×
13.01.2019
219.016.aef6

Результат интеллектуальной деятельности: Вентиляторная градирня

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла зигзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения, при этом покрытие тонковолокнистым базальтовым материалом в виде тонковолокнистых витых пучков на наружной поверхности вентиляторной градирни выполнено комплектами, где пучки попарно, количеством не менее четырех расположены в виде синусоид, продольно вытянутых по высоте, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических волн, а участки наибольшего сближения синусоид составляют узлы, способствующие образованию стоячих волн. Технический результат - поддержание нормированных сроков эксплуатации. 5 ил.

Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды. (см. патент №2500964 МПК F28C1/00 Опубл. 10.12.2013, бюл. №34).

Известна вентиляторная градирня, содержащая вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла загзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором – направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения.

Недостатком является энергоемкость процесса охлаждения воды, обусловленная нестабильностью тепломассобмена между жидкостью и воздухом окружающей среды в изменяющихся в течение года температурных воздействий окружающей среды. Когда в теплое время года наблюдается интенсивный приток тепловой энергии через наружную поверхность вентиляторной башни к воде в бассейне, а в холодное время года наблюдается интенсивный отвод тепловой энергии через наружную поверхность в окружающую среду, а это резко ухудшает нормирование параметра по температурным значениям охлаждающей оборотной воды, возвращающейся к потребителю.

Известна вентиляторная градирня (см. патент №2561225 МПК F28С 1/00 Опубл. 27.08.2015, бюл. №24), содержащая вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла загзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения витых пучков, продольно вытянутых снизу вверх.

Недостатком является снижение прочностных параметров вытяжной башни и расположенного в ней оборудования с последующим аварийным разрушением под воздействием сейсмических волн, возникающих при длительной эксплуатации из-за вибрации, образованной как закрученным движением горячей воды с образованием микрозавихрений, так и перемещением массы воды по конфузорам и диффузорам с различными скоростными усилиями при турбулизации потока воды.

Технической задачей предполагаемого изобретения является поддержание нормированной надежной эксплуатации вентиляторной градирни за счет устранения образования сейсмических волн при резонансных всплесках в теплоизоляционном слое, путем расположения витых пучков из тонковолокнистого базальтового материала в виде комплектов, в которых попарно количеством не менее четырех вытянуты, пучки по линии синусоиды вдоль вентиляторной градирни, а выступы и впадины синусоид при совмещении являются концентратами перемещающихся сейсмических волн и участки наибольшего сближения составляют узлы, способствующие образованию стоячих волн.

Технический результат по поддержанию нормированных сроков эксплуатации достигается тем, что вентиляторная градирня содержит вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла загзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором – направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения при этом покрытые тонковолокнистым базальтовым материалом в виде тонковолокнистых витых пучков на наружной поверхности вентиляторной градирни, выполнено комплектами, где попарно , количеством не менее четырех расположены в виде синусоиды, продольно вытянутых по высоте, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических волн, а участки наибольшего сближения синусоид составляет узлы, способствующие образованию стоячих волн.

На фиг.1 показан общий вид вентиляторной градирни, на фиг. 2 – разрез корпуса бассейна, на фиг. 3 – внутренняя поверхность суживающегося сопла с продольно расположенными канавками, направляющая которых имеет направление по ходу часовой стрелки, на фиг. 4 - внутренняя поверхность суживающегося сопла с продольно расположенными канавками, направляющая которых имеет направление против хода часовой стрелки, на фиг. 5 – комплект покрытых тонковолокнистым базальтовым материалом в виде витых пучков попарно расположенных количеством не менее четырех и вытянутых по линии синусоиды вдоль вентиляторной градирни.

Вентиляторная градирня содержит корпус 1 с воздуховпускными окнами и водосборным бассейном 2, над которым установлены ороситель 3, водораспределительная система 4, водоуловитель 5. На верхней части корпуса 1 закреплены вытяжное устройство, включающее конфузор 6 с вентилятором 7, концевой конфузорный канал 8 с устройством регулирования подачи ветрового потока атмосферного воздуха и диффузор 9, за вентилятором 7 жестко укреплены профильные пластины 10, а на внутренней поверхности от входа к выходу диффузора 9 расположены ребра 11, соединенные с кольцевой канавкой 12 и внешней поверхностью конической обечайки 13. Ороситель 3 имеет не менее двух секций из волнообразных пластин 14, водораспределительная система 4 состоит из подводящего коллектора 15 и водораспределителя 16, включающего ассиметрично укрепленную трубу 17, относительно корпуса 1, на которых распределены суживающие сопла 18 с встроенными в них завихрителями 19.

Водосборный бассейн 2 (фиг. 1 и фиг. 2) включает корпус 1, в котором установлены секционные перегородки 20, выполненные зигзагообразными и образует в каждой секции 21 диффузоры 22 и конфузоры 23, расположенные относительно соседних секций в шахматном порядке.

Водораспределительная система 4 с суживающимися соплами 18 выполнена в виде попарно расположенных суживающихся сопел 24 и 25, при этом на внутренней поверхности 26 суживающегося сопла 24 выполнены продольно расположенные от большего основания 27 к меньшему основанию 28 криволинейные канавки 29, причем направляющая криволинейной канавки 29 имеет направление по ходу часовой стрелки, а на внутренней поверхности 30 суживающегося сопла 25 выполнены продольно расположенные от большего основания 31 к меньшему основанию 32 криволинейные канавки 33 и направляющая криволинейной канавки 33 имеет направление против хода часовой стрелки. Вытяжная башня снабжена вентилятором 7, расположенным в ее верхней части, регулятором скорости вращения 34 привода 35 и регулятором температуры 36 с датчиком температуры 37 атмосферного воздуха, при этом регулятор температуры 36 своим выходом соединен с регулятором скорости вращения 34 в виде блоков порошковых электромагнитных муфт, а регулятор температуры 36 содержит блок сравнения 38 и блок задания 39. Блок сравнения соединен с входом электронного усилителя 40, оборудованного блоком нелинейной обратной связи 41 и выход электронного усилителя 40 соединен с входом магнитного усилителя 42 с выпрямителем, который на выходе подключен к регулятору скорости вращения 34. Корпус 1 вытяжной башни с наружной поверхности 43 покрыт тонковолокнистым базальтовым материалом 44, расположенным в виде витых пучков 45, продольно вытянутых снизу вверх.

Покрытые тонковолокнистым базальтовым материалом 44 в виде витых пучков 45 по наружной поверхности 43 вентиляторной градирни выполнено комплектами 46, где попарно 47 и 48, количеством не менее четырех, расположенные по линии 49, 50, 51, 52 в виде синусоид, продольно вытянутых по высоте корпуса 1, выступы 53 и впадины 54, которые при совмещении являются концентрами перемещающихся сейсмических волн 55, а участки наибольшего сближения синусоид 49, 50, 51 и 52 составляют узлы 56 и 57, способствующих образованию стоячих волн 58.

Вентиляторная градирня работает следующим образом.

При наличии вибрационной нагрузки сейсмическая волна 55 перемещается по высоте корпуса 1 вентиляторной градирни, как по его материалу, так и по покрытию тонковолокнистым базальтовым материалом 44 в виде витых пучков 45 на наружной поверхности 43 вентиляторной градирни. В связи с тем, что плотность тонковолокнистого базальтового материала 44 значительно меньше плотности материала корпуса 1, то сейсмическая волна 55 имеет более высокую амплитуду и, соответственно, скорость распространения по высоте покрытия из тонковолокнистого базальтового материала 44 значительно меньше плотности материала корпуса 1, то сейсмическая волна 55 имеет более высокую амплитуду и, соответственно, скорость распространения по высоте покрытия из тонковолокнистого базальтового материала 44 с образованием резонансных всплесков в местах соединения корпуса 1 с оборудованием, размещенные в нем витые пучки 45 расположенные по линии 49, 50, 51, 52 в виде синусоид продольно вытянутых по высоте корпуса 1, являются направляющими для перемещения сейсмических волн 55, которые концентрируются в выступах 55 и впадинах 54. При этом выделяются участки наибольшего сближения попарно 47 и 48 расположенных пучков 45, которые способствуют появлению узлов 56 и 57, вызывающих образование стоячих волн 58 (см. например, Ландау Л.О., Лившин Е.М., Теоретическая физика. М.: Наука. 1968-836 с., ш), которые гасят сейсмические волны 55 и нейтрализуют резонансные всплески на наружной поверхности 43 корпуса 1 вентиляторной градирни.

В результате, устраняется интенсивное разрушение материала корпуса 1 и оборудования, размещенного в нем, под воздействием сейсмических волн, обусловленных вибрационными смещениями, возникающими при вращательном движении горячей воды и скоростными перепадами в диффузорах и конфузорах вентиляторной градирни, что обеспечивает ее нормированные сроки эксплуатации.

При температуре воды в бассейне 2 значительно более ниже значений, чем температура воздуха окружающей наружную поверхность 43 корпуса 1 вытяжной башни, и, особенно, при отрицательных температурах окружающей среды наблюдается интенсивный отвод техводы из верхнего объема вытяжной башни с нарушением микроклимата процесса охлаждения оборотной воды, т.е. осуществляется нестационарный тепломассообмен, резко снижающий эффективность охлаждения оборотной воды (см., например, стр. 435 Нащокин В.В. Техническая термодинамика и теплопереадча.-М.: Высшая школа, 1980, с.469).

При высоких положительных температурах воздуха окружающую наружную поверхность 43 среды и особенно дополнительно с солнечной радиацией наблюдается интенсивное поступление теплоты к воде бассейна 2 с последующим нарушением микроклимата процесса охлаждения оборотной воды, т.е. наблюдается также нестационарный тепломассообмен, резко увеличивающий энергоемкость охлаждения оборотной воды, из-за необходимости увеличения количества подавляемого атмосферного воздуха через воздуховпускные окна корпуса 1.

При покрытии тонковолокнистым базальтовым материалом 44 наружной поверхности 43 в условиях эксплуатации вентиляторной градирни с температурой окружающей среды более низкой, чем температура воды в бассейне 2, тепловой поток теплопроводностью через наружную поверхность 43 передается тонволокнистому базальтовому материалу 44, а за счет того, что он выложен в виде витых пучков 45, продольно вытянутых снизу вверх, наблюдается не только устранение тепловых потерь в связи с теплоизоляционными свойствами, но и аккумулирование тепловой энергии (см., например, Волокнистые материалы из базальтов Украины, издательство «Техника». Киев, 1971-76 с., ил.). Наличие высокой температуры воздуха окружающей среды особенно в светлое время суток с солнечной радиацией, тонковолокнистый базальтовый материал 44 теплоизолирует наружную поверхность 43, с последующим аккумулированием тепловой энергии, которая в темное время суток теплопроводностью передается во внутрь корпуса 1, поддерживая стационарный процесс тепломассообмена оборотной охлаждаемой воды круглосуточно. Следовательно, выполнение наружной поверхности 43 с покрытием из тонковолокнистого базальтового материала 44 в виде пучков 45 обеспечивает нормированный тепломассообменный процесс охлаждения водопроводной воды, что снижает энергозатраты до расчетно-оптимальных.

Уменьшение температуры атмосферного воздуха ниже нормированной (например, 200С) фиксируется датчиком температуры 37 атмосферного воздуха. При этом, как известно, плотность всасываемого в вентилятор атмосферного воздуха возрастает и увеличивается массовая производительность, т.е. наблюдается излишество количества воздуха, поступающего в воздуховходные окна по сравнению с нормировано-необходимым, что приводит к ненужным энергозатратам на привод вентилятора.

Сигнал, поступающий с датчика температуры 37, становится большим, чем сигнал блока задания 39, и на входе блока сравнения 38 появится сигнал отрицательной полярности, который поступает на вход электронного усилителя 40 одновременно с сигналом отрицательной нелинейной обратной связи блока 41. За счет этого в электронном усилителе 40 компенсируется нелинейность характеристики привода 35 вентилятора 7. Сигнал с выхода электронного усилителя 40 поступает на вход магнитного усилителя 42, где усиливается по мощности, выпрямляется и поступает в регулятор скорости вращения 34 в виде блока порошковых электромагнитных муфт. Отрицательная полярность сигнала электронного усилителя 40 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 42. В результате снижается момент от привода 35 вентилятора 7, передаваемый на регулятор скорости 36 в виде блока порошковых электромагнитных муфт и поступление атмосферного воздуха через воздуховходные окна в нижнюю часть корпуса 1 вытяжной башни, достигая значений нормировано-необходимых для процесса охлаждения оборотной воды, со снижением энергозатрат на привод 35 вентилятора 7.

Увеличение температуры атмосферного воздуха выше нормированной (например, 200С), приводит к уменьшению его плотности и соответственно массовой производительности вентилятора 7 при постоянной скорости вращения привода 35, что ухудшает тепломассобменный процесс охлаждения оборотной воды. Для устранения данного явления также применяется система автоматизированного контроля. В этом случае сигнал, поступающий с датчика температуры 37, становится меньшим, чем сигнал блока задания 39 и на входе блока сравнения 38 появится сигнал положительной полярности, который поступает на вход электронного усилителя 40 одновременно с сигналом отрицательной нелинейной оборотной связи 41. Сигнал с выхода электронного усилителя 40 поступает на вход магнитного усилителя 42, где усиливается по мощности, выпрямляется и поступает в регулятор скорости вращения 34 в виде блока порошковых электромагнитных муфт. Положительная полярность сигнала электронного усилителя 40 вызывает увеличение тока возбуждения на выходе магнитного усилителя 42. В результате увеличивается момент от привода 35 вентилятора 7, передаваемый на регулятор скорости вращения 36 в виде блока порошковых электромагнитных муфт, и поступление атмосферного воздуха через воздуховходные окна в нижнюю часть корпуса 1 вытяжной башни, достигая значений нормировано-необходимых для процесса охлаждения оборотной воды.

Горячая вода подается из коллектора 15 в водораспределитель 16 через асимметричную укрепленную трубу 17 относительно корпуса 1 в суживающиеся сопла 18. Размещение суживающихся сопел 18 попарно, таким образом, что, например, на внутренней поверхности 26 суживающегося сопла 24 выполнены криволинейные канавки 29, направляющая которых имеет направление по ходу движения часовой стрелки, а на внутренней поверхности 30 суживающегося сопла 25 выполнены криволинейные канавки 33, направляющая которых имеет направление против хода часовой стрелки, приводит к следующему: поток горячей воды, перемещаясь от большего основания 27 суживающегося сопла 24 по криволинейным канавкам 29, расположенным на внутренней поверхности 26, закручивается по ходу часовой стрелки и после завихрителя 19 в виде микрозавихрения выбрасывается в полость корпуса 1 между оросителем 3 и водоуловителем 5.

Одновременно, поток горячей воды, перемещающийся от большего основания 3 суживающегося сопла 25 по криволинейным канавкам 33, расположенным на внутренней поверхности 30, закручивается против хода часовой стрелки и после соответствующего завихрителя 19 в виде микрозавихрения выбрасывается также в полость корпуса 1 между оросителем 3 и водоуловителем 5. Попарное расположение суживающихся сопел 24 и 25 приводит к тому, что два вращающихся в противоположные направления микрозавихрителя сталкиваются, образуя микровзрывы (см., например, А.П. Меркулов. Вихревой эффект и его применение в промышленности. Куйбышев. 1969, 348 с.) с интенсивным перемешиванием капелек горячей воды, что резко интенсифицирует тепломассообменный процесс охлаждаемой воды с воздухом, выходящим из оросителя 3.

Под действием гидродинамических свойств, преимущественно, каплеобразная масса остывающей горячей воды фонтанирует на оросителе 3 и стекает по волнообразным пластинам 14 первой секции в виде полосок пленки и капель, контактируя с проходящим потоком воздуха. После первой секции вода дождеванием переходит на вторую секцию, где циклично повторяется теплообмен первой секции, т.е. осуществляется пленочно-капельный эффект. Со второй секции охлаждения жидкость поступает в водосборный бассейн 2. При этом атмосферный воздух поступает в корпус 1 через воздуховпускные окна и охлаждает горячую воду, после чего насыщенный парами и каплями поступает в водоуловитель 5, где очищается от воды, и вентилятор 4 осуществляет отсос воздуха из корпуса 1.

В водосборном бассейне 2 секции 21 расположены таким образом, что обеспечивается равномерная эпюра скоростей водяного потока в поперечном сечении корпуса бассейна 2, поддерживаемая за счет «живого» сечения входных отверстий диффузоров 22 и конфузоров 23. Охлаждаемый поток воды с оптимальной эпюрой скоростей, обеспечивающий рациональный контакт воды с зигзагообразными секционными перегородками 20, поступает в секции 21 и, проходя последовательно участки диффузоров 22 и конфузоров 23, непрерывно меняет свою скорость, что приводит к турбулизации потока и повышению теплообмена, а также к перераспределению в секциях 21 давления движущегося потока воды. Это выравнивает гидравлическое сопротивление воды в секциях 21, приводит к равномерному смыванию водой всего объема водосборного бассейна 2.

Кроме того, шахматное расположение диффузоров 22 и кофузоров 23 в каждой секции 21 относительно соседней приводит к тому, что поверхности секционных перегородок 20 одновременно находятся под различным скоростным воздействием потока движущейся воды (с одной стороны перегородку 20 омывает поток, движущийся в диффузоре, с другой омывает поток, движущийся в конфузоре). В результате на данный элемент секционной перегородки 20 действует разность температур (температурный напор) посекционно разделенного потока охлаждения воды. Выполнение секционных перегородок 20 из биметалла приводит в данных условиях воздействия температурного напора к возникновению продольных колебаний термовибрации, что создает дополнительную турбулизацию непосредственно в поперечном слое секционных перегородок 20, значительно повышая тепломассообменные процессы дальнейшего поэтапного охлаждения воды в бассейне 2. Все это в конечном итоге и обеспечивает эффективную работу вентиляторной градирни даже при незначительном перепаде температур между атмосферным воздухом и охлаждаемой водой.

Оригинальность предлагаемого изобретения заключается в том, что поддержание нормированных сроков эксплуатации вентиляторной градирни при вибрационных воздействиях образующих сейсмические волны достигается за счет выполнения покрытия наружной поверхности корпуса комплектами тонковолокнистого материала из базальта, где попарно количеством не менее четырех расположенных по линии синусоида, с получением выступов и впадин, которые при совмещении являются концентратами перемещающихся сейсмических волн, а участки наибольшего сближения синусоид составляют узлы, способствующих образованию стоячих волн, предотвращающих интенсивное разрушение материала.

Вентиляторная градирня, содержащая вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла зигзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами, и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения, кроме того, вытяжная башня с наружной поверхности покрыта тонковолокнистым базальтовым материалом, расположенным в виде витых пучков, продольно вытянутых снизу вверх, отличающаяся тем, что покрытие тонковолокнистым базальтовым материалом в виде витых пучков на наружной поверхности вытяжной градирни выполнено комплектами, где пучки попарно, количеством не менее четырех расположены в виде синусоид, продольно вытянутых по высоте, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических волн, а участки наибольшего сближения синусоид составляют узлы, способствующие образованию стоячих волн.
Вентиляторная градирня
Вентиляторная градирня
Вентиляторная градирня
Источник поступления информации: Роспатент

Showing 61-70 of 320 items.
25.08.2017
№217.015.b803

Измеритель параметров многоэлементных rlc- двухполюсников

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников с сосредоточенными параметрами, имеющих многоэлементную схему замещения. Устройство содержит генератор тестовых импульсов напряжения, имеющих форму функции n-й...
Тип: Изобретение
Номер охранного документа: 0002615014
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bafd

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных областях техники. Вихревой теплообменный элемент содержит соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими...
Тип: Изобретение
Номер охранного документа: 0002615878
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bd08

Универсальный регенеративный роторный воздухоподогреватель

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей. Универсальный регенеративный роторный воздухоподогреватель содержит короб, снабженный с верхней горячей стороны газового отсека патрубком входа дымовых газов, с холодной...
Тип: Изобретение
Номер охранного документа: 0002616430
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.c5fb

Электрический ракетный двигатель

Изобретение относится к области создания электрических реактивных двигателей. Для обеспечения надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур предложено поверхность...
Тип: Изобретение
Номер охранного документа: 0002618636
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c60d

Двухзвенный вездеход

Изобретение относится к транспортному машиностроению, в частности к транспортным средствам. Двухзвенный вездеход содержит два герметичных звена, оснащенных гусеничными движителями, торсионной независимой подвеской и грузовым отсеком, первым и вторым герметичными звеньями, связанными между собой...
Тип: Изобретение
Номер охранного документа: 0002618615
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.ce01

Устройство для смешения

Изобретение относится к устройствам для смешения жидких материалов и может быть использовано в химической, пищевой, микробиологической и других отраслях промышленности, а также при водоподготовке для очистки природных и сточных вод. Устройство для смешения содержит корпус с крышкой, днищем и...
Тип: Изобретение
Номер охранного документа: 0002620796
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce34

Смеситель-эмульсатор

Изобретение относится к смесителям и может быть использовано для приготовления эмульсий и суспензий для сжигания в топках энергетических установок, а также в химической технологии. Смеситель-эмульсатор содержит цилиндрический корпус, вал, установленный по оси корпуса, многолопастный ротор,...
Тип: Изобретение
Номер охранного документа: 0002620791
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce96

Устройство для очистки и комплексной утилизации сбросных газов

Предлагаемое изобретение относится к теплоэнергетике и сельскому хозяйству и может быть использовано в процессах очистки и утилизации сбросных газов теплоэнергетических установок и двигателей внутреннего сгорания для снижения загрязнений, выбросов парниковых газов в атмосферу и повышения...
Тип: Изобретение
Номер охранного документа: 0002620798
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cec0

Гидроклассификатор

Изобретение относится к переработке волокнистых материалов и может быть использовано в асбестовой и целлюлозно-бумажной промышленности. Гидроклассификатор включает корпус, расположенное вдоль корпуса просеивающее приспособление, установленные у противоположных по диагонали углов корпуса в его...
Тип: Изобретение
Номер охранного документа: 0002620819
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.ced9

Вихревой классификатор порошковых материалов

Изобретение относится к аппаратам для классификации дисперсных материалов и может быть использовано в строительной, химической и других отраслях промышленности. Вихревой классификатор порошковых материалов включает цилиндрическую прямоточную вихревую камеру с каналами вывода классифицируемого...
Тип: Изобретение
Номер охранного документа: 0002620821
Дата охранного документа: 30.05.2017
Showing 61-70 of 168 items.
25.08.2017
№217.015.9c65

Система гелиотеплохладоснабжения

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный...
Тип: Изобретение
Номер охранного документа: 0002610406
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.aa65

Автономная тепловая пушка

Изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления. Технический результат достигается предлагаемой автономной тепловой пушкой, включающей цилиндрический корпус, внутри которого по ходу движения воздуха коаксиально установлены вентилятор с...
Тип: Изобретение
Номер охранного документа: 0002611700
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.ac4b

Искусственный спутник

Изобретение относится к средствам управления движением космических аппаратов, а именно к электрическим (плазменным) ракетным двигателям для коррекции орбиты искусственного, преимущественно низкоорбитального спутника планеты с атмосферой. Ракетный двигатель небольшой мощности имеет в качестве...
Тип: Изобретение
Номер охранного документа: 0002612312
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b08f

Способ порционной переработки органических и твердых полимерных бытовых отходов

Изобретение относится к методам переработки путем термической деполимеризации органических и твердых полимерных бытовых отходов. Способ переработки включает проведение двухступенчатой деполимеризации твердых полимерных бытовых отходов в трубчатых единичных реакторах-модулях - по четыре – в...
Тип: Изобретение
Номер охранного документа: 0002613507
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b1bd

Шахтная печь для обжига сыпучего материала

Изобретение относится к технологии производства сахара, а именно к оборудованию по получению сатурационного газа, используемого для очистки диффузионного сока, и применяется при получении извести в шахтных печах в промышленности строительных материалов, химической и металлургической...
Тип: Изобретение
Номер охранного документа: 0002613260
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.ba95

Бесконтактный истинно двухосевой датчик угла поворота вала

Изобретение относится к измерительной технике, а именно к области бесконтактных измерений угла поворота вала. Бесконтактный истинно двухосевой датчик угла поворота вала использует магнитную систему на основе малого дипольного диаметрально намагниченного магнита, совершающего угловое движение с...
Тип: Изобретение
Номер охранного документа: 0002615612
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bafd

Вихревой теплообменный элемент

Изобретение относится к теплотехнике и может быть использовано в теплообменниках, применяемых в различных областях техники. Вихревой теплообменный элемент содержит соосно расположенные одна в другой теплообменные цилиндрические трубы большего диаметра и внутреннюю трубу с цилиндрическими...
Тип: Изобретение
Номер охранного документа: 0002615878
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.bcf4

Способ получения низкожирного мороженого с микропартикулятом сывороточных белков

Изобретение относится к молочной промышленности и может быть использовано при производстве мороженого. Способ получения мороженого включает приготовление смеси из молока, сливок, сахара и стабилизатора, пастеризацию, охлаждение, сквашивание, фризерование, расфасовку и закаливание мороженого. В...
Тип: Изобретение
Номер охранного документа: 0002616366
Дата охранного документа: 14.04.2017
25.08.2017
№217.015.c5fb

Электрический ракетный двигатель

Изобретение относится к области создания электрических реактивных двигателей. Для обеспечения надежной подачи твердого топлива в источник плазмообразующего вещества при длительной эксплуатации электрического ракетного двигателя в условиях низких отрицательных температур предложено поверхность...
Тип: Изобретение
Номер охранного документа: 0002618636
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.ce34

Смеситель-эмульсатор

Изобретение относится к смесителям и может быть использовано для приготовления эмульсий и суспензий для сжигания в топках энергетических установок, а также в химической технологии. Смеситель-эмульсатор содержит цилиндрический корпус, вал, установленный по оси корпуса, многолопастный ротор,...
Тип: Изобретение
Номер охранного документа: 0002620791
Дата охранного документа: 29.05.2017
+ добавить свой РИД