×
20.04.2013
216.012.37fd

Результат интеллектуальной деятельности: ТЕРМОТУННЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ

Вид РИД

Изобретение

№ охранного документа
0002479886
Дата охранного документа
20.04.2013
Аннотация: Изобретение относится к области энергетики и может быть использовано для прямого преобразования тепловой энергии в электрическую в различных автономных устройствах, где требуется невысокая электрическая мощность с длительным сроком службы. Технический эффект - повышение эффективности термотуннельного преобразователя, а именно, электропроводности вдоль оси - С графита за счет повышения добротности материала. Термотуннельный преобразователь тепловой энергии в электрическую содержит в вакуумном объеме два металлических электрода, между которыми помещен ориентированный пиролитический графит в виде шайбы с центральной полостью, соединенной с источником пара цезия, С-ось графита направлена перпендикулярно к углеродным слоям графита с интеркалированными между слоями графита атомами цезия и бария, нагреватель, соединенный с электродами через изолятор и сильфонный узел, и контур с нагрузкой. Все слои графита интеркалированы атомами бария до состава СВа, а источник пара цезия соединен с вакуумным объемом и центральной полостью в графите с помощью патрубка V-образной формы, оба колена которого снабжены электрическими нагревателями. 4 з.п. ф-лы, 1 ил.

Предлагаемое изобретение относится к области энергетики, в частности к устройствам для прямого преобразования тепловой энергии в электрическую, и может быть использовано в тех условиях, когда требуются невысокие удельные мощности с длительным сроком службы.

Известна работа (см. Huffman Fred, TERMOTUNNEL CONVERTER, Patent USA, №3,169,200, 1965).

В этом патенте был сформулирован принцип работы термотуннельного преобразователя, который не имеет движущихся частей и обладает характеристиками, отличающимися как от термоэмиссионных, так и от термоэлектрических преобразователей. Термотуннельный преобразователь относится к системам, преобразующим тепловую энергию непосредственно в электрическую.

Элементарная ячейка термотуннельного преобразователя представляет собой диод, состоящий из двух металлических электродов, разделенных тонким слоем изолятора (оксидом металла) толщиной несколько десятков ангстрем или вакуумным промежутком.

При подаче на электроды диода внешнего небольшого перепада электрического потенциала на поверхности одного из электродов в связи с ультрамалым зазором, например, 4·10-7 см (40 ангстрем) возникает электрическое поле высокой напряженности (106 В/см и выше). Под действием поля высокой напряженности происходит испускание электронов проводящими твердыми или жидкими телами, так называемая автоэлектронная эмиссия, механизмом которого является туннельное прохождение электронов сквозь потенциальный барьер на границе проводник-непроводящая среда.

При автоэлектронной эмиссии отсутствует энергетические затраты на возбуждение электронов, свойственные другим видам эмиссии. Электроны преодолевают потенциальный барьер на границе эмиттера, не проходя над ним за счет кинетической энергии теплового движения, как при термоэлектронной эмиссии, а путем туннельного просачивания сквозь барьер, сниженный и суженный электрическим полем. Электронная волна (волны де Бройля), встречая на пути потенциальный барьер, частично отражается и частично проходит сквозь него. По мере увеличения внешнего ускоряющего поля понижается высота потенциального барьера над уровнем Ферми и одновременно уменьшается ширина барьера. В результате увеличивается число электронов, просачивающихся в единицу времени сквозь барьер, соответственно увеличивается т.н. прозрачность барьера (отношение числа электронов, прошедших сквозь барьер, к полному числу электронов, падающих на барьер) и соответственно плотность тока автоэлектронной эмиссии.

Характерные свойства автоэлектронной эмиссии - высокие плотности тока j (до 1010 А/см2) и экспоненциальная зависимость j от напряженности электрического поля и величины работы выхода. Автоэлектронная эмиссия слабо зависит от температуры, с ростом температуры Т эмиссия пропорциональна Т2. С дальнейшим ростом Т, понижением Е - напряженности электрического поля у поверхности эмиттера т.н. термоавтоэлектронная эмиссия переходит в термоэлектронную эмиссию, усиленную полем за счет Шоттки эффекта.

Автоэлектронная эмиссия из металлов в вакуум j следует т.н. закону Фаулера -Нордхейма:

J=C1E2exp(-C2/E),

где C1 и С2 - коэффициенты, зависящие от величины потенцила работы выхода электронов.

Эффективность термотуннельного прибора может быть оценена по добротности используемого материала по аналогии для оценки качества материалов термоэлектрических приборов по формуле Иоффе А.Ф.:

ZT=Тβ2/PTK,

где ZT - добротность диода - безразмерная величина, Т - абсолютная температура, β - термотуннельная эдс, V/K, К теплопроводность, W/m·K, PT - удельное электросопротивление, 'Ω·m.

Недостатком такого термотуннельного преобразователя является сложная технология изготовления, требующая использования одновременно несколько прецизионных технологий.

Известны несколько аналогичных патентов США:

Tavkhelidze A. et.al. Patent US No: 7,323,709 B2, 2008. Method for Increasing Efficiency Thermotunnel Devices.

Martinovsky A. et.al. Patent US No: 6,876,123 B2, 2005. Thermotunnel Converter with Spacers Between the Electrodes.

Tavkhelidze A. et.al. Patent US No: 6,495,843 В1, 2002. Method for Increasing Emission Through a Potential Barier.

В этих патентах оптимизируется межэлектродная среда, заключенная между двумя электродами, что было необходимо для повышения добротности материала и соответственно КПД термотуннельного преобразователя.

Недостатком таких термотуннельных преобразователей также является сложная технология изготовления, требующая использования одновременно несколько прецизионных технологий.

Известны работы (см. Каландаришвили А.Г. Источники рабочего тела для термоэмиссионных преобразователей энергии. - 2-е издание, доп., - М.: Энергоатомиздат, 1993 г. - стр.243;

(см. Huffman Fred, Hag Z. Preliminary investigations of a Thermotunnel Convertor, 23rd, IECEC, 1988, p.573-579).

В работе (см. Huffman Fred, Hag Z. Preliminary investigations of a Thermotunnel Convertor, 23rd, IECEC, 1988, p.573-579) был сформулирован принцип работы термотуннельного преобразователя на основе цезированного графита. Конструктивно термотуннельный преобразователь выполнен следующим образом.

Между электродами - горячим эмиттером и холодным коллектором - размещен ориентированный графит, интеркалированный донорной добавкой-цезием. Целью создания такого термотуннельного преобразователя является повышение КПД и удельной мощности по сравнению с этими характеристиками существующих термоэмиссионных и термоэлектрических преобразователей. Технический подход заключается в использовании интеркалированных соединений системы цезий-графит с такой комбинацией электрических и тепловых свойств, которая обеспечивает оптимальные характеристики преобразователя.

По сравнению с термоэлектрическим преобразователем термотуннельный преобразователь должен показать значительное увеличение электрической проводимости к теплопроводности, что позволяет повысить добротность материала. С позиций конструирования термоэмиссионного преобразователя термотуннельный диод должен исключить потери в межэлектродной плазме и обеспечить уменьшение потерь тепла на излучение. Эти преимущества могут быть реализованы благодаря механизму переноса электронов в результате квантохимического туннелирования в слоистых соединениях графита, который отличается от механизма переноса в термоэмиссионном преобразователе (термоэлектронная эмиссия) или в термоэлектрическом преобразователе (электропроводности), при минимизации теплопереноса в результате значительного уменьшения решеточной проводимости с помощью интеркалированных атомов.

Термотуннельный преобразователь на основе ориентированного графита можно представить как множество элементарных диодов с расстоянием между эмиттером и коллектором около 10 Å, находящихся в электрическом и тепловом контакте. Перенос электронов поддерживается посредством квантомеханического туннелирования без падения напряжения в дуге. Щелочные металлы, особенно цезий и барий, наиболее привлекательны для термотуннельного преобразователя вследствие того, что, во-первых, они могут сильно уменьшить работу выхода, т.е. высоту потенциального барьера между плоскостями графита, и, во-вторых, они образуют широкий диапазон интеркалированных соединений с графитом, причем обнаруживают упорядочение, что упрощает управление их свойствами.

В работе (Huffman Fred, Hag Z. Preliminary investigations of a Thermotunnel Convertor, 23rd, IECEC, 1988, p.573-579) были проведены экспериментальные исследования термотуннельного преобразователя с системой графит-цезий. Измеренная добротность термотуннельного преобразователя во время этих испытаний примерно в 200 раз оказалась меньше значений, полученных экстраполяцией результатов, рассчитанных по аналитической модели.

Недостатком этого термотуннельного преобразователя было существенное уменьшение эффективности за счет падения значения добротности материала, в основном связанное с увеличением электрического сопротивления вдоль оси-С графита, обусловленное появлением «паразитных» нежелательных слоев графита с обедненной добавкой атомов цезия, что было связано с десорбцией атомов цезия из горячей области эмиттера при температурах выше 900 К.

За прототип выбран термотуннельный преобразователь тепловой энергии в электрическую (А.Г.Каландаришвили, В.Г.Кашия, А.Б.Бурков, С.А.Аведян. Термотуннельный преобразователь на основе барированного графита. Доклады: Ядерная энергетика в космосе, физика термоэмиссионных преобразователей энергии, вторая отраслевая конференция, Сухуми, 1991 г., с.190-194), содержащий в вакуумном объеме два металлических электрода - эмиттера и коллектор, между которыми помещен ориентированный пиролитический графит в виде шайбы с центральной полостью, соединенной с источником пара цезия, С-ось графита направлена перпендикулярно к углеродным слоям графита с интеркалированными между слоями графита атомами цезия и бария до соединения С36Ва. Электроды были выполнены из молибдена. Один из них - эмиттер - нагревался с помощью плоского нагревателя. Электроды изолированы с помощью металлокерамических переходников, а контакт осуществлялся с помощью сильфонных узлов, которые также позволяют компенсировать расширение графита при нагревании. В этом решении существенно уменьшается процесс деградации добротности ориентированного интеркалированного пиролитического графита термотуннельного преобразователя за счет интеркаляции в ориентированный графит атомов бария до соединения С36Ва. Благодаря тому, что энергия связи бария с графитом существенно выше, чем цезия с графитом, то с повышением температуры атомы бария сохраняются между всеми слоями графита, что позволяет исключить появление «паразитных» нежелательных слоев графита с обедненной добавкой интеркалированных атомов.

Недостатком такого термотуннельного преобразователя является то, что только 1/3 часть графита (каждый третий графитовый слой) был заполнен атомами графита, что значительно снижало выходные электрические параметры преобразователя в результате повышенного электросопротивления перпендикулярно слоям графита.

Техническим результатом, на которое направлено изобретение, является повышение его электропроводности вдоль оси - С графита и поддержание стабильным содержание атомов цезия между слоями графита.

Для достижения указанного результата предложен термотуннельный преобразователь тепловой энергии в электрическую, содержащий в вакуумном объеме два металлических электрода, между которыми помещен ориентированный пиролитический графит в виде шайбы с центральной полостью, соединенной с источником пара цезия, С-ось графита направлена перпендикулярно к углеродным слоям графита с интеркалированными между слоями графита атомами цезия и бария до соединения С6Ва, нагреватель, соединенный с электродами через изолятор и сильфонный узел, и контур с нагрузкой, при этом источник пара цезия, выполненный в виде резервуара с жидким цезием, соединен с вакуумным объемом и центральной полостью в графите с помощью патрубка V-образной формы, оба колена которого снабжены электрическими нагревателями.

Кроме того, ориентированный пиролитический графит интеркалирован атомами бария и цезия до двойного слоистого соединения С6ВаС8Сs. Также на патрубке может быть установлен электромагнитный насос. Кроме того патрубок может быть выполнен в виде капиллярной структуры. Кроме того, одно из колен патрубка может быть выполнено с расширением. В данном устройстве наличие патрубка V-образной формы, заполненного жидким цезием, создает перепад давления пара цезия между внутренним и основным объемом и тем самым в динамике поддерживает стабильным содержание атомов цезия между слоями графита, что позволяет поддерживать стабильность выходных параметров термотуннельного преобразователя. Кроме того, это позволяет интеркалировать к атомам бария дополнительно атомы цезия, что повышает электропроводность графита вдоль оси - С.

На фигуре показан термотуннельный преобразователь, содержащий следующие основные узлы:

1. Основной рабочий объем термотуннельного преобразователя;

2. Сильфон для компенсации расширения графита вдоль оси - С;

3. Эмиттер термотуннельного преобразователя из молибдена;

4. Графитовые слои интеркалированные атомами бария;

5. Внутренний рабочий объем термотуннельного преобразователя;

6. Металлокерамический переходник;

7. Электрический нагреватель;

8. Коллектор термотуннельного преобразователя из молибдена;

9. Электрическая цепь с нагрузкой;

10. V-образный патрубок, заполненный жидким конденсатом цезия;

11. Электрический нагреватель;

12. Электрический нагреватель;

13. Электромагнитный насос.

Предлагаемый термотуннельный преобразователь работает следующим образом: первоначально устанавливаются и поддерживаются за счет внешнего источника тепла - электрического нагревателя 7 - требуемые рабочие температуры электродов -эмиттера 3 (900…1500 К), коллектора 8 (600…700 К) и расположенного между ними барированного графита 4, а также основного 1 и внутреннего объема 5 термотунельного преобразователя. С помощью электрических нагревателей 11 и 12 устанавливается температура левого и правого колена V-образного патрубка, заполненного жидким конденсатом цезия 10. Наличие V-образного патрубка, заполненного жидким конденсатом цезия 10 позволяет интеркалировать в барированный графит дополнительно атомы цезия до двойного слоистого соединения состава С6ВаС8С, а создаваемый перепад патрубком 10 давления пара цезия между внутренним 5 и основным объемом 1 за счет разницы температур левого и правого колена V-образного патрубка позволяет поддерживать в динамике содержание атомов цезия, интеркалированных в графит. Указанный состав контролируется как за счет расширения вдоль оси С-графита, так и по изменению электропроводности вдоль оси - С графита соответствующей стандартной аппаратурой, например, двухконтактным методом.

Подача жидкого цезия из левого колена основного объема в правое колено внутреннего объема патрубка может осуществляться с помощью электромагнитного насоса 13 или капиллярных структур. Колено V-образного патрубка, соединенного с внутренним объемом преобразователя, может быть выполнено с расширением с целью более полного заполнения жидким цезием внутреннего объема. Электроды преобразователя изолированы друг от друга с помощью металлокерамического переходника 6, а сильфон 2 служит для компенсации расширения графита вдоль оси - С. Электромагнитный насос 13 используется для транспорта жидкого столба цезия с V-образного патрубка во внутренний объем преобразователя.

Таким образом, наличие между графитовыми слоями одновременно атомов бария и цезия позволяет повысить эффективность термотуннельного преобразователя в результате повышения стабильности и электропроводности графита, интеркалированного атомами бария и цезия, что важно при работе устройств в условиях, когда требуются невысокие удельные мощности с длительным сроком службы.


ТЕРМОТУННЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ
Источник поступления информации: Роспатент

Showing 1-10 of 259 items.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304b

Ядерная паропроизводительная установка

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом. Ядерная паропроизводительная установка включает высокотемпературный реактор, снабженный парогенератором и промперегревателем. Для обеспечения паром необходимых...
Тип: Изобретение
Номер охранного документа: 0002477898
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304f

Способ формирования проводников в наноструктурах

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии. Сущность изобретения: способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы...
Тип: Изобретение
Номер охранного документа: 0002477902
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.32e2

Способ извлечения гелия из природного газа

Изобретение относится к химической, нефтехимической, газовой промышленности и может быть использовано при извлечении или концентрировании гелия из природного газа. Способ извлечения гелия из природного газа включает получение гелиевого концентрата с последующей его низкотемпературной или...
Тип: Изобретение
Номер охранного документа: 0002478569
Дата охранного документа: 10.04.2013
Showing 1-10 of 156 items.
10.01.2013
№216.012.1845

Способ осаждения мономолекулярных пленок фторфуллерена cf на подложку, устройство ввода подложки в вакуум и устройство для испарения фторфуллерена cf

Изобретение может быть использовано в нелинейной оптике и пироэлектрических устройствах. Перед осаждением пленки подготавливают подложку, отделяя от высокоориентированного пирографита тонкий слой с помощью двусторонней липкой ленты. Порошок CF загружают в испарительную ячейку, помещают в...
Тип: Изобретение
Номер охранного документа: 0002471705
Дата охранного документа: 10.01.2013
20.02.2013
№216.012.2632

Способ получения нанопорошков из различных электропроводящих материалов

Изобретение может быть использовано в химической, радиоэлектронной отраслях промышленности и энергетике. Из выбранного материала изготавливаются электропроводящие электроды. На электроды подают высоковольтное импульсное напряжение для генерации сильноточного разряда, происходит нагрев и...
Тип: Изобретение
Номер охранного документа: 0002475298
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.283c

Способ постоянного поэлементного дублирования в дискретных электронных системах (варианты)

Изобретения относятся к области вычислительной техники и электроники и более точно к способам поэлементного дублирования в дискретных электронных системах, в том числе в наноэлектронных системах, подвергающихся воздействию радиации и в первую очередь потока высокоэнергетических частиц....
Тип: Изобретение
Номер охранного документа: 0002475820
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.286d

Ядерный реактор с водой под давлением с активной зоной на основе микротвэлов и способ осуществления его работы

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя. Для этого предложен ядерный реактор с водой под давлением с активной зоной на основе...
Тип: Изобретение
Номер охранного документа: 0002475869
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.289d

Система автоматической компенсации реактивной мощности и отклонения напряжения с широтно-импульсной модуляцией на высокой стороне трансформаторной подстанции

Использование: в области электротехники. Технический результат заключается в повышении качества напряжения и улучшении энергетических и массогабаритных показателей подстанций. Устройство содержит вольтодобавочный трансформатор, который включен на высокой стороне подстанции и управляется от...
Тип: Изобретение
Номер охранного документа: 0002475917
Дата охранного документа: 20.02.2013
10.03.2013
№216.012.2eec

Многоэлементный термоэмиссионный электрогенерирующий канал

Изобретение относится к энергетике и может быть использовано при создании энергетических установок прямого преобразования тепловой энергии в электрическую. Технический результат - повышение эффективности многоэлементных термоэмиссионных электрогенерирующих каналов. Для этого эмиттеры...
Тип: Изобретение
Номер охранного документа: 0002477543
Дата охранного документа: 10.03.2013
20.03.2013
№216.012.2f8a

Способ получения в графите графеновых ячеек с добавкой радиоактивных изотопов

Изобретение относится к области неорганического материаловедения, к способам получения материалов - бета-излучателей на основе ориентированного пиролитического графита. Процесс интеркаляции добавки трития в ориентированный графит с сечением захвата тепловых нейтронов около (4,5-6,0)10 барн...
Тип: Изобретение
Номер охранного документа: 0002477705
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304b

Ядерная паропроизводительная установка

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом. Ядерная паропроизводительная установка включает высокотемпературный реактор, снабженный парогенератором и промперегревателем. Для обеспечения паром необходимых...
Тип: Изобретение
Номер охранного документа: 0002477898
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.304f

Способ формирования проводников в наноструктурах

Изобретение относится к технологии создания сложных проводящих структур и может быть использовано в нанотехнологии. Сущность изобретения: способ формирования проводников в наноструктурах включает нанесение на подложку исходного диэлектрического вещества, в молекулы которого входят атомы...
Тип: Изобретение
Номер охранного документа: 0002477902
Дата охранного документа: 20.03.2013
10.04.2013
№216.012.32e2

Способ извлечения гелия из природного газа

Изобретение относится к химической, нефтехимической, газовой промышленности и может быть использовано при извлечении или концентрировании гелия из природного газа. Способ извлечения гелия из природного газа включает получение гелиевого концентрата с последующей его низкотемпературной или...
Тип: Изобретение
Номер охранного документа: 0002478569
Дата охранного документа: 10.04.2013
+ добавить свой РИД