×
20.02.2019
219.016.bf93

Результат интеллектуальной деятельности: КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ТЕТРААЦЕТИЛДИФОРМИЛГЕКСААЗАИЗОВЮРЦИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области разработки высокоэффективного метода синтеза гексанитрогексаазоизовюрцитана (ГАВ), в частности разработки метода проведения реакции гидродебензилирования-ацилирования с использованием биметаллического палладийсодержащего катализатора. Описан катализатор получения тетраацетилдиформилгексаазаизовюрцитана по реакции гидродебензилирования-ацилирования гексабензилгексаазаизовюрцитана на основе палладия, одного или двух металлов VIIIb и углеродного носителя, содержащие не ниже 6 мас.% палладия и не ниже 1.5 мас.% металла VIIIb группы. Описан способ приготовления катализаторов и способ получения тетраацетилдиформилгексаазаизовюрцитана. Технический результат - повышение устойчивости катализаторов к процессам их дезактивации. 3 н. и 3 з.п. ф-лы, 1 табл.

Изобретение относится к области разработки высокоэффективных методов синтеза полициклического нитрамина 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазоизовюрцитана (гексанитрогексаазоизовюрцитан, ГАВ). На настоящий момент ГАВ, также известный, как CL-20, считается наиболее мощным стабильным взрывчатым веществом. Испытание взрывчатых составов на основе этого нитрамина показало, что их мощность в среднем на 14% процентов превышает мощность аналогичных составов с октогеном [Наир У.Р., Сиваблан Р., Гор Г.М., Гиза М., Астина Ш.Н., Сингх X. Физика горения и взрыва. 2005, №3, с.3-17]. Однако применение ГАВ сдерживается из-за высокой стоимости синтеза нитрамина [С.В.Сысолятин, А.А.Лобанова, Ю.Т.Черникова, Г.В.Сакович. Успехи химии, 2005, №7, с.815-821].

Традиционно синтез ГАВ осуществляется с помощью трехстадийной методики (см. схему), включающей в себя стадию сборки полициклического каркаса 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазаизовюрцитана (гексабензилгексаазаизовюрцитан, ГБ), замену бензильных групп при атомах азота на ацетильные и формильные группы (синтез предшественника ГАВ - 2,6,8,12-тетраацетил-4,10-диформил-2,4,6,8,10,12-гексаазаизовюрцитана (тетраацетилдиформилгексаазаизовюрцитан, ТАДФ)) и последующее нитрование полученного предшественника, приводящее к образованию целевого продукта [US 5739325, B01J23/44, С06 В25/34, С07 В61/00, 14.04.1998].

Каталитическая реакция замещения бензильных групп при атомах азота на ацетильные и формильные группы (реакция гидродебензилирования-ацилирования ГБ) является ценоопределяющей для всего метода синтеза CL-20. В то же время стадии синтеза полициклического каркаса ГБ и нитрования ТАДФ (см. схему) изучены достаточно хорошо, и их применение не представляет затруднений.

Недостатком известного способа проведения реакции гидродебензилирования-ацилирования является низкая устойчивость катализатора реакции к процессам дезактивации. В ходе проведения реакции гидродебензилирования-ацилирования ГБ происходит быстрая и необратимая дезактивация дорогостоящего палладиевого катализатора [US 5739325, B01J 23/44, С06 В25/34, С07В 61/00, 14.04.1998].

Одним из возможных способов снижения стоимости полициклического нитрамина ГАВ является разработка катализатора реакции гидродебензилирования-ацилирования, более устойчивого к процессам дезактивации, чем известные катализаторы.

В предшествующих работах авторов было обнаружено, что основными причинами дезактивации палладиевых катализаторов реакции гидродебензилирования-ацилирования является агломерация частиц палладия на поверхности углеродного носителя. Было показано, что стоимость регенерации палладиевого катализатора в этом случае достаточно велика, и поэтому экономически более выгодно сжигать отработанный палладиевый катализатор с целью выделения благородного металла (метод деструктивной регенерации палладиевого катализатора) [Коскин А.П., Симакова И.Л. Сборник докладов I Всероссийской научно-технической конференции молодых ученых «Перспективы создания и применения конденсированных энергетических материалов», 27-29 сентября 2006 года, г.Бийск, с.42-52].

Изобретение решает задачу повышения стабильности катализатора гидродебензилирования-ацилирования, используемого в процессе синтеза предшественника ГАВ-ТАДФ.

Технический результат - повышение производительности синтеза ТАДФ в реакции гидродебензилирования-ацилирования.

Задача решается составом катализатора получения 2,6,8,12-тетраацетил-4,10-диформил-2,4,6,8,10,12-гексаазаизовюрцитана (далее ТАДФ) по реакции гидродебензилирования-ацилирования 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазаизовюрцитана (далее ГБ) на основе палладия, углеродного носителя и стабилизирующих добавок.

Катализатор содержит палладий в количестве не ниже 6.0 мас.%.

В качестве металла-стабилизатора можно использовать иридий, платину, либо смесь этих металлов. Предпочтительным является использование иридия с содержанием 3 мас.%.

В качестве подложки для благородных металлов можно использовать мезопористый углеродный носитель.

Задача также решается способом приготовления катализатора гидродебензилирования-ацилирования, по которому на стадии осаждения предшественников металлических активных компонентов используют водный раствор, содержащий смесь ионов металлов. В качестве источника ионов палладия и металла-стабилизатора можно использовать любые водно-растворимые соли или комплексы соответствующих металлов, например водные растворы комплексных кислот H2[PdCl4], Н2[IrCl6] и Н2[PtCl6]. Оптимальным оказалось использование палладий-иридиевого биметаллического катализатора с содержанием 6 мас.% палладия и 3 мас.% иридия.

Задача решается также способом проведения реакции гидродебензилирования-ацилирования при температуре 20-30°С и давлении водорода 4-5 бар в присутствии биметаллического палладийсодержащего катализатора, где в качестве катализатора используют катализатор, описанный выше. Повышение температуры выше 30°С или давления водорода выше 5 бар приводит к существенному снижению выхода целевого продукта (ТАДФ).

Сущность изобретения иллюстрируется следующими примерами.

Пример 1 (сравнительный по прототипу).

Катализатор для процесса гидродебензилирования-ацилирования, состоящий из палладия, нанесенного на углеродный носитель Сибунит (удельная поверхность по БЭТ - 320 м2/г), в количестве 6 мас.%, готовят методом осаждения соли палладия на углеродном носителе с последующим восстановлением ионов палладия до металла. Для этого в стеклянном реакторе (100 мл) готовят суспензию углеродного носителя Сибунит (10 г) в дистиллированной воде (25 мл) и при интенсивном перемешивании добавляют 1М водный раствор H2[PdCl4] (5.92 мл). Полученную смесь выдерживают при перемешивании в течение 1 ч, затем по каплям добавляют 1М водный раствор Na2CO3 до значения pH раствора = 8-9 и проводят восстановление формиатом натрия при температуре 90-100°С. После этого полученный катализатор отделяют от жидкой фазы на фильтре, тщательно промывают дистиллированной водой для удаления ионов хлора и сушат в токе воздуха.

Процесс гидродебензилирования-ацилирования ГБ в присутствии описанного выше катализатора проводят в термостатированном автоклаве из нержавеющей стали (объем 150 мл), снабженном электромагнитной мешалкой, системой подачи газообразного водорода и насосом для подачи жидких реагентов. В автоклав загружают 3.4 г ГБ и 0.34 г катализатора и продувают водородом, после чего подают 10% раствор бромбензола в ДМФА (0.6 мл) и уксусный ангидрид (5.1 мл), устанавливают температуру 25°С, давление водорода 4 бар и включают перемешивание. После 10 ч процесс прерывают, смесь промежуточного продукта и катализатора отделяют в атмосфере азота от реакционной смеси, промывают на фильтре этиловым спиртом и сушат до постоянного веса. Затем эту смесь переносят обратно в автоклав, добавляют муравьиную кислоту из расчета 5 мл НСООН на 1 г смеси. После этого подготавливают автоклав и продолжают процесс гидродебензилирования-ацилирования в тех же реакционных условиях (температура 25°С, давление водорода 4 бар). Через 6 ч катализатор отделяют от реакционной смеси фильтрованием и собирают остатки продуктов реакции, промывая Pd/C муравьиной кислотой. Полученный фильтрат концентрируют на ротационном вакуумном испарителе. Выход целевого продукта (ТАДФ) составляет 69%.

Активность отработанного палладиевого катализатора реакции тестируют, проводя на нем рецикл реакции гидродебензилирования-ацилирования. Для этого катализатор предварительно очищают от компонентов реакционной смеси, последовательно промывая его муравьиной кислотой, 1% водным раствором Na2CO3 и дистиллированной водой и сушат в вакууме. Выход ТАДФ при проведении рецикла реакции гидродебензилирования-ацилирования, проведенного по стандартной методике реакции, описанной выше, составляет 0%.

Пример 2 (сравнительный по прототипу).

Испытание каталитической активности проводят аналогично примеру 1, с тем отличием, что вместо приготовленного катализатора 6 мас.% Pd/Сибунит используют коммерчески доступный катализатор Pd/C (E101 NE/W, Degussa, 10 мас.% Pd). Выход ТАДФ на свежем катализаторе составляет 75%, а при проведении рецикла реакции гидродебензилирования-ацилирования ГБ - 0%

Пример 3.

Аналогичен примеру 1, с тем отличием, что вместо приготовленного катализатора, содержащего 6 мас.% Pd/Сибунит в реакции гидродебензилирования-ацилирования ГБ используют катализатор, содержащий 6 мас.% палладия и 3 мас.% иридия, приготовленный методом осаждения из смеси водных растворов комплексных кислот H2[PdCl4] и Н2[IrCl6] (5.92 мл и 1.64 мл соответственно).

Выход ТАДФ на свежем биметаллическом палладий-иридиевом катализаторе составляет 76%, при проведении первого рецикла реакции гидродебензилирования-ацилирования ГБ - 70%, второго - 59%.

Пример 4.

Аналогичен примеру 1, с тем отличием, что для ускорения реакции гидродебензилирования-ацилирования используют палладий-платиновый катализатор с содержанием палладия 6 мас.% и платины 3 мас.%. Катализатор готовят аналогично примеру 3, с тем отличием, что для нанесения металла стабилизатора вместо 1М водного раствора Н2[IrCl6] используют 1М водный раствор Н2[PtCl6].

Выход ТАДФ на свежем катализаторе составляет 72%, при проведении первого рецикла реакции гидродебензилирования-ацилирования ГБ - 73%, второго - 0%.

Пример 5.

Аналогичен примеру 1, с тем отличием, что для ускорения реакции гидродебензилирования-ацилирования используют триметаллический палладий-платино-иридиевый катализатор с содержанием палладия 6 мас.%, платины 1.5 мас.% и иридия 1.5 мас.%. Катализатор приготовлен аналогично примеру 3, с тем отличием, что для нанесения металла стабилизатора вместо смеси 1М водных растворов H2[PdCl4] и Н2[IrCl6] используют смесь 1М водных растворов H2[PdCl4], Н2[IrCl6] и H2[PtCl6] в соотношении (2:1:1 по массе металлов).

Выход ТАДФ на свежем триметаллическом катализаторе составляет 60%, при проведении первого рецикла реакции гидродебензилирования-ацилирования ГБ - 51%, второго - 22%.

Пример 6.

Аналогичен примеру 3, с тем отличием, что вместо биметаллического палладий-иридиевого катализатора с содержанием палладия 6 мас.% и иридия 3 мас.% используют катализатор 4%Pd-3%Ir/C.

Выход ТАДФ составляет 0%.

Пример 7.

Аналогичен примеру 3, с тем отличием, что для ускорения реакции гидродебензилирования-ацилирования используют катализатор 6%Pd-l%Ir/C.

Выход ТАДФ составляет 73%, а при проведении первого рецикла реакции гидродебензилирования-ацилирования ГБ - 0%.

Пример 8.

Аналогичен примеру 3, с тем отличием, что для ускорения реакции гидродебензилирования-ацилирования используют катализатор 6%Pd-4%Ir/C.

Выход ТАДФ на свежем катализаторе составляет 72%, при проведении первого рецикла реакции гидродебензилирования-ацилирования ГБ - 67%, второго - 55%.

Пример 9.

Аналогичен примеру 3, с тем отличием, что вместо биметаллического палладий-иридиевого катализатора используют смесь катализаторов 6 мас.% Pd/C и 6 мас.% Ir/С в соотношении 2:1 по массе.

Выход ТАДФ составляет 69%, а при проведении первого рецикла реакции гидродебензилирования-ацилирования ГБ - 0%.

Пример 10.

Аналогичен примеру 3, с тем отличием, что для ускорения реакции гидродебензилирования-ацилирования используют катализатор, в котором в качестве подложки металлов вместо углеродного материала Сибунит используют каталитический волокнистый углерод (КВУ, удельная поверхность по БЭТ - 150 м2/г).

Выход ТАДФ на свежем катализаторе составляет 70%, при проведении первого рецикла реакции гидродебензилирования-ацилирования ГБ - 66%, второго - 50%.

Пример 11.

Аналогичен примеру 3, с тем отличием, что реакцию гидродебензилирования-ацилирования ГБ проводят при температуре 50°С. Выход ТАДФ составляет 0%.

Пример 12.

Аналогичен примеру 3, с тем отличием, что реакцию гидродебензилирования-ацилирования ГБ проводят при давлении водорода 6 бар. Выход ТАДФ составляет 0%.

Как видно из приведенных примеров и таблицы, использование предлагаемого биметаллического палладий-иридиевого катализатора в реакции гидродебензилирования-ацилирования ГБ позволяет увеличить производительность катализатора по целевому продукту (ТАДФ) за счет повышения устойчивости катализатора к процессам дезактивации. Необходимым оказалось использование катализаторов с содержанием палладия выше 6 мас.% и металла-стабилизатора (металл VIIIb группы) не ниже 1.5 мас.% и проведение реакции гидродебензилирования-ацилирования при температуре 25-30°С и давлении водорода 4-5 бар. Оптимальным является применение катализатора, содержащего 6 мас.% Pd, 3 мас.% Ir на углеродном носителе, а увеличение содержания металла-стабилизатора до 4 мас.% не приводит к повышению стабильности катализатора.

Таблица
Катализатор Выход ТАДФ, % Общий выход продукта (ТАДФ, г) на 1 г катализатора (без деструктивной регенерации) Примечания
Свежий катализатор 1 рецикл 2 рецикл
1 6% Pd/С 69 0 0 1.30 по прототипу, носитель - Сибунит
2 10%Pd/C 75 0 0 1.41 по прототипу, коммерческий катализатор фирмы «Degussa»
3 6%Pd-3%Ir/C 76 70 59 3.85 носитель - Сибунит
4 6%Pd-3%Pt/C 72 73 0 2.73 -//-
5 6%Pd-1.5%Ir-1.5%Pt/C 60 51 22 2.50 -//-
6 4%Pd-3%Ir/С 0 0 0 0 -//-
7 6%Pd-l%Ir/C 73 0 0 1.37 -//-
8 6%Pd-4%Ir/С 72 67 55 3.65 -//-
9 6%Pd/С+3%Ir/С 69 0 0 1.30 смесь двух катализаторов
10 6%Pd-3%Ir/C 70 66 50 3.49 носитель - углеродный материал КВУ
11 6%Pd-3%Ir/С 0 0 0 0 процесс проводят при Т=50°С
12 6%Pd-3%Ir/С 0 0 0 0 процесс проводят при давлении водорода 6 бар

Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
29.04.2019
№219.017.41f5

Фотокатализатор-адсорбент (варианты)

Изобретение относится к составу фотокатализатора на основе углеродного материала большой удельной поверхности с нанесенным фотокатализатором на основе диоксида титана или диоксида титана, модифицированного благородными металлами, применяемого преимущественно для фотокаталитической очистки...
Тип: Изобретение
Номер охранного документа: 0002375112
Дата охранного документа: 10.12.2009
Showing 1-10 of 67 items.
27.01.2013
№216.012.1f1d

Литий-кобальт-оксидный материал и способ его приготовления

Изобретение может быть использовано в химической промышленности. Литий-кобальт-оксидный материал имеет состав LiCoO, где х может принимать значения от+0,2 до -0,2, постоянную сумму коэффициентов атомного содержания X+Y=2,0 и представляет собой диамагнитную матрицу на основе кристаллитов LiCoO,...
Тип: Изобретение
Номер охранного документа: 0002473466
Дата охранного документа: 27.01.2013
27.06.2013
№216.012.503d

Способ получения фотокаталитически активного диоксида титана

Изобретение может быть использовано в производстве пигментов, керамики, адсорбентов, косметики, антибактериальных препаратов, катализаторов. Способ получения фотокаталитически активного диоксида титана из четыреххлористого титана включает осаждение диоксида титана одновременным сливанием в воду...
Тип: Изобретение
Номер охранного документа: 0002486134
Дата охранного документа: 27.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.10.2013
№216.012.78c5

Способ приготовления катализатора и способ каталитического сжигания топлив в псевдоожиженном слое

Изобретение относится к катализаторам. Описан способ приготовления катализатора сжигания топлива в псевдоожиженном слое на основе мартеновского шлака, в котором гранулы мартеновского шлака подвергают обработке парами воды при температуре максимального выделения водорода с последующим нанесением...
Тип: Изобретение
Номер охранного документа: 0002496579
Дата охранного документа: 27.10.2013
27.12.2013
№216.012.90a7

Способ получения нитродифениламинов

Изобретение относится к способу получения нитродифениламинов общей формулы где нитро-группа может находиться в орто-, мета- или пара-положении относительно анилинового фрагмента. Способ заключается во взаимодействии анилина с нитрогалогенбензолами общей формулы CH(NO)X, где X=Cl, Br, I, при...
Тип: Изобретение
Номер охранного документа: 0002502724
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.90a8

Способ получения n-алкил-n'-фенил-пара-фенилендиаминов

Изобретение относится к усовершенствованному способу получения N-алкил-N'-фенил-п-фенилендиаминов общей формулы 1, где R, R - алкильные заместители. Способ заключается в восстановительном алкилировании 4-нитродифениламина (4-НДФА) алифатическими кетонами общей формулы R-CO-R, где R, R -...
Тип: Изобретение
Номер охранного документа: 0002502725
Дата охранного документа: 27.12.2013
20.05.2014
№216.012.c5da

Способ получения углеродных наноматериалов с нанесённым диоксидом кремния

Изобретение может быть использовано при получении композиционных материалов. Исходные углеродные наноматериалы, например нанотрубки, нанонити или нановолокна, обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°С не менее 20 мин, промывают водой и сушат. Затем пропитывают...
Тип: Изобретение
Номер охранного документа: 0002516409
Дата охранного документа: 20.05.2014
20.07.2014
№216.012.ddf3

Фотокатализатор, способ его приготовления и способ получения водорода

Изобретение относится к области химии. Фотокатализатор для получения водорода из водного раствора глицерина под действием видимого излучения состава: Pt/CdZnS/ZnO/Zn(OH), где: x=0,5-0,9, массовая доля платины составляет 0,1-1%, готовят из смеси растворов солей кадмия и цинка, гидроксиды...
Тип: Изобретение
Номер охранного документа: 0002522605
Дата охранного документа: 20.07.2014
27.08.2014
№216.012.efeb

Способ обезвреживания органических отходов и нефти

Изобретение относится к способам обезвреживания беспламенным сжиганием жидких органических отходов и нефти, содержащей серу, в кипящем слое катализатора и может быть использовано в химической, нефтехимической, лесохимической, атомной промышленности и теплоэнергетике. Способ осуществляется путем...
Тип: Изобретение
Номер охранного документа: 0002527238
Дата охранного документа: 27.08.2014
+ добавить свой РИД