×
29.12.2018
218.016.acfa

Результат интеллектуальной деятельности: СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к полупроводниковым приборам, применяемым в электронике. СВЧ фотоприемник лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: слоя тыльного потенциального барьера 2 n-AlGaAs, базового слоя, выполненного из n-GaAs 3, с толщиной 50-100 нм, непроводящего слоя i-GaAs 4 толщиной 1 мкм и эмиттерного слоя p-GaAs 5 толщиной 900-1000 нм с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм. Изобретение обеспечивает возможность создания СВЧ фотоприемника лазерного излучения с высоким быстродействием и поглощением не менее 80% фотонов с длиной волны в диапазоне 800-860 нм. 2 з.п. ф-лы, 4 ил.

Изобретение относится к полупроводниковым приборам, применяемым в электронике. На его основе возможно создание фотоприемников (ФП) лазерного излучения (ЛИ).

В настоящее время все большее распространение получают волоконно-оптические линии связи (ВОЛС), основанные на лазерных диодах и быстродействующих ФП, которые обеспечивают гальваническую развязку между источником сигнала и приемником. При этом достигнут значительный прогресс в создании ФП, обеспечивающих прием сигнала в СВЧ системах, работающих на частотах, достигающих десятков гигагерц, и в ряде случаев достигающих терагерцового диапазона. В качестве оптоволокна в системах ВОЛС используется кварцевое волокно с окнами прозрачности: 0,85 мкм (первое окно), 1,3 мкм (второе окно) и 1,55 мкм (третье окно).

Как показывают теоретические данные, эффективность преобразования монохроматического (в частности лазерного) излучения в диапазоне длин волн 0,8-0,86 мкм для фотопреобразователей на основе GaAs может достигать 85-87% при мощности падающего излучения 100 Вт/см2. Таким образом, задача улучшения характеристик ФП лазерного излучения, таких как, квантовый выход и быстродействие являются весьма актуальной для современной электроники и фотоники.

Известен фотоприемник лазерного излучения на основе GaAs (см. Tiqiang Shan, Xinglin Qi, Design and optimization of GaAs photovoltaic converter for laser power beaming, 2015, м. 71, p. 144-150), включающий подложку из n-GaAs, слой тыльного потенциального барьера из n-AlGaAs, базовый слой из n-GaAs толщиной 3,5 мкм, эмиттерный слой из p-GaAs толщиной 0,5 мкм, слой широкозонного окна из p-GaInP, контактный подслой из p+-GaAs.

Недостатком известного фотоприемника является малое быстродействие из-за высокой барьерной емкости, а также большой постоянной времени разделения носителей заряда.

Известен фотоприемник лазерного излучения на основе GaAs (см. E. Oliva, F. Dimroth and A.W. Bett. Converters for High Power Densities of Laser Illumination. - Prog. Photovolt: Res. Appl., 2008, 16: 289-295), содержащий подложку из n-GaAs, слой тыльного потенциального барьера из n+-GaInP, базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из p+-GaInP и контактный подслой из p++-Al0,5GaInAs.

К недостатку известного фотоприемника относится усложненная технология его изготовления (использование большого количества разных газов для выращивания слоев разного элементного состава, а, следовательно, повышенные требования к очистке реактора от нежелательных примесей). Кроме того, отсутствие нелегированной области вызывает повышение барьерной емкости.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является фотоприемник лазерного излучения (см. патент RU 2547004, МПК H01L 31/18, опубликован 10.04.2015), принятый за прототип и включающий подложку из n-GaAs, базовый слой из n-GaAs толщиной 3-5 мкм, эмиттерный слой из p-GaAs толщиной 1,5-2,0 мкм, слой из p-AlGaAs толщиной 3-30 мкм.

Недостатками известного фотоприемника лазерного излучения является неполное собирание фотогенерированных носителей из базового слоя, а также низкое быстродействие.

Задачей настоящего решения является создание такого СВЧ фотоприемника лазерного излучения, который обеспечивал, высокое быстродействие и поглощал бы не менее 80% фотонов с длиной волны в диапазоне 800-860 нм при близком к полному собиранию фотогенерированных носителей.

Поставленная задача достигается тем, что СВЧ фотоприемник лазерного излучения включает полупроводниковую подложку, выполненную из n-GaAs, и последовательно осажденные: слой тыльного потенциального барьера, выполненный из n-Al0.2Ga0.8As, базовый слой, выполненный из n-GaAs, непроводящий слой i-GaAs и эмиттерный слой p-GaAs с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм.

В СВЧ фотоприемнике лазерного излучения толщина базового слоя может находиться в диапазоне от 50 до 100 нм, толщина непроводящего слоя может составлять 1 мкм, а толщина эмиттерного слоя может находиться в диапазоне от 900 до 1000 нм.

В СВЧ фотоприемнике лазерного излучения уровень легирования эмиттерного слоя p-GaAs мелкой акцепторной примесью у границы с непроводящим слоем i-GaAs может составлять от 1⋅1016 до 1⋅1017 см-3 и увеличивается по экспоненциальному закону до величины от 1⋅1018 до 2⋅1018 см-3 у противоположной границы эмиттерного слоя.

Настоящее техническое решение поясняется чертежами, где:

на фиг. 1 представлено схематичное изображение поперечного сечения настоящего СВЧ фотоприемника лазерного излучения;

на фиг. 2 приведены доли непоглощенных фотонов лазерного излучения в ФП ЛИ на основе GaAs в зависимости от суммарной толщины базового непроводящего и эмиттерного слоев для длин волн в диапазоне 800-860 нм: кривая 6 - длина волны излучения 810 нм; кривая 7 - длина волны излучения 830 нм; кривая 8 - длина волны излучения 850 нм;

на фиг. 3 представлены вклады различных фотоактивных слоев в постоянную времени разделения фотогенерированных носителей в ФП ЛИ на основе GaAs в вентильном режиме при напряжении 1 В: кривая 9 - время диффузии неравновесных дырок из слоя n-GaAs; кривая 10 - время диффузии неравновесных электронов из слоя p-GaAs при отсутствии градиента легирования; кривая 11 - время диффузии неравновесных электронов из слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1017 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 12 - время диффузии неравновесных электронов из слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1016 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 13 - время разделения электрон-дырочных пар в i-GaAs; кривая 14 - время дрейфа неравновесных электронов через слой i-GaAs;

на фиг. 4 показаны вклады различных фотоактивных слоев в удельную диффузионную емкость структуры ФД на основе GaAs в вентильном режиме при напряжении 1 В (кривые 15-19), а также барьерная емкость такого ФП ЛИ, в зависимости от толщины нелегированного слоя (кривая 20): кривая 15 - вклад слоя i-GaAs; кривая 16 - вклад слоя p-GaAs при отсутствии градиента легирования; кривая 17 - вклад слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1016 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 18 - вклад слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1016 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 19 - вклад слоя и-GaAs.

Настоящий СВЧ фотоприемник лазерного излучения показан на фиг. 1. Он включает полупроводниковую подложку 1, выполненную, например, из n-GaAs, и последовательно осажденные: слой тыльного потенциального барьера 2, выполненный, например, из n-Al0.2Ga0.8As, базовый слой 3, выполненный, например, из n-GaAs, с толщиной, например, 50-100 нм, непроводящий слой i-GaAs 4, толщиной, например, 1 мкм и эмиттерный слой p-GaAs 5 толщиной, например, 900-1000 нм с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм.

С увеличением частоты все большее влияние на работу СВЧ приборов оказывают паразитные емкости, образуемые конструктивными элементами самих устройств. При этом модуль реактивного сопротивления емкостей уменьшается: шунтирующие емкости закорачивают соответствующие участки схемы. Поэтому на высоких частотах и особенно в СВЧ-диапазоне паразитные емкости, в первую очередь емкости p-n переходов в полупроводниковых приборах, должны быть сведены к минимуму.

Общая емкость p-n перехода измеряется между выводами кристалла при заданных постоянном напряжении (смещении) и частоте гармонического напряжения, прикладываемых к переходу. Она складывается из барьерной и диффузионной емкостей.

При прямом напряжении на переходе и работе ФП в «вентильном» режиме общая емкость определяется в основном диффузионной емкостью, а при обратном напряжении и работе ФП в режиме «ключа». - барьерной.

Барьерная (или зарядная) емкость обусловлена нескомпенсированным зарядом ионизированных атомов примеси, сосредоточенными по обе стороны от границы перехода. Эти объемные заряды неподвижны и не участвуют в процессе протекания тока. Они и создают электрическое поле перехода. При увеличении обратного напряжения область пространственного заряда и сам заряд увеличиваются, причем это увеличение происходит непропорционально тем меньше, чем больше расстояние между атомами донорной и акцепторной примесей.

Использование непроводящего i-слоя большей толщины позволяет расширить обедненную область между сильнолегированными эмиттерным и базовым слоями ФП, что позволяет уменьшить барьерную емкость структуры, которую можно оценить по формуле:

где ε - диэлектрическая проницаемость i-слоя; ε0 - электрическая постоянная; S - площадь ФП, d - ширина запрещенной зоны p-n перехода.

Увеличение толщины непроводящего i-слоя приводит к возрастанию d, что понижает барьерную емкость.

При положительных смещениях существенной оказывается диффузионная емкость. Диффузионная емкость связана с нескомпенсированным зарядом в фотоактивных слоях: и обратно пропорциональна толщине i-слоя p-эмиттере, n-базе и нелегированном i-слое. Диффузионная емкость обусловлена изменением величины объемного заряда, вызванного изменением прямого напряжения и вследствие инжекции неосновных носителей в рассматриваемый слой. В результате, например, в n-базе возникает объемный заряд дырок, который практически мгновенно компенсируется зарядом собственных подошедших к дыркам электронов. Диффузионную емкость часто выражают как линейную функцию тока, учитывая экспоненциальный характер вольтамперной характеристики.

Для обеспечения высокого быстродействия ФП необходим компромисс в выборе толщины непроводящей области. При малой ее толщине поле в области ОПЗ будет достаточно для быстрого разделения носителей, однако, барьерная емкость структуры окажется большей, чем для толстого i-слоя.

Быстродействие p-i-n структур определяется постоянной времени, связанной со скоростью разделения электрон-дырочных пар в области пространственного заряда (ОПЗ), постоянной времени, определяемой скоростью диффузии неравновесных носителей заряда из эмиттера по направлению к ОПЗ, и постоянной времени, определяемой скоростью диффузии неравновесных носителей заряда из базы по направлению к ОПЗ и постоянной времени перезаряда емкостей, определяемой сопротивлением нагрузки ФП RH и емкостью p-i-n структуры.

Скорость разделения электрон-дырочных пар в ОПЗ зависит от подвижности носителей заряда градиента поля в ОПЗ, определяемого контактной разницей потенциалов, напряжением на ФП и толщиной i-слоя d. Скорости диффузии в эмиттере и базе определяются толщинами этих слоев и коэффициентами диффузии неосновных носителей заряда.

Суммарная толщина базового, эмиттерного и непроводящего слоев определяет коэффициент поглощения лазерного излучения в ФП. Для получения требуемого коэффициента поглощения необходимо обеспечение суммарной толщины базового, эмиттерного и непроводящего слоев порядка 2 мкм (фиг. 2, кривые 6-8). Толщины должны быть распределены таким образом, чтобы обеспечить близкое к полному собирание фотогенерированных носителей и, одновременно, приемлемые параметры быстродействия.

Результаты расчетов показывают, что для ФП, в целом, при выбранных толщинах и профилях легирования слоев обеспечивается время разделения фотогенерированных носителей на уровне 15-20 пс (фиг. 3).

Толщина слоя n-GaAs выбиралась равной 50-100 нм для минимизации вклада базы в постоянную времени ФП (фиг. 3, кривая 9). Выбранная толщина позволила удержать постоянную на уровне менее 10 пс, при больших толщинах время собирания фотогенерированных носителей в p-i-n переход существенно возрастает. В то же самое время, такой толщины достаточно для создания необходимой контактной разности потенциалов на p-i-n переходе и сильного равномерного электрического поля в слое i-GaAs. Для обеспечения требуемых временных параметров диффузию неравновесных дырок в направлении подложки ограничивает слой тыльного потенциального барьера, выполненный из n-Al0.2Ga0.8As.

При отсутствии тянущего поля время собирания неравновесных электронов из эмиттера (фиг. 3, кривая 10) превышает время разделения носителей в ОПЗ, начиная с толщины эмиттера в 400 нм. При толщине эмиттера в 900-1000 нм время разделения носителей составит 50 пс. Это существенно больше времени разделения электрон-дырочных пар в ОПЗ, составляющего 12 пс для толщины слоя i-GaAs в 1000 нм (фиг. 3, кривая 13). Внедрение тянущего поля при толщине эмиттера 900-1000 нм позволит сохранить постоянную времени в пределах от 15 до 20 пс в зависимости от величины градиента легирования (фиг. 3, кривые 11 и 12). Также тянущее поле обеспечивает близкое к полному собирание фотогенерированных носителей заряда. Экспоненциальный закон изменения концентрации мелкой акцепторной примеси позволяет получить постоянную напряженность тянущего поля по всей толщине эмиттера.

Время дрейфа электронов через слой i-GaAs при этом пренебрежимо мало, порядка 1 пс для толщины 1000 нм (фиг. 3, кривая 14). Время дрейфа дырок через слой i-GaAs несколько больше ввиду их меньшей подвижности, однако, ввиду малой толщины слоя n-GaAs (50-100 нм), из которого они инжектируются, а также расположения слоя с тыльной стороны, суммарный вклад этих носителей заряда в фототок в предложенной структуре не превышает 1%, что позволяет пренебрегать ими.

Выбранные толщины эмиттерного, базового и непроводяшего слоев ФП помимо приемлемой постоянной времени разделения фотогенерированных носителей также отвечают условию баланса между барьерной и диффузионной емкостями в рабочих режимах (фиг. 4).

Основной вклад в диффузионную емкость обеспечивает слой i-GaAs (фиг. 4, кривая 15). Вклады эмиттерного и базового слоев, если нет градиента легирования, на несколько порядков меньше (фиг. 4, кривые 16 и 19). При рассмотрении временных параметров ФП необходимо учитывать, что наличие градиента легирования и области с более низким легированием приводит к росту вклада эмиттера в диффузионную емкость структуры. Однако, область, за счет которой будет расти диффузионная емкость, ограничена градиентом тянущего поля на участке ~kT. По этой причине, хотя внедрение поля будет сопровождаться увеличением вклада эмиттера в диффузионную емкость (фиг. 4, кривые 17 и 18), этот вклад будет незначителен и останется, как минимум, на 2 порядка ниже, чем вклад слоя i-GaAs (фиг. 4, кривая 15). Для выбранной толщины слоя i-GaAs диффузионная и барьерная емкость (фиг. 4, кривая 20) приблизительно равны.


СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Showing 21-30 of 174 items.
28.07.2018
№218.016.75ee

Способ позиционирования кора оптического волокна над светочувствительной областью фотодетектора

Изобретение относится к области оптической техники и касается способа позиционирования кора оптического волокна над светочувствительной областью фотодетектора. Способ включает в себя подведение кора оптического волокна к поверхности на расстояние , после чего кор оптического волокна перемещают...
Тип: Изобретение
Номер охранного документа: 0002662485
Дата охранного документа: 26.07.2018
25.08.2018
№218.016.7f7e

Автономный необитаемый подводный аппарат для измерения дифференциальных характеристик векторного звукового поля

Изобретение относится к гидроакустике, в частности к устройствам пеленга подводных источников шума. Автономный необитаемый подводный аппарат для измерения дифференциальных характеристик векторного звукового поля содержит носовой и кормовой звукопрозрачные обтекатели, носовой и кормовой...
Тип: Изобретение
Номер охранного документа: 0002664971
Дата охранного документа: 24.08.2018
25.08.2018
№218.016.7f9f

Подводный планер для локализации источника звука

Изобретение относится к области устройств для локализации источника звука. Подводный планер содержит крылья, рули, двигатели, аккумуляторную батарею, систему управления. Планер содержит два разнесенных детектора - носовой и кормовой. Каждый детектор прикрыт звукопрозрачным колпаком и...
Тип: Изобретение
Номер охранного документа: 0002664973
Дата охранного документа: 24.08.2018
07.09.2018
№218.016.83a8

Бронематериал фронтального слоя бронепанели

Изобретение относится к области материалов многослойных бронепанелей, использующихся для индивидуальной защиты и для защиты вооружения, военной и специальной техники. Композиционный бронематериал включает карбид бора и армирующие волокна. При этом материал дополнительно содержит полимерное...
Тип: Изобретение
Номер охранного документа: 0002666195
Дата охранного документа: 06.09.2018
07.09.2018
№218.016.83eb

Средство, его применение и способ повышения устойчивости организма млекопитающих к переохлаждению

Группа изобретений относится к созданию лекарственного средства для повышения устойчивости млекопитающих к переохлаждению. Средство содержит фармацевтическую композицию препаратов, содержащую 0,78-1,18 мас.% пропранолола, 0,015-0,024 мас.% резерпина, 0,078-0,12 мас.% ивабрадина, 0,098-0,18...
Тип: Изобретение
Номер охранного документа: 0002665963
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.83f2

Средство, включающее перфторуглеродную эмульсию (варианты), его применение и способ повышения устойчивости организма млекопитающих к переохлаждению

Группа изобретений относится к созданию лекарственного средства для повышения устойчивости млекопитающих к переохлаждению. Средство содержит фармацевтическую композицию препаратов, содержащую 0,78-1,18 мас.% пропранолола, 0,015-0,024 мас.% резерпина, 0,078-0,12 мас.% ивабрадина, 0,098-0,18...
Тип: Изобретение
Номер охранного документа: 0002665964
Дата охранного документа: 05.09.2018
13.09.2018
№218.016.8717

Способ диагностики рака легкого по анализу выдыхаемого пациентом воздуха на основе анализа биоэлектрических потенциалов обонятельного анализатора крысы

Изобретение относится к медицине, в частности к исследованию и анализу газообразных биологических материалов, и может быть использовано для диагностики рака легкого у человека. Способ основан на анализе выдыхаемого пациентом воздуха путем анализа биоэлектрических потенциалов обонятельного...
Тип: Изобретение
Номер охранного документа: 0002666873
Дата охранного документа: 12.09.2018
22.09.2018
№218.016.8999

Многоцелевая подводная лодка для осуществления транспортировки, установки, снятия грузов под водой

Изобретение относится к области судостроения и касается вопросов создания средств для осуществления транспортировки, установки, снятия грузов под водой, а также для осмотра, технического обслуживания, ремонта подводных сооружений. Предложена многоцелевая подводная лодка для осуществления...
Тип: Изобретение
Номер охранного документа: 0002667407
Дата охранного документа: 19.09.2018
25.09.2018
№218.016.8b27

Система релятивистской квантовой криптографии

Изобретение относится к области квантового распределения ключей, а именно релятивистских квантовых протоколов. Технический результат – организация подстройки приемного интерферометра в однопроходной схеме релятивистского квантового распределения ключей с использованием имеющихся в системе...
Тип: Изобретение
Номер охранного документа: 0002667755
Дата охранного документа: 24.09.2018
03.10.2018
№218.016.8cca

Способ подбора условий для криоконсервации биологических объектов в вязких средах с использованием гидратообразующих газов и устройство для его осуществления

Изобретение относится к криоконсервации биологических объектов. Предложенный способ подбора условий для криоконсервации биологических объектов в вязких средах с использованием гидратообразующих газов предусматривает внесение исследуемых криопротекторов в среду для криоконсервации, при этом: а)...
Тип: Изобретение
Номер охранного документа: 0002668322
Дата охранного документа: 28.09.2018
Showing 21-30 of 68 items.
27.02.2016
№216.014.cf0a

Способ формирования многослойного омического контакта к прибору на основе арсенида галлия

Изобретение относится к технологии полупроводниковых приборов. Способ формирования многослойного омического контакта включает предварительное формирование фотолитографией маски из фоторезиста на поверхности арсенида галлия электронной проводимости, очистку свободной от маски поверхности...
Тип: Изобретение
Номер охранного документа: 0002575977
Дата охранного документа: 27.02.2016
10.04.2016
№216.015.2ccb

Система позиционирования и слежения за солнцем концентраторной фотоэнергоустановки

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий...
Тип: Изобретение
Номер охранного документа: 0002579169
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.919e

Фотоэлектрический преобразователь

Изобретение относится к электронной технике, а именно к фотоэлектрическим преобразователям солнечной энергии. Фотоэлектрический преобразователь на основе изотипной варизонной гетероструктуры из полупроводниковых соединений A3B5 и/или A2B6 содержит полупроводниковую подложку и изотипный с...
Тип: Изобретение
Номер охранного документа: 0002605839
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.a5d3

Способ изготовления фотоэлемента на основе gaas

Способ изготовления фотопреобразователя на основе GaAs включает выращивание методом жидкофазной эпитаксии на подложке n-GaAs базового слоя n-GaAs, легированного оловом или теллуром, толщиной 10-20 мкм и слоя p-AlGaAs, легированного цинком, при х=0,2-0,3 в начале роста и при х=0,10-0,15 в...
Тип: Изобретение
Номер охранного документа: 0002607734
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a9ae

Солнечный концентраторный модуль

Солнечный концентраторный модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами (4) Френеля на внутренней стороне фронтальной панели (3), тыльную панель (9) с фоконами (6) и солнечные элементы (7), снабженные теплоотводящими основаниями (8). Теплоотводящие основания (8)...
Тип: Изобретение
Номер охранного документа: 0002611693
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.a9ce

Система управления платформой концентраторных солнечных модулей

Система управления платформой концентраторных солнечных модулей содержит платформу (6) с концентраторными каскадными солнечными модулями, оптический солнечный датчик (24), выполненный в виде CMOS матрицы, подсистему (7) азимутального вращения, подсистему (8) зенитального вращения, включающую...
Тип: Изобретение
Номер охранного документа: 0002611571
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa69

Метаморфный фотопреобразователь

Изобретение относится к полупроводниковой электронике и может быть использовано для создания солнечных элементов. Метаморфный фотопреобразователь включает подложку (1) из GaAs, метаморфный буферный слой (2) и по меньшей мере один фотоактивный p-n-переход (3), выполненный из InGaAs и включающий...
Тип: Изобретение
Номер охранного документа: 0002611569
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aaa3

Способ изготовления наногетероструктуры со сверхрешеткой

Изобретение относится к электронной технике, в частности к способам создания наногетероструктур для фотопреобразующих и светоизлучающих устройств. Способ изготовления наногетероструктуры со сверхрешеткой включает выращивание на подложке GaSb газофазной эпитаксией из металлоорганических...
Тип: Изобретение
Номер охранного документа: 0002611692
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.e151

Система слежения за солнцем концентраторной энергоустановки

Изобретение относится к области солнечной энергетики и может найти применение, например, при создании установок с фотоэлектрическими модулями. Система слежения за Солнцем концентраторной энергоустановки включает подсистему (1) азимутального вращения и подсистему (2) зенитального вращения....
Тип: Изобретение
Номер охранного документа: 0002625604
Дата охранного документа: 17.07.2017
+ добавить свой РИД