×
29.12.2018
218.016.ac93

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и касается способа измерения температуры активной области светодиода. Способ заключается в том, что через светодиод пропускают греющий ток заданной величины, излучение светодиода подается на два фотоприемника и температуру активной области светодиода определяют по изменению центральной длины волны излучения. Первый фотоприемник выбирается с гауссовой спектральной чувствительностью с шириной, во много раз превышающей ширину спектра светодиода. Второй фотоприемник имеет равномерную спектральную чувствительность в заданном диапазоне длин волн излучения. При проведении измерений измеряют сигналы фотоприемников U(0) и U(0) сразу после подачи греющего тока и U(t) и U(t) в заданный момент времени t после разогрева. Температуру Т активной области светодиода в момент времени t рассчитывают по формуле

Изобретение относится к средствам измерения тепловых режимов работы светодиодов и может быть использовано для контроля качества сборки и оценки температурных запасов светодиодов и светотехнических изделий с их использованием: светодиодных светильников, панелей, светофоров и т.п.

Из существующего уровня техники известен способ измерения температуры р-n перехода светодиода по патенту US 2009/0306912 А1 (опубликован 10.12.2009), который заключается в предварительном определении температурного коэффициента KU прямого падения напряжения при пропускании через светодиод прямого импульсного тока и в последующем определении температуры перехода по изменению прямого падения напряжения при заданном токе по формуле

где UT и U0 - падение напряжения на светодиоде при заданном токе до нагрева, то есть при температуре T0, и после нагрева светодиода до температуры , соответственно.

Недостатком способа является невозможность оперативного измерения температуры активной области светодиода в составе светотехнического изделия, когда невозможно (или затруднено) подключение к контролируемому светодиоду. К недостаткам способа следует отнести также большую погрешность измерения из-за переходных тепловых и электрических процессов при однократном переключении светодиода из режима нагрева в режим измерения.

Известен способ измерения температуры активной области светодиода по патенту РФ на изобретение №2473149 по сдвигу спектра излучения светодиода на нескольких длинах волн, заключающийся в том, что получают ряд градуировочных зависимостей длины волны излучения от температуры для заданных точек в выбранной длинноволновой части нормированного спектра излучения светодиода, измеряют спектр светодиода при заданном значении прямого тока, по градуировочным зависимостям рассчитывают значения температуры для каждой заданной точки спектра, и в качестве результата измерения температуры активной области светодиода принимают среднее арифметическое полученного ряда значений температуры.

Известен способ измерения температуры активной области светодиода по сдвигу доминирующей длины волны излучения, которая определяется путем измерений спектра спектрометром по точкам (см. Луценко Е.В. Температура перегрева активной области коммерческих светодиодов и светодиодов с прямым жидкостным охлаждением чипа // Полупроводниковая светотехника. - 2011. - №2. - С. 26-29). Способ основан на использовании линейной зависимости длины волны в максимуме спектра излучения светодиодов от температуры активной области (p-n-перехода):

где Kλ - температурный коэффициент длины волны в максимуме спектра излучения светодиода.

Известны также способы измерения переходной тепловой характеристики светодиодов (то есть изменения температуры активной области во времени при разогреве светодиода заданной мощностью) по сигналам многоэлементных фотоприемников (ФП): фотоприемной КМОП-линейки (по патенту РФ на изобретение №2523731) или фотоприемной КМОП-матрицы (по патенту РФ на изобретение №2609815).

Недостатками указанных выше известных способов является необходимость спектрального разложения излучения светодиода с помощью диспергирующего устройства, регистрации сдвига спектра на нескольких длинах волн излучения и, как следствие, большая трудоемкость настройки и калибровки аппаратуры и сложная обработка сигналов. Поскольку интенсивность излучения светодиода сильно зависит от температуры, то для измерения сдвига спектра необходимо нормировать спектр, то есть делить все значения на максимальное значение. В результате, с помощью известных способов невозможно оперативно измерить температуру активной области светодиодов в полевых условиях и в условиях массового контроля.

Наиболее близким к предлагаемому способу является способ по патенту РФ на изобретение №2390738 измерения средней длины волны узкополосного излучения (по изменению которой, применительно к излучению светодиода, можно определить изменение температуры активной области светодиода) без использования диспергирующего элемента с помощью двух ФП с различающимися функциями спектральной чувствительности. Недостатком известного способа является сложная подготовка и настройка аппаратуры, в частности, необходимость точного деления светового потока светодиода между ФП, а также многоэтапные преобразования полезных сигналов, что приводит к потере точности.

Технический результат состоит в исключении необходимости установки точного распределения светового потока излучения светодиода между фотоприемниками и, как следствие, в уменьшении времени на подготовку и настройку аппаратуры к измерению.

Технический результат достигается тем, что через светодиод пропускают греющий ток заданной величины, излучение светодиода подается на два фотоприемника с различающимися функциями спектральной чувствительности, и температуру активной области светодиода определяют по изменению центральной длины волны излучения, отличающийся тем, что первый фотоприемник выбирается с гауссовой спектральной чувствительностью с шириной, во много раз превышающей ширину спектра светодиода, а второй - с равномерной спектральной чувствительностью в заданном диапазоне длин волн излучения, измеряют сигналы U1(0) и U2(0) фотоприемников сразу после подачи греющего тока и в заданный момент времени tн после разогрева: U1(tн) и U2(tн), и температуру активной области светодиода в момент времени tн рассчитывают по формуле

где , Kλ - известный температурный коэффициент центральной длины излучения светодиода, σ1 - ширина спектральной чувствительности первого фотоприемника.

Технический результат достигается за счет того, что для определения температуры не требуется знать точное значение длины волны в максимуме спектра излучения светодиода, достаточно зарегистрировать и определить только значение сдвига этой длины волны. А, поскольку спектр светодиода слабо трансформируется в рабочем диапазоне температур, то для измерения сдвига центральной длины волны достаточно двух ФП: одного ФП с участком монотонно растущей (или монотонно спадающей) спектральной чувствительности и второго - с постоянной чувствительностью в заданном спектральном диапазоне. Так как с увеличением температуры интенсивность излучения светодиода падает, то для выделения полезного сигнала, вызванного только сдвигом спектра, надо учитывать это изменение интенсивность излучения. Для этого и необходим второй ФП с постоянной спектральной чувствительностью. При этом обработка измерительной информации сводится только к определению отношения сигналов ФП.

Суть предлагаемого технического решения состоит в том, что сигнал ФП с постоянной спектральной чувствительностью зависит только от интенсивности излучения, а сигнал второго ФП - и от интенсивности и от сдвига спектра с ростом температуры. Выберем первый ФП со спектральной характеристикой гауссова вида и запишем выражения для спектральных характеристик ФП:

где λm - длина волны, соответствующая максимуму функций S1(λ) a σ1 - параметр этой функции, характеризующий ее ширину (фиг. 1, а). Характеристика вида (3а) легко реализуется путем применения широкополосного ФП и полосового фильтра с гауссовой характеристикой пропускания.

Спектр излучения светодиода для определенности представим гауссовой функцией

Ах - параметр, определяющий интенсивность излучения, λx - длина волны излучения в максимуме спектра светодиода, а σx - параметр, характеризующий ширину спектра светодиода.

Излучение со спектром I(λ при попадании на фотоприемники создает на выходе ФП устройств сигналы, величина которых в общем случае определяется выражениями

где ki - доля излучения светодиода, попадающего на i-й ФП.

Подставляя в (5) выражения (4) и (3) после несложных преобразований с учетом того что для величины сигналов на выходе ФП получим следующие выражения

Характер изменения сигналов ФП при разогреве светодиода показан на фиг. 1, б. Если измерить сигналы ФП до разогрева (в первые несколько микросекунд после включения светодиода, пока температура не успеет заметно измениться), и через заданное время tн разогрева, то получим систему уравнений для нахождения сдвига спектра и, соответственно, температуры активной области светодиода:

Для отношения сигналов первого ФП в начале и конце нагрева светодиода (в заданный момент времени tн) получим:

Отношение интенсивностей излучения находим из отношения сигналов второго ФП: . Тогда, при малом смещении спектра Δλн<<λxm можно записать

где .

Из (8) с учетом (1) нетрудно получить выражение для приращения температуры СИД в общем виде

Известно, что максимум крутизны спектральной чувствительности гауссовой формы будет в точке λ=λm±σ1. И, если подобрать фильтр первого ФП так, чтобы λm≈λx±σ1, то при обычном условии и Δλн<<σ1 а⋅Δλ<<1, и чувствительность ФП к сдвигу спектра будет определяться только значением σ1: G(Δλн)≈(1+2Δλн1) и формула для расчета приращения температуры активной области светодиода существенно упроститься:

Заметим, что измеряемая величина определяется только отношениями сигналов ФП до и после разогрева светодиода рабочим током и не зависит от распределения излучения светодиода между ФП, что существенно упрощает реализацию способа, поскольку юстировка ФП относительно светового потока светодиода исключается.

Структурная схема одного из вариантов устройства, реализующего способ, представлена на фиг. 2. Устройство содержит: клеммы 1 для подключения контролируемого СИД; 2 - источник греющего тока; 3 - устройство управления; 4, 5 - ФП с гауссовой и постоянной спектральной чувствительностью, соответственно; 5, 6 - АЦП; 8 - вычислитель; 9 - индикатор.

Устройство работает следующим образом. Излучение контролируемого светодиода после подачи греющего тока от источника тока 2 по сигналу устройства управления 3 попадает на два ФП 4 и 5 со спектральными чувствительностями S1(λ) и S2(λ) соответственно. Сигналы U1(t) и U2(t) с выходов ФП поступают на входы АЦП 6 и 7, соответственно, которые по команде устройства управления в моменты времени t0 и tн преобразуют эти напряжения в код и передают в вычислитель 8. Вычислитель по измеренным значениям сигналов ФП по формуле (6) вычисляет сначала значение H(Δλ) и затем рассчитывает приращение температуры активной области светодиода по формуле (7) или (8). Результат вычисления отображается на индикаторе 9.

У известных фильтров с гауссовой спектральной характеристикой значение σ≈40 нм. Относительный температурный коэффициент сигнала ФП даже для синего светодиода с малым температурным коэффициентом:

, то есть 0,2%/К.

Для красного СИД этот коэффициент примерно в 4 раза больше:

или 0,75%/К.

Для примера, температурный коэффициент прямого падения напряжения на кремниевом диоде составляет - 2 мВ/К. При напряжении на кремниевом диоде 0,8 В относительный температурный коэффициент Up-n равен 0,25%/К.

Время tн саморазогрева светодиода греющим током выбирается, исходя из задач контроля. Для контроля, например, качества пайки кристалла светодиода достаточно нескольких миллисекунд; при контроле качества сборки светодиода для саморазогрева его конструкции необходимо уже несколько секунд; для достижения стационарного теплового режима светодиодных изделий (светильников, панелей и т.п.) необходимо несколько минут или даже десятков минут.


СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
Источник поступления информации: Роспатент

Showing 91-100 of 216 items.
13.03.2019
№219.016.de90

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана и алюминия при их соотношении, мас.%: титан 70,0-79,0, алюминий...
Тип: Изобретение
Номер охранного документа: 0002681584
Дата охранного документа: 11.03.2019
13.03.2019
№219.016.de96

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Далее наносят промежуточный слой из нитрида соединения титана и...
Тип: Изобретение
Номер охранного документа: 0002681585
Дата охранного документа: 11.03.2019
13.03.2019
№219.016.de9a

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана и хрома при их соотношении, мас. %: титан 83,5-86,5, хром 13,5-16,5....
Тип: Изобретение
Номер охранного документа: 0002681586
Дата охранного документа: 11.03.2019
12.04.2019
№219.017.0b81

Импульсный селектор

Изобретение относится к импульсной технике. Технический результат заключается в повышении надежности за счет однородности аппаратурного состава. Импульсный селектор предназначен для воспроизведения операции med(τ,…,τ), где τ,…,τ есть длительности положительных импульсных сигналов x,…,x∈{0,1},...
Тип: Изобретение
Номер охранного документа: 0002684582
Дата охранного документа: 09.04.2019
12.04.2019
№219.017.0bc0

Устройство подачи топлива в цилиндр двигателя внутреннего сгорания

Изобретение относится к устройствам впрыска топлива в цилиндр двигателя внутреннего сгорания. Устройство содержит корпус (1) с внутренней расточкой, две гидравлические полости (6 и 12) разделены подпружиненным клапаном (9), нижняя часть корпуса жестко соединена с конической втулкой (16), жестко...
Тип: Изобретение
Номер охранного документа: 0002684516
Дата охранного документа: 09.04.2019
12.04.2019
№219.017.0be1

Котельная установка

Изобретение относится к области теплоэнергетики и может быть использовано в котельных установках, работающих на природном газе. Котельная установка содержит горелку с подключенными к ней трубопроводом подвода топлива и воздуховодом, газоход уходящих газов с включенным в него дымососом, к...
Тип: Изобретение
Номер охранного документа: 0002684515
Дата охранного документа: 09.04.2019
12.04.2019
№219.017.0bf1

Котельная установка

Изобретение относится к области теплоэнергетики и может быть использовано в котельных установках, работающих на природном газе. Котельная установка с барабаном и топкой содержит горелку с трубопроводами подвода топлива и воздуха, подключенными к топке котла, газоход уходящих газов, подключенный...
Тип: Изобретение
Номер охранного документа: 0002684514
Дата охранного документа: 09.04.2019
13.04.2019
№219.017.0c29

Способ разделения интегральных схем класса "система на кристалле" по надежности

Использование: для разбраковки ИС класса «система на кристалле» по критерию потенциальной надежности. Сущность изобретения заключается в том, что на представительной выборке ИС класса «система на кристалле» измеряют значения критических напряжений питания (КНП) отдельно для каждого...
Тип: Изобретение
Номер охранного документа: 0002684681
Дата охранного документа: 11.04.2019
13.04.2019
№219.017.0c4a

Способ виброакустических испытаний ферм

Изобретение относится к неразрушающим динамическим испытаниям строительных конструкций, в частности к испытаниям элементов ферм. Способ заключается в возбуждении в стержне вынужденных упругих колебаний с изменяющейся частотой и регистрации значения частоты его резонансных колебаний. При этом в...
Тип: Изобретение
Номер охранного документа: 0002684684
Дата охранного документа: 11.04.2019
13.04.2019
№219.017.0c57

Дебалансный вибровозбудитель

Изобретение относится к вибрационной технике и может быть использовано в различных отраслях промышленности, где применяются зарезонансные вибрационные устройства с тяжелыми условиями эксплуатации: прохождение через резонанс и, как следствие, затрудненный пуск. Дебалансный вибровозбудитель...
Тип: Изобретение
Номер охранного документа: 0002684682
Дата охранного документа: 11.04.2019
Showing 21-29 of 29 items.
19.04.2019
№219.017.3462

Устройство для нагрева нефти при сливе

Устройство предназначено для использования в нефтедобывающей, нефтеперерабатывающей и энергетической промышленности для нагрева нефти и нефтепродуктов при сливе из резервуаров. Устройство содержит резервуар; источник СВЧ энергии с волноводом в районе сливного прибора; радиопрозрачную пластину,...
Тип: Изобретение
Номер охранного документа: 0002460933
Дата охранного документа: 10.09.2012
10.07.2019
№219.017.b01e

Способ измерения теплового импеданса полупроводниковых диодов

Способ предназначен для использования на выходном и входном контроле качества полупроводниковых диодов и оценки их температурных запасов. На исследуемый диод подают импульсы греющего тока постоянной амплитуды. В промежутках между импульсами греющего тока пропускают постоянный начальный ток....
Тип: Изобретение
Номер охранного документа: 0002402783
Дата охранного документа: 27.10.2010
03.08.2019
№219.017.bc4a

Способ неразрушающего контроля качества сверхбольших интегральных схем по значению критического напряжения питания

Изобретение относится к микроэлектронике и может быть использовано для обеспечения качества и надежности сверхбольших интегральных схем (СБИС). Сущность: измеряют критическое напряжение питания при нормальной и повышенной температуре. СБИС предварительно программируют тестирующей программой для...
Тип: Изобретение
Номер охранного документа: 0002696360
Дата охранного документа: 01.08.2019
12.08.2019
№219.017.be42

Способ измерения переходной тепловой характеристики цифровых интегральных схем

Изобретение относится к измерительной технике и может быть использовано для контроля тепловых свойств цифровых интегральных схем (ЦИС). Сущность: для измерения переходной тепловой характеристики (ПТХ) цифровой интегральной схемы нечетное количество логических элементов включают по схеме...
Тип: Изобретение
Номер охранного документа: 0002697028
Дата охранного документа: 08.08.2019
12.10.2019
№219.017.d50f

Сигнализатор температуры

Изобретение относится к области измерения температуры и может быть использовано для регулирования температуры нагрева или охлаждения объекта. Сигнализатор температуры содержит генератор прямоугольных импульсов из нечетного количества инверторов цифровой интегральной микросхемы, соединенных по...
Тип: Изобретение
Номер охранного документа: 0002702685
Дата охранного документа: 09.10.2019
19.11.2019
№219.017.e374

Устройство автоматического повторного включения

Использование: в области электротехники. Технический результат – повышение чувствительности устройства при автоматическом повторном включении после самоустранения короткого замыкания и уменьшение массогабаритных показателей. Устройство автоматического повторного включения содержит...
Тип: Изобретение
Номер охранного документа: 0002706332
Дата охранного документа: 18.11.2019
29.04.2020
№220.018.1a56

Способ измерения тепловых сопротивлений переход-корпус и тепловых постоянных времени переход-корпус кристаллов полупроводниковых изделий в составе электронного модуля

Изобретение относится к технике измерения тепловых параметров кристаллов бескорпусных полупроводниковых изделий в составе электронных модулей и может быть использовано для контроля качества сборки электронных модулей как на этапах разработки и производства электронных модулей, так и на входном...
Тип: Изобретение
Номер охранного документа: 0002720185
Дата охранного документа: 27.04.2020
06.07.2020
№220.018.2f81

Способ измерения граничной частоты электролюминесценции локальных областей светоизлучающей гетероструктуры

Изобретение относится к технике измерения динамических характеристик светодиодов и полупроводниковых светоизлучающих структур и может быть использовано для диагностики однородности светоизлучающих гетероструктур (СГС) и их характеристики по динамическим свойствам. Способ измерения граничной...
Тип: Изобретение
Номер охранного документа: 0002725613
Дата охранного документа: 03.07.2020
03.06.2023
№223.018.763c

Способ неразрушающей диагностики дефектов сквозного металлизированного отверстия печатной платы

Изобретение относится к средствам неразрушающего контроля качества сквозных металлизированных отверстий (СМО) печатных плат (ПП). Технический результат - повышение достоверности выявления дефектов и в обеспечение возможности их идентификации. Технический результат достигается тем, что в способе...
Тип: Изобретение
Номер охранного документа: 0002761863
Дата охранного документа: 13.12.2021
+ добавить свой РИД