержит этапы, на которых определяют зависимость эффективного коэффициента размножения от температуры при...
Тип: Изобретение
Номер охранного документа: 0002673564
Дата охранного документа: 28.11.2018
05.12.2018
№218.016.a3b7

Способ получения комплексного соединения состава 2xefxmnf

Изобретение относится к способу получения комплексного соединения гексафторида ксенона с тетрафторидом марганца состава 2XeF×MnF и может применяться для синтеза кислородных соединений ксенона как основа средств для дезинфекции, стерилизации и детоксикации в области санитарии и медицины. Способ...
Тип: Изобретение
Номер охранного документа: 0002673844
Дата охранного документа: 30.11.2018
06.12.2018
№218.016.a40f

Способ перевода сверхпроводника в элементах логики наноразмерных электронных устройств из сверхпроводящего состояния в нормальное

Использование: для создания функциональных переключаемых электронных устройств различного назначения. Сущность изобретения заключается в том, что способ перевода сверхпроводника в электронных функциональных наноразмерных устройствах из сверхпроводящего состояния в нормальное осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002674063
Дата охранного документа: 04.12.2018
Showing 1-8 of 8 items.
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.04.2013
№216.012.37fd

Термотуннельный преобразователь

Изобретение относится к области энергетики и может быть использовано для прямого преобразования тепловой энергии в электрическую в различных автономных устройствах, где требуется невысокая электрическая мощность с длительным сроком службы. Технический эффект - повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002479886
Дата охранного документа: 20.04.2013
20.02.2019
№219.016.c25b

Блок термоэлектрических преобразователей со щелочным металлом

Изобретение предназначено для повышения эффективности работы термоэлектрического преобразователя со щелочным металлом (АМТЕС), преобразующим тепловую энергию непосредственно в электрическую энергию. Изобретение может быть использовано как в наземных, так и в космических условиях, как генератор,...
Тип: Изобретение
Номер охранного документа: 0002456699
Дата охранного документа: 20.07.2012
20.02.2019
№219.016.c3a3

Термоэмиссионный преобразователь

Изобретение относится к термоэмиссионным преобразователям тепловой энергии в электрическую, они широко применяются в ядерных энергетических установках. Термоэмиссионный преобразователь содержит два изолированных электрода, находящихся в вакуумном объеме. Резервуар с рабочим телом - цезий...
Тип: Изобретение
Номер охранного документа: 0002449410
Дата охранного документа: 27.04.2012
29.03.2019
№219.016.f7f4

Способ получения в графите графеновых ячеек с разнородными интеркалированными добавками

Изобретение может быть использовано в эмиттерах с регулируемой работой выхода электронов, плазменных диодах, термоэмиссионных преобразователях энергии, термотуннельных преобразователях тепловой энергии в электрическую. Ориентированный пиролитический графит помещают в вакуумный объем между двумя...
Тип: Изобретение
Номер охранного документа: 0002466087
Дата охранного документа: 10.11.2012
29.03.2019
№219.016.f7ff

Устройство для подачи пара цезия в термоэммисионный преобразователь

Изобретение касается термоэмиссионного преобразования тепловой энергии в электрическую и относится к устройствам подачи пара цезия в межэлектродный зазор термоэмиссионного преобразователя (ТЭП). Технический результат - повышенная емкость по цезию достигается за счет того, что предложено...
Тип: Изобретение
Номер охранного документа: 0002464668
Дата охранного документа: 20.10.2012
09.05.2019
№219.017.4d9d

Способ количественного определения атомов щелочного металла

Использование: для количественного определения атомов щелочного металла. Сущность: заключается в том, что вакуумную камеру с помещенным в нее образцом пиролитического графита обезгаживают, затем подают в нее пары атомов щелочного металла и выдерживают образец при повышенной температуре, при...
Тип: Изобретение
Номер охранного документа: 0002335762
Дата охранного документа: 10.10.2008
+ добавить свой РИД