×
19.12.2018
218.016.a8a8

Результат интеллектуальной деятельности: СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ ВОЛЬФРАМОВОЙ ПЛАСТИНЫ

Вид РИД

Изобретение

№ охранного документа
0002675194
Дата охранного документа
17.12.2018
Аннотация: Изобретение относится к обработке и упрочнению поверхности вольфрамовой пластины, подвергающейся интенсивным тепловым нагрузкам, в частности, в установках термоядерного синтеза, в которых вольфрам используют в качестве материала первой стенки и пластин дивертора. Проводят воздействие на поверхность вольфрамовой пластины вольфрамовыми наночастицами, ускоренными электрическим полем, и образование вольфрамовой пленки толщиной по меньшей мере 100 нм на поверхности вольфрамовой пластины. В качестве вольфрамовых наночастиц используют расплавленные вольфрамовые наночастицы размером до 3 нм, ускоренные электрическим полем до скорости выше 10 см/с. Упомянутые вольфрамовые частицы получают абляцией вольфрамовой мишени импульсами лазерного излучения длительностью (20-50) нс, с энергией излучения в импульсе не менее 190 мДж и плотностью энергии лазерного излучения на вольфрамовой мишени не менее 2⋅10 Вт/см. Обеспечивается упрощение образования вольфрамовой пленки на поверхности вольфрамовой пластины и снижение вероятности образования микротрещин на ней при воздействии импульсных тепловых нагрузок. 2 ил., 1 пр.

Изобретение относится к способам обработки и упрочнения поверхности вольфрама для повышения его стойкости в процессах, в которых пластины вольфрама подвергаются интенсивным тепловым нагрузкам, в частности, в установках термоядерного синтеза, где вольфрам используют в качестве материала первой стенки и пластин дивертора.

Вольфрам рассматривается в качестве основного материала для термоядерных установок ИТЕР (ITER, International Thermonuclear Experimental Reactor) и ДЕМО (Demonstration Power Plant). Однако при высоких тепловых нагрузках происходит охрупчивание вольфрама, что делает его восприимчивым к образованию трещин вдоль границ зерен. Для решения проблемы образования трещин, обусловленных охрупчиванием вольфрама, ведутся разработки различных композитных материалов из вольфрама, в частности, наноструктурированных композитов вольфрама с карбидом титана и композитов вольфрама, армированных углеродными волокнами. Также, большое внимание уделяется наноструктурам вольфрама с развитой волокнистой поверхностью и способам формирования пластин вольфрама с различной структурой.

Известен способ упрочнения поверхности металла (см. заявка CN 102400084, МПК С23С 04/08; С23С 04/134, опубликована 04.04.2012), заключающийся в том, что микропорошок вольфрама пропускают через аргоновую плазму высокочастотного разряда, нагревают и плавят в плазме разряда, а затем наносят на обрабатываемую поверхность, где частицы вольфрама застывают и формируют покрытие из вольфрама. Способ обеспечивает формирование покрытия из вольфрама на поверхности металла, но импульс, передаваемый поверхности обрабатываемого металла от частиц вольфрама не достаточен для того, чтобы привести к изменению структуры зерен на поверхности обрабатываемого металла и привести к упрочнению его поверхности.

Известен способ упрочнения поверхности металла с помощью технологии холодного воздушного динамического напыления микрочастиц вольфрама (см. заявка CN 102260869, МПК С23С 24/04; опубликована 30.11.2011). Способ заключается в нанесении на поверхность металла микрочастиц вольфрама (0,4-10 мкм), которые разгоняют до высоких скоростей (500-1000 м/с) с помощью сверхзвуковых струй газа.

Недостатком известного способа является то, что напыляемый слой из частиц вольфрама удерживается только силой адгезии на поверхности металла.

Наиболее близким по технической сущности и по совокупности существенных признаков к настоящему техническому решению является способ упрочнения металлической поверхности, в том числе вольфрамовой, (см. заявка WO 2008090662, МПК С23С 24/04; С23С 26/02, опубликована 31.07.2008), включающий воздействие на поверхность металла ускоренными электрическим полем наночастицами вольфрама, и образование вольфрамовой пленки на поверхности металла. При этом для образования пленки и для упрочнения связи между металлом и наночастицами вольфрама на поверхность металла с нанесенными наночастицами вольфрама воздействуют электронным лучом, что обеспечивает плавление наночастиц.

Способ-прототип обеспечивает хорошую адгезию наночастиц вольфрама к поверхности металла, например, вольфрама, что обеспечивает упрочнение обрабатываемого металла, в результате которого повышается его стойкость к трещинообразованию, но приходится использовать достаточно сложный технологический процесс получения твердых наночастиц вольфрама и последующее воздействие на поверхность металла с нанесенными наночастицами электронным лучом, учитывая высокие температуры плавления вольфрама.

Задачей настоящего технического решения являлась разработка такого способа упрочнения поверхности вольфрамовой пластины, который бы позволил упростить процесс образования вольфрамовой пленки на ее поверхности и при этом обеспечивал снижение вероятности образования микротрещин на поверхности вольфрамовой пластины при воздействии импульсных тепловых нагрузок.

Поставленная задача решается тем, что способ упрочнения поверхности вольфрамовой пластины включает воздействие на поверхность вольфрамовой пластины ускоренными электрическим полем до скорости выше 104 см/с расплавленными наночастицами вольфрама размером до 3 нм, образованными абляцией вольфрамовой мишени импульсами лазерного излучения длительностью (20-50) не, с энергией излучения в импульсе не менее 190 мДж и плотностью энергии лазерного излучения на вольфрамовой мишени не менее 2⋅108 Вт/см2, и образование вольфрамовой пленки толщиной по меньшей мере 100 нм на поверхности вольфрамовой пластины. Новым в способе является то, что на поверхность вольфрама воздействуют уже расплавленными наночастицами вольфрама размером до 3 нм, ускоренными электрическим полем до скорости выше 104 см/с. При этом упомянутые наночастицы образуются абляцией вольфрамовой мишени импульсами лазерного излучения длительностью (20-50) не с энергией излучения в импульсе не менее 190 мДж и плотностью энергии лазерного излучения на вольфрамовой мишени не менее 2⋅108 Вт/см2.

Обработка поверхности вольфрамовой пластины уже расплавленными и ускоренными электрическим полем до скорости выше 104 см/с наночастицами вольфрама размером до 3 нм приводит не только к упрощению процесса по сравнению с прототипом, но и к повышению стойкости вольфрамовой пластины к образованию микротрещин при интенсивных импульсных тепловых нагрузках. Данный эффект достигается за счет поверхностной пластичной деформации и изменения структуры зерен в слое у поверхности обрабатываемого вольфрама при воздействии на него ускоренными расплавленными наночастицами вольфрама. Обработка поверхности вольфрамовой пластины настоящим способом позволяет избежать распространения микротрещин на поверхности вольфрамовой пластины.

Настоящий способ упрочнения поверхности вольфрамовой пластины поясняется чертежом, где:

на фиг. 1 приведена микрофотография необработанной пластины вольфрама после ее тестирования на стенде плазменной пушки;

на фиг. 2 показана микрофотография обработанной настоящим способом пластины вольфрама после ее тестирования на стенде плазменной пушки;

Настоящий способ упрочнения поверхности вольфрамовой пластины осуществляют следующим образом. При лазерной абляции вольфрамовой мишени импульсами лазерного излучения поверхность мишени плавится, и из нее вылетают микрокапли расплавленного вольфрама. Также с мишени эродируются пары вольфрама, и в этих парах под действием лазерного излучения происходит оптический пробой, который создает плазму лазерного факела. Плазма лазерного факела разлетается по направлению от мишени к обрабатываемой пластине вольфрама. Микрокапли вольфрама в создаваемой плазме лазерного факела заряжаются до неустойчивого состояния и распадаются на расплавленные частицы размером до 3 нм. Расплавленные наночастицы вольфрама ускоряются электрическим полем до скоростей выше 104 см/с и вместе с потоком вольфрамовой плазмы наносятся на поверхность пластины вольфрама. На поверхности пластины вольфрама формируется пленка толщиной по меньшей мере 100 нм, при этом под воздействием ударов расплавленных наночастиц о поверхность обрабатываемой пластины вольфрама происходит дробеструйная обработка пластины, которая обеспечивает упрочнение пластины вольфрама и повышение ее стойкости к образованию микротрещин при высоких импульсных тепловых нагрузках.

Однако, если энергия излучения в импульсе будет меньше 190 мДж, а плотность мощности лазерного излучения будет меньше, чем 2⋅108 Вт/см2, то микрокапли не будут заряжаться до неустойчивого состояния и диспергироваться до расплавленных частиц нанометрового размера. Нанометровые частицы ускоряются в электрическом поле заряженных капель микронного размера, соответственно без эмиссии нанометровых частиц не будет происходить ускорения потока частиц и эффект дробеструйной обработки пропадает.

Если длительность импульса лазерного излучения будет меньше 20 не, то времени на зарядку и диспергирование капель микронного размера окажется недостаточно, соответственно в потоке частиц будет оставаться большое число крупных не разделившихся остатков микрокапель. Такие остатки будут создавать неоднородности в пленке, формируемой на обрабатываемой поверхности, а также препятствовать дробеструйной обработке поверхности. Тем самым ухудшается качество обработки, не происходит повышения стойкости обрабатываемого металла к высоким импульсным тепловым нагрузкам.

Если длительность импульса лазерного излучения будет больше 50 нс, то интенсивный поток ионов из плазмы лазерного факела будет перегревать нанокапли вольфрама и испарять существенную их долю прежде, чем поток нанокапель достигнет обрабатываемой поверхности.

Пример. Для экспериментальной проверки эффективности данного способа упрочнения вольфрамовой пластины для повышения ее стойкости к высоким импульсным тепловым нагрузкам были обработаны пластины вольфрама толщиной 3 мм и размерами 20×30 мм2. Для этого мишень из вольфрама облучалась излучением лазера Nd:YAG с длиной волны 1,06 мкм, длительностью импульса 26 не, с энергий в импульсе 200 мДж и частотой повторения импульсов 60 Гц. Излучение фокусировалось на поверхность мишени в пятно диаметром 1 мм. В процессе лазерной абляции с поверхности мишени эмитировались микрокапли вольфрама и заряжались в плазме лазерного факела до неустойчивого состояния. Зарядка микрокапель до неустойчивого состояния приводило к тому, что эти материнские капли эмитировали дочерние заряженные капли меньшего размера, которые также являлись неустойчивыми. Соответственно процесс носил каскадный характер. Дочерние капли ускорялись в электрическом поле материнских микрокапель. Оценки показывают, что каскадное деление останавливалось, когда размер капель достигал нескольких нанометров. При этом скорость наночастиц достигала 104 см/с. Исследования показали, что для микрокапель вольфрама каскадное деление прекращалось, когда размер частиц достигает примерно 3 нм. На пластины вольфрама воздействовали этими ускоренными наночастицами вольфрама, из которых формировались пленки толщиной 100 нм. Контроль толщины пленок осуществляли с помощью профилометра Ambios Technology ХР1. Тестирование образцов на их стойкость к образованию трещин при высоких импульсных тепловых нагрузках проводили на стенде плазменной пушки, позволяющем создавать на поверхности исследуемых вольфрамовых пластин импульсные тепловые нагрузки, подобные тем, которые возникают на диверторных пластинах термоядерных установок ИТЕР и ДЕМО в случае реализации периферийной неустойчивости. Облучение образцов, находящихся при комнатной температуре, проводилось сериями из 15 импульсов гелиевой плазмы длительностью 15 мкс каждый, при плотности потока энергии на поверхность образцов 35 ГВт/м2. Для выявления роли обработки образцов вольфрама настоящим способом одновременно с исследуемым образцом облучался образец-спутник, не подвергавшийся обработке настоящим способом. Анализ структуры образцов проводили по результатам измерений морфологии образцов на сканирующем микроскопе CamScan S4-90 FE. Было обнаружено, что на образцах, предварительно обработанных настоящим способом, число характерных трещин значительно меньше, чем на поверхности необработанных образцов вольфрама (фиг. 1, фиг. 2).

Таким образом, проведенные экспериментальные исследования показали, что в образцах, обработанных настоящим способом, интенсивность образования микротрещин в вольфрамовых пластинах при высоких тепловых нагрузках оказывается ниже, чем в пластинах вольфрама не подвергнутых обработке.

Способ упрочнения поверхности вольфрамовой пластины, включающий воздействие на поверхность вольфрамовой пластины вольфрамовыми наночастицами, ускоренными электрическим полем, и образование вольфрамовой пленки толщиной по меньшей мере 100 нм на поверхности вольфрамовой пластины, отличающийся тем, что в качестве вольфрамовых наночастиц используют расплавленные вольфрамовые наночастицы размером до 3 нм, ускоренные электрическим полем до скорости выше 10 см/с, при этом упомянутые вольфрамовые частицы получают абляцией вольфрамовой мишени импульсами лазерного излучения длительностью (20-50) нс, с энергией излучения в импульсе не менее 190 мДж и плотностью энергии лазерного излучения на вольфрамовой мишени не менее 2⋅10 Вт/см.
СПОСОБ УПРОЧНЕНИЯ ПОВЕРХНОСТИ ВОЛЬФРАМОВОЙ ПЛАСТИНЫ
Источник поступления информации: Роспатент

Showing 11-20 of 114 items.
20.10.2013
№216.012.773e

Топливный элемент и батарея топливных элементов

Изобретение относится к области электрохимической энергетики. Топливный элемент (1) включает мембранно-электродную сборку (2), к аноду которой примыкает упругая пластинчатая диэлектрическая прокладка из химически инертного материала (12), первая и вторая герметизирующие прокладки (5), (8). В...
Тип: Изобретение
Номер охранного документа: 0002496186
Дата охранного документа: 20.10.2013
27.01.2014
№216.012.9cf6

Способ получения слоя прозрачного проводящего оксида на стеклянной подложке

Изобретение относится к технологии тонкопленочных фотоэлектрических преобразователей с текстурированным слоем прозрачного проводящего оксида. Способ получения слоя прозрачного проводящего оксида на стеклянной подложке включает нанесение на стеклянную подложку слоя оксида цинка ZnO химическим...
Тип: Изобретение
Номер охранного документа: 0002505888
Дата охранного документа: 27.01.2014
10.05.2014
№216.012.c135

Концентраторный каскадный фотопреобразователь

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан...
Тип: Изобретение
Номер охранного документа: 0002515210
Дата охранного документа: 10.05.2014
20.07.2014
№216.012.dfe7

Способ отбраковки мощных светодиодов на основе ingan/gan

Изобретение относится к полупроводниковой технике. Способ включает измерение значения спектральной плотности низкочастотного шума каждого светодиода при подаче напряжения в прямом направлении и плотности тока из диапазона 0.1
Тип: Изобретение
Номер охранного документа: 0002523105
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e266

Активный материал для мазера с оптической накачкой и мазер с оптической накачкой

Изобретение относится к квантовой электронике. Активный материал для мазера с оптической накачкой содержит кристалл карбида кремния, содержащего парамагнитные вакансионные дефекты. Мазер с оптической накачкой включает генератор (1) сверхвысокой частоты (СВЧ), циркулятор (2), магнит (3), между...
Тип: Изобретение
Номер охранного документа: 0002523744
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f6

Способ изготовления каскадных солнечных элементов на основе полупроводниковой структуры galnp/galnas/ge

Способ изготовления каскадных солнечных элементов включает последовательное нанесение на фронтальную поверхность фоточувствительной полупроводниковой структуры GaInP/GaInAs/Ge пассивирующего слоя и контактного слоя GaAs, локальное удаление контактного слоя травлением через маску фоторезиста....
Тип: Изобретение
Номер охранного документа: 0002528277
Дата охранного документа: 10.09.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.224c

Инжекционный лазер с многоволновым модулированным излучением

Использование: для управления лазерным излучением. Сущность изобретения заключается в том, что инжекционный лазер с многоволновым модулированным излучением на основе гетероструктуры содержит первый оптический Фабри-Перо резонатор, ограниченный с одной стороны первым отражателем, с другой...
Тип: Изобретение
Номер охранного документа: 0002540233
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
Showing 1-6 of 6 items.
25.08.2017
№217.015.cec9

Катализатор для гидроизомеризации дизельного топлива

Изобретение относится к катализатору для гидроизомеризации дизельного топлива, который может быть использован для получения низкозастывающего дизельного топлива с высокими выходом целевого продукта. Катализатор получен на основе наночастиц металлов платиновой группы, нанесенных на твердый...
Тип: Изобретение
Номер охранного документа: 0002620813
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d0e5

Катализатор для процессов высокотемпературного окисления со

Изобретение относится к катализатору для процессов высокотемпературного окисления СО и может быть использован для удаления СО, образующегося в процессах регенерации катализаторов каталитического крекинга, протекающих при температурах 600÷700°С. Катализатор получен на основе наночастиц металлов...
Тип: Изобретение
Номер охранного документа: 0002621350
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.d8d8

Способ защиты литографического оборудования от пылевых металлических частиц

Изобретение относится к способам защиты рабочих элементов литографического оборудования от потоков пылевых частиц, в которых запыление элементов оптики продуктами распыления мишени при ее облучении лазерным излучением является критическим. Способ включает зарядку пылевых металлических частиц и...
Тип: Изобретение
Номер охранного документа: 0002623400
Дата охранного документа: 26.06.2017
20.01.2018
№218.016.0ffc

Способ получения наночастиц и устройство для его осуществления

Группа изобретений относится к получению металлических наночастиц. Способ включает формирование потока ускоряемых металлических микрочастиц, плавление металлических микрочастиц, подачу потока образовавшихся жидких микрокапель в область цилиндрического осесимметричного электростатического поля,...
Тип: Изобретение
Номер охранного документа: 0002633689
Дата охранного документа: 16.10.2017
04.04.2018
№218.016.32ed

Способ получения катализаторов гидроочистки углеводородного сырья на основе аморфных металлических наночастиц

Изобретение относится к способу получения катализаторов гидроочистки углеводородного сырья на основе аморфных металлических наночастиц относится к области нефтепереработки и может быть использован для очистки от серосодержащих и азотсодержащих соединений дизельного топлива и дизельно-масляных...
Тип: Изобретение
Номер охранного документа: 0002645354
Дата охранного документа: 21.02.2018
29.05.2018
№218.016.5995

Устройство защиты литографического оборудования от пылевых металлических частиц

Изобретение относится к устройствам защиты рабочих элементов литографического оборудования от потоков пылевых частиц, в которых запыление элементов оптики продуктами распыления мишени при ее облучении лазерным излучением является критическим. Устройство включает узел (1) зарядки пылевых...
Тип: Изобретение
Номер охранного документа: 0002655339
Дата охранного документа: 25.05.2018
+ добавить свой РИД