×
26.12.2018
218.016.ab74

Результат интеллектуальной деятельности: Способ производства горячекатаных листов из низколегированной стали класса прочности К60 толщиной до 40 мм

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии, в частности к производству на реверсивном толстолистовом стане горячекатаного проката толщиной до 40 мм для магистральных труб. Cпособ включает нагрев непрерывнолитых заготовок, черновую прокатку в раскат промежуточной толщины, его подстуживание, чистовую прокатку, ускоренное охлаждение водой в спрейерной установке и далее охлаждение на воздухе. Повышение деформационной способности проката и труб большого диаметра обеспечивается за счет того, что непрерывнолитые заготовки получают из стали со следующим содержанием элементов, мас. %: углерод 0,03-0,07; кремний 0,10-0,25; марганец 1,30-1,65; никель не более 0,30; медь не более 0,30; титан 0,010-0,030; ванадий не более 0,05; ниобий 0,030-0,080; молибден не более 0,30; азот не более 0,007; алюминий 0,020-0,060; сера не более 0,002; фосфор не более 0,012; железо и неизбежные примеси остальное, причем углеродный эквивалент (CE) и коэффициент охрупчивания вследствие структурного превращения (P) должны быть не более 0,40 и 0,18% соответственно. Перед прокаткой заготовки нагревают до температуры, которая регламентируется математической зависимостью, проводят их черновую прокатку с суммарной степенью деформации не менее 40%, чистовую прокатку начинают и завершают при регламентируемой температуре, осуществляют ускоренное охлаждение водой с последующим охлаждением на воздухе. 3 з.п. ф-лы, 3 табл.

Изобретение относится к металлургии, в частности к производству на реверсивном толстолистовом стане горячекатаного проката толщиной до 40 мм для магистральных труб, выдерживающих повышенные деформации и обеспечивающих длительную безаварийную эксплуатацию трубопроводов, в том числе в районах повышенной подвижности грунтов, сейсмической активности и вечной мерзлоты.

Известен способ производства толстолистового проката, включающий выплавку стали, разливку, нагрев и термодеформационную прокатку заготовки, ускоренное охлаждение готового проката, отличающийся тем, что выплавляют сталь следующего химического состава, мас. %:

углерод 0,03-0,20
марганец 0,50-2,10
кремний 0,10-0,50
ниобий 0,01-0,15
алюминий 0,01-0,10
титан 0,005-0,05
азот 0,002-0,012
сера 0,0005-0,010
фосфор 0,003-0,050
железо остальное

термодеформационную прокатку заканчивают в интервале температур от Ar3+30°С до Ar3-30°С, ускоренное охлаждение осуществляют в два этапа, на первом этапе со скоростью 10-30 град/с до температуры 650-550°С, затем после паузы 3-10 с на втором этапе со скоростью 5-20 град/с до температуры 550-450°С, а последующее охлаждение до 100°С осуществляют замедленно со скоростью 0,10-0,01 град/с (Патент РФ №2393236, МПК C21D 8/02, С22С 38/44, опубл. 27.06.2010 г.).

Недостатком аналога является получение не оптимальной микроструктуры для гарантированного достижения высокой деформационной способности стали, определяемой уровнем значений равномерного удлинения и отношения предела текучести к временному сопротивлению. Также к недостаткам относится повышенный до 0,46% углеродный эквивалент, свидетельствующий об ограниченной свариваемости получаемой стали.

Наиболее близким решением, принятым за прототип, является способ производства штрипса для труб магистральных трубопроводов толщиной 24-40 мм, включающий получение заготовки из стали, нагрев заготовки выше Ас3, дробную деформацию и ступенчатое охлаждение готового штрипса в установке контролируемого ускоренного охлаждения до температуры 550-400°C с последующим охлаждением в кессоне до 150°С и далее на воздухе, отличающийся тем, что заготовку получают из стали со следующим соотношением элементов, мас. %:

углерод 0,03-0,10
марганец 1,20-1,85
кремний 0,15-0,35
никель 0,10-0,30
алюминий 0,02-0,06
молибден 0,01-0,3
ниобий 0,03-0,06
ванадий 0,01-0,03
титан 0,001-0,020
сера 0,001-0,003
фосфор 0,002-0,010
железо остальное

при этом углеродный эквивалент Сэкв ≤ 0,40 мас. %, коэффициент трещиностойкости Pcm ≤ 0,21 мас. %, перед деформацией заготовку нагревают до температуры 1150-1200°С в течение 7-8 ч, затем проводят предварительную деформацию с суммарной степенью обжатия 58-65% с регламентированными обжатиями 14-20% при температуре 940-990°С, далее осуществляют охлаждение полученной заготовки на 70-100°С со скоростью 4-12°С/с и последующую выдержку 3-5 с на 1 мм сечения заготовки на воздухе, окончательную деформацию проводят при температуре 830-750°C с суммарной степенью обжатий не менее 43% и не менее 12% за проход (Патент РФ №2426800, МПК C21D 8/02, С22С 38/44, С22С 38/48, C21D 9/46, опубл. 20.08.2011 г.).

Недостатком способа также является получение не оптимальной микроструктуры, которая не обеспечивает отсутствие площадки текучести на диаграмме растяжения и, как следствие, высокой деформационной способности стали для сохранения целостности конструкции трубопроводов при протекании реологических процессов в грунтах.

Техническим результатом изобретения является обеспечение повышенной деформационной способности проката и труб большого диаметра, позволяющей сохранить заданные механические свойства изделий и улучшить показатели сейсмостойкости магистральных трубопроводов за счет повышенной деформируемости труб и всей конструкции в целом.

Технический результат достигается тем, что в способе производства многофазной конструкционной стали с феррито-бейнитно/мартенситной структурой путем низкотемпературного прерывания ускоренного охлаждения, включающем нагрев непрерывнолитых заготовок, черновую прокатку в раскат промежуточной толщины, его подстуживание, чистовую прокатку, ускоренное охлаждение водой в спрейерной установке и далее охлаждение на воздухе, отличающийся тем, что непрерывнолитые заготовки получают из стали со следующим содержанием элементов, мас. %: углерод 0,03-0,07; кремний 0,10-0,25; марганец 1,30-1,65; никель не более 0,30; медь не более 0,30; титан 0,010-0,030; ванадий не более 0,05; ниобий 0,030-0,080; молибден не более 0,30; азот не более 0,007; алюминий 0,020-0,060; сера не более 0,002; фосфор не более 0,012; железо и неизбежные примеси остальное, причем углеродный эквивалент (CEIIW) и коэффициент охрупчивания в следствие структурного превращения (PCM) должны быть не более 0,40 и 0,18% соответственно, перед прокаткой непрерывнолитые заготовки нагревают до температуры не ниже температуры Ts(Nb(C,N)) растворения карбонитридов ниобия в соответствии с уравнением:

где [Nb], [С] и [N] - содержание ниобия, углерода и азота в стали соответственно, мас. %,

затем проводят их черновую прокатку с суммарной степенью деформации не менее 40%, чистовую прокатку начинают при температуре , определяемой по формуле:

где - температура окончания чистовой прокатки, °С,

а завершают в температурном интервале ±30°С от температуры Ar3, далее осуществляют ускоренное охлаждение водой, прерывая охлаждение при температуре ниже 200°C с последующим охлаждением на воздухе.

Технический результат достигается также тем, что ускоренное охлаждение проката прерывают при температуре ниже нижней границы интервала пленочного режима кипения воды.

Кроме того, технический результат достигается тем, что в структуре готового листа высокоуглеродистая фаза представлена мартенситом и бейнитом.

Кроме того, технический результат достигается тем, что в структуре готового листа преобладает мартенсит реечной морфологии.

Для получения требуемой прочности содержание углерда должно быть не менее 0,03%, но при этом добавка более 0,07% наряду с ухудшением свариваемости снижает низкотемпературную вязкость стали. Низкое содержание углерода так же благоприятно для снижения сегрегации в непрерывнолитых заготовках и структурной полосчатости в прокате.

Кремний и алюминий являются технологическими примесями и вводятся в сталь для раскисления. Химические элементы в заявленных пределах обеспечивают необходимую степень раскисленности стали и высокую степень чистоты по эндогенным неметаллическим включениям.

Добавки марганца и молибдена в заявленных пределах способствуют лучшей прокаливаемости стали при термомеханической обработке. Добавки молибдена в количестве более 0,30% экономически не целесообразны. Марганец повышает растворимость углерода, ванадия и др. способствующих дисперсионному твердению элементов в феррите. При содержании марганца более 1,65% процессы твердения получают развитие, что негативно сказывается на пластических свойствах.

Для повышения устойчивости аустенита в сталь добавляют никель и медь в концентрациях до 0,30%. Добавки в большем количестве экономически не целесообразны.

Титан, являясь нитридообразующим элементом, способствует измельчению зерна в стали при содержании более 0,01%. Верхний предел содержания титана ограничен 0,03% из-за образования крупных неметаллических включений кубической формы, снижающих ее ударную вязкость.

Ниобий, обеспечивая выделение дисперсных частиц при термомеханической обработке, позволяет контролировать рост зерна аустенита, измельчать зерно и, как следствие, получать требуемое сочетание прочностных и пластических свойств. Ниобий в концентрации менее 0,03% не эффективен, его содержание в стали более 0,08% экономически не целесообразно.

Ванадий является карбонитридообразующим элементом, повышающим прочность. Экспериментально установлено, что его добавление в количестве более 0,05% приводит к снижению вязкостных свойств стали.

Азот необходим для выделения дисперсных карбидов титана, сдерживающих миграцию границ зерен при высоких температурах нагрева и уменьшающих размер действительного зерна аустенита. При его содержании свыше 0,007% значительно ухудшается низкотемпературная ударная вязкость.

Сера и фосфор являются вредными примесями, их концентрация должна быть минимальной, однако при концентрации серы не более 0,002% и фосфора не более 0,012% их отрицательное влияние на свойства стали незначительно. При этом дальнейшее снижение примесей возможно только за счет более глубокой десульфурации и дефосфорация стали, что существенно удорожает ее производство и нецелесообразно.

Для предотвращения образования холодных трещин сварного соединения необходимо, чтобы значение углеродного эквивалента (CEIIW) было не более 0,40%. Для снижения охрупчивания вследствие структурного превращения при сварке (PCM) - не более 0,18%.

Перед черновой прокаткой непрерывнолитые заготовки нагревают до температуры не ниже температуры Ts(Nb(C,N)) растворения карбонитридов ниобия в соответствии с уравнением:

где [Nb], [С] и [N] - содержание ниобия, углерода и азота в стали соответственно, мас. %.

Растворение первичных карбидов ниобия при нагреве перед прокаткой стимулирует выделение мелкодисперсных частиц Nb(C,N) при подстуживании между стадиями, что позволяет эффективнее управлять рекристаллизацией при чистовой прокатке, воздействуя на прочностные и вязкопластические свойства стали. Накопление необходимой и достаточной деформация аустенитного зерна на чистовой стадии достигается при суммарном относительном обжатии не менее 40%, что позволяет достичь более высоких результатов механических испытаний за счет формирования большего количества центров зарождения феррита. Чистовую прокатку начинают при температуре , определяемой по формуле:

где - температура окончания чистовой прокатки, °С.

При превышении расчетных значений по данному уравнению возможно снижение эффекта от статической рекристаллизации и получение разнозернистой структуры, характерной для случая неполной рекристаллизации. При заниженной температуре начала чистовой прокатки последние проходы будут выполняться также при пониженной температуре, перегружая оборудование клети и главного привода, а также нарушая планшетность раската, что экономически не целесообразно. Завершают чистовую прокатку в температурном интервале от (Ar3 + 30°С) до (Ar3 - 30°С), далее осуществляют ускоренное охлаждение водой, прерывая охлаждение при температуре ниже 200°С с последующим охлаждением на воздухе.

Заявленные интервалы окончания термодеформационной прокатки и температурный режим ускоренного последеформационного охлаждения в область температур мартенситного превращения обусловлены задачей получения в прокате многофазной феррито-бейнито/мартенситной структуры, что позволяет исключить (минимизировать) наличие (протяженность) площадки текучести на диаграмме растяжения и, как следствие, обеспечить высокий уровень деформационной способности стали.

В одном из способов по данному изобретению ускоренное охлаждение проката прерывают при температуре ниже нижней границы интервала пленочного режима кипения воды, что значительно повышает стабильность свойств по всей площади раската из-за устранения «паровой рубашки» и выравнивания условий распада переохлажденного аустенита.

Кроме того, наличие высокоуглеродистой фазы в структуре готового листа в виде мартенсита и бейнита, причем с преобладанием мартенсита реечной морфологии, позволяет повысить прочность стали, увеличить пластичность и ударную вязкость, а также получить более низкое отношение предела текучести к временному сопротивлению.

Реализация предложенного технического решения обеспечивает повышенную деформационную способность проката и труб большого диаметра, позволяя им сохранять заданные механические свойства и улучшать показатели сейсмостойкости магистральных трубопроводов за счет повышенной деформируемости труб и всей конструкции в целом, что достигается за счет выбора рациональных температурно-деформационных режимов для определенного химического состава стали. При выходе варьируемых параметров за указанные границы возможно неполучение стабильно удовлетворительных результатов механических испытаний как листов, так и труб, выполненных из них. Полученные данные подтверждают правильность выбранных значений технологических параметров в рамках предложенного способа производства многофазной конструкционной стали с феррито-бейнитно/мартенситной структурой путем низкотемпературного прерывания ускоренного охлаждения.

Применение способа поясняется примером его реализации при производстве листов 25,8 мм на толстолистовом стане 5000 ПАО «Северсталь».

Выплавку стали осуществляли в кислородном конвертере с проведением процесса десульфурации магнием в заливочном ковше. На выпуске проводили первичное легирование, предварительное раскисление и обработку металла твердошлаковыми смесями с продувкой металла аргоном в сталеразливочном ковше. Окончательное легирование, микролегирование, обработку металла кальцием и перегрев металла для проведения вакуумирования проводили на агрегате комплексной доводки стали. Дегазацию металла осуществляли путем его вакуумирования. Разливку производили на МНЛЗ с защитой металла аргоном от вторичного окисления.

Химический состав экспериментальных плавок приведен в таблице 1.

Сталь получена со следующим составом химических элементов, масс. %: С=0,058; Si=0,15; Mn=1,46; Ni=0,24; Cu=0,02; Ti=0,016; V=0,003; Nb=0,070; Mo=0,169; N=0,005; Al=0,03; S=0,001; P=0,008 железо и примеси - остальное. Углеродный эквивалент составил 0,35%, а коэффициент охрупчивания вследствие структурного превращения - 0,15%.

Непрерывнолитые заготовки толщиной 313 мм перед прокаткой нагревали до температуры 1195°С и последовательно деформировали до достижения раскатом толщины 162 мм и суммарной степени деформации 48 %, после этого раскат охлаждали на воздухе до температуры начала чистовой прокатки 830°С, деформировали на чистовой стадии до конечной толщины с окончанием при 795°С, далее лист ускоренно охлаждали до температуры 150°С.

Механические испытания проводили на образцах, изготовленных из проб, отобранных в поперечном направлении относительно направления прокатки. Испытания на статическое растяжение проводили на плоских пятикратных образцах по ГОСТ 1497, ударный изгиб - на образцах с V-образным надрезом по ГОСТ 9454 при температуре минус 40°С, падающим грузом - на полнотолщинных образцах по требованиям API 5L3 при температуре минус 20°С.

Варианты реализации предложенного способа и результаты испытаний приведены в таблицах 2 и 3 соответственно.

Результаты испытаний показали, что предлагаемый способ производства стали выбранного химического состава (варианты №1, 2, и 3) обеспечивает удовлетворительный уровень механических свойств, определяемых при статических испытаниях образцов на растяжение, а также при динамических испытаниях на маятниковом копре и копре с падающим грузом. При запредельных значениях предложенных режимов (варианты №6 - 8) и способе-прототипе не удается достигнуть требуемого уровня механических свойств по равномерному удлинению, отношению предела текучести к временному сопротивлению и доли вязкой составляющей в изломе образца после испытаний падающим грузом.

В варианте 6 и 7 ускоренное охлаждение проводили до температуры 205 и 218°С соответственно, что выше нижней границы интервала пленочного режима кипения воды. Для листа, произведенного по данному режиму, разброс по прочностным характеристикам превысил общий уровень в 1,5-2,0 раза.

Таким образом, применение описанного способа прокатки листов приведенного состава обеспечивает достижение требуемых результатов, а именно, обеспечение повышенной деформационной способности проката и труб большого диаметра, позволяющей сохранить заданные механические свойства изделий и улучшить показатели сейсмостойкости магистральных трубопроводов за счет повышенной деформируемости труб и всей конструкции в целом.

* Примечание: Б - бейнит, Мп - мартенсит пластинчатый, Мр - мартенсит реечный, Ф - феррит.


Способ производства горячекатаных листов из низколегированной стали класса прочности К60 толщиной до 40 мм
Способ производства горячекатаных листов из низколегированной стали класса прочности К60 толщиной до 40 мм
Способ производства горячекатаных листов из низколегированной стали класса прочности К60 толщиной до 40 мм
Способ производства горячекатаных листов из низколегированной стали класса прочности К60 толщиной до 40 мм
Источник поступления информации: Роспатент

Showing 11-20 of 34 items.
19.01.2018
№218.016.08bd

Бетонная смесь

Изобретение относится к промышленности строительных материалов, а именно к строительным бетонам при производстве фундаментов, подпорных стен, изготовлении лестниц, плит перекрытий. Технический результат- повышение прочности при сжатии и изгибе, снижение водопотребности. В бетонной смеси,...
Тип: Изобретение
Номер охранного документа: 0002631741
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.156e

Способ производства крупногабаритных толстых металлических листов или плит

Изобретение относится к области прокатного производства. Способ включает изготовление литых слябов, порезку слябов по длине, их нагрев в печи и последующую прокатку на реверсивном толстолистовом стане горячей прокатки, при этом перед нагревом в печи слябы, одинаковые по толщине и химическому...
Тип: Изобретение
Номер охранного документа: 0002634863
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1585

Способ смазки подшипников жидкостного трения прокатной клети

Изобретение относится к области прокатного производства. Способ включает подачу жидкой смазки из напорного маслопровода гидросистемы в центральную часть подшипника через отверстия в теле подушки, распределение смазки между трущимися поверхностями подшипника и слив отработанной смазки в...
Тип: Изобретение
Номер охранного документа: 0002634865
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.19dc

Способ производства круглого сортового проката из борсодержащей стали с повышенной пластичностью

Изобретение относится к области металлургии, в частности к производству круглого сортового проката диаметром от 6 до 13 мм. Для повышения пластических свойств проката, позволяющих гарантировать степень деформируемости проката на уровне 66% при изготовлении крепежных изделий холодной высадкой...
Тип: Изобретение
Номер охранного документа: 0002636542
Дата охранного документа: 23.11.2017
04.04.2018
№218.016.3540

Способ очистки коксового газа от аммиака круговым фосфатным способом

Изобретение относится к области химической технологии переработки твердого топлива и может быть использовано в коксохимической промышленности для очистки коксового газа от аммиака (NH). Задачей изобретения является разработка способа очистки коксового газа от аммиака, позволяющего увеличить...
Тип: Изобретение
Номер охранного документа: 0002645999
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.4186

Толстый лист из дисперсионно-твердеющей стали для горячей штамповки и способ его получения

Изобретение относится к области металлургии, в частности к производству толстого листа из низколегированной дисперсионно-твердеющей стали. Для обеспечения комплекса свойств, соответствующих классам прочности К60-К65, получают лист толщиной до 52 мм с уровнем прочности не менее 590 МПа,...
Тип: Изобретение
Номер охранного документа: 0002649110
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4bcd

Способ ремонта железобетонной дымовой трубы и устройство для его осуществления

Изобретение относится к области строительства, а точнее к способам ремонта дымовых железобетонных или кирпичных труб. Цель изобретения – создать устройство и способ ремонта железобетонной или кирпичной дымовой трубы, который позволяет устранять прямое воздействие агрессивных газов на несущий...
Тип: Изобретение
Номер охранного документа: 0002651871
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4d11

Способ производства горячекатаных листов из высокопрочной стали

Изобретение относится к области металлургии, а именно к производству толстых стальных листов, используемых для элементов конструкций, эксплуатируемых в арктических условиях, например для производства корпусов ледоколов и крупнотоннажных судов. Для получения листа толщиной до 70 мм с пределом...
Тип: Изобретение
Номер охранного документа: 0002652281
Дата охранного документа: 25.04.2018
29.05.2018
№218.016.53d7

Хладостойкая свариваемая сталь и изделие, выполненное из нее (варианты)

Изобретение относится к области металлургии, а именно к производству толстолистового проката толщиной до 100 мм из хладостойкой свариваемой стали для изготовления строительных конструкций, судостроения и других отраслей, в том числе для изготовления стационарных морских сооружений,...
Тип: Изобретение
Номер охранного документа: 0002653748
Дата охранного документа: 14.05.2018
28.07.2018
№218.016.7651

Шлакообразующая смесь для разливки сортовой заготовки из высокоуглеродистых марок стали

Изобретение относится к непрерывной разливке стали. Гранулированная шлакообразующая смесь содержит фторсодержащий (12-16 мас.%) и углеродсодержащий (22-28 мас.%) материалы, глыбу силикатную (27-31 мас.%), цемент (13-18 мас.%), связующие и стабилизирующие добавки для гранулирования (2-5 мас.%),...
Тип: Изобретение
Номер охранного документа: 0002662511
Дата охранного документа: 26.07.2018
Showing 11-20 of 108 items.
10.10.2014
№216.012.fb23

Огнеупорная бетонная смесь и способ изготовления из нее бетона

Изобретение относится к получению цементных смесей и бетона различного назначения, работающих при высоких деформирующих нагрузках, и может быть использовано в металлургической, строительной и других отраслях промышленности. Технический результат изобретения - получение бетона с повышенными...
Тип: Изобретение
Номер охранного документа: 0002530137
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0498

Способ холодной прокатки полосы на многоклетевом непрерывном стане

Изобретение относится к прокатному производству и может быть использовано на многоклетевых непрерывных станах при холодной прокатке полосы из стали или сплавов цветных металлов из горячекатаного подката. Сущность изобретения: при холодной прокатке полосы необходимо выдерживать допуски на...
Тип: Изобретение
Номер охранного документа: 0002532574
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04aa

Способ определения сплошности полимерного покрытия и устройство для его осуществления

Изобретение относится к области физико-химического анализа и может быть использовано для определения наличия трещин на поверхности образцов стального проката с полимерным покрытием, преимущественно при испытании полимерного покрытия на прочность при изгибе по ГОСТ Р 52146-2003. В способе...
Тип: Изобретение
Номер охранного документа: 0002532592
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.055a

Способ призводства проката из низколегированной толстолистовой стали

Изобретение относится к области металлургии, в частности к производству изготовления толстолистовой стали для труб с толщиной стенки до 39 мм. Для обеспечения повышенной хладостойкости, высокого уровня сопротивления протяженному вязкому разрушению используют слябовую заготовку толщиной не менее...
Тип: Изобретение
Номер охранного документа: 0002532768
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0686

Способ производства стали

Изобретение относится к области черной металлургии, в частности к производству коррозионностойкой стали с внепечной обработкой и разливкой на установке непрерывной разливки. В способе осуществляют выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш, рафинирование стали в процессе...
Тип: Изобретение
Номер охранного документа: 0002533071
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0746

Способ производства низкокремнистой стали

Изобретение относится к области черной металлургии, в частности к производству низкокремнистой стали с внепечной обработкой и разливкой на установках непрерывной разливки стали. В способе осуществляют выпуск металла при температуре не менее 1630°C, во время выпуска присаживают карбид кальция в...
Тип: Изобретение
Номер охранного документа: 0002533263
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0816

Способ эксплуатации чугунных рабочих валков

Изобретение относится к прокатному производству и может быть использовано при эксплуатации чугунных рабочих валков непрерывных и реверсивных клетей кварто горячей прокатки. Способ включает вывалку валка из клети, измерение температуры, шлифование с профилированием по плавной вогнутой образующей...
Тип: Изобретение
Номер охранного документа: 0002533471
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0d8f

Способ изготовления двухслойных горячекатаных листов

Изобретение может быть использовано для изготовления изделий, эксплуатирующихся в широком температурном интервале (до -60°C) в условиях повышенного коррозионного износа под воздействием морской воды и других агрессивных сред. Биметаллическую заготовку получают путем электрошлаковой наплавки на...
Тип: Изобретение
Номер охранного документа: 0002534888
Дата охранного документа: 10.12.2014
10.03.2015
№216.013.2f9d

Способ производства прямошовных магистральных труб

Изобретение относится к области обработки металлов давлением магистральных труб. Способ включает формовку основного контура трубной заготовки из толстолистового проката, последующее соединение продольных боковых кромок отформованной трубной заготовки, приварку к ним технологических планок и...
Тип: Изобретение
Номер охранного документа: 0002543657
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f9e

Способ выплавки стали в дуговой электросталеплавильной печи

Изобретение относится к области черной металлургии, в частности к способу получения стали в дуговой сталеплавильной печи. Способ включает подачу в печь в качестве металлошихты металлолома и жидкого чугуна, расплавление металлолома, присадку шлакообразующих материалов, продувку кислородом,...
Тип: Изобретение
Номер охранного документа: 0002543658
Дата охранного документа: 10.03.2015
+ добавить свой РИД